Quantum Mechanics 4/14/2003 (10:10-12:00)

- [30 point] The spin of an electron is up along the z-axis at time t=0. It is subject to an uniform magnetic field B=Bx, where x is the unit vector along the x-axis.
 (a) Find out the probability that the electron remains at the spin-up state at time t.
 (b) Find out the expectation value of S_z as a function of time.
 (Hint: the Hamiltonian is H = -μ·B, the magnetic moment μ = (-e/mc)S, and S is the spin operator.)
- 2. [40 points] A particle is described by the wave function $\psi(\mathbf{r}) = A(x+y+2z)e^{-r}$.
 - (a) When the angular momentum L_z of the particle is measured, we obtain only one of the three values \hbar , 0, and $-\hbar$. Explain why.
 - (b) Find out the probabilities P_m of getting the result with $L_z = m\hbar$.
 - (c) After $\psi(\mathbf{r})$ has been rotated counter-clockwise around the z-axis by 90 degrees, the new wave function is written as $\psi'(\mathbf{r})$. Find out the explicit form of $\psi'(\mathbf{r})$.

 $Y_0^0 = (4\pi)^{-1/2}$ $Y_1^{\pm 1} = \mp (3/8\pi)^{1/2} \sin \theta \ e^{\pm i\phi}$ $Y_1^0 = (3/4\pi)^{1/2} \cos \theta$ $Y_2^{\pm 2} = (15/32\pi)^{1/2} \sin^2 \theta \ e^{\pm 2i\phi}$ $Y_2^{\pm 1} = \mp (15/8\pi)^{1/2} \sin \theta \cos \theta \ e^{\pm i\phi}$ $Y_2^0 = (5/16\pi)^{1/2} (3\cos^2 \theta - 1)$

3. [30 points] Assume the Hamiltonian of a two-electron system is as follows:

$$H = J\vec{S}_{1} \cdot \vec{S}_{2} + a \frac{\hbar}{4} (S_{1z} + S_{2z}),$$

where J and α are constants.

- (a) Write the Hamiltonian as a 4×4 matrix using the |+,+>, |+,->, |-,+> and |-,-> basis.
- (b) Find the energy eigenvalues and their corresponding eigenstates.