Quantum Mechanics 4/14/2003 (10:10-12:00)

1. [30 point] The spin of an electron is up along the z-axis at time $t=0$. It is subject to an uniform magnetic field $\mathbf{B}=\mathrm{Bx}$, where \mathbf{x} is the unit vector along the x -axis.
(a) Find out the probability that the electron remains at the spin-up state at time t.
(b) Find out the expectation value of S_{z} as a function of time.
(Hint: the Hamiltonian is $\mathrm{H}=-\boldsymbol{\mu} \cdot \mathbf{B}$, the magnetic moment $\boldsymbol{\mu}=(-\mathrm{e} / \mathrm{mc}) \mathbf{S}$, and \mathbf{S} is the spin operator.)
2. [40 points] A particle is described by the wave function $\psi(\mathbf{r})=\mathrm{A}(\mathrm{x}+\mathrm{y}+2 \mathrm{z}) \mathrm{e}^{-\mathrm{r}}$.
(a) When the angular momentum L_{z} of the particle is measured, we obtain only one of the three values $\hbar, 0$, and $-\hbar$. Explain why.
(b) Find out the probabilities P_{m} of getting the result with $\mathrm{L}_{2}=\mathrm{m} \hbar$.
(c) After $\psi(\mathbf{r})$ has been rotated counter-clockwise around the z -axis by 90 degrees, the new wave function is written as $\psi^{\prime}(\mathbf{r})$. Find out the explicit form of $\psi^{\prime}(\mathbf{r})$.

$$
\begin{aligned}
Y_{0}^{0} & =(4 \pi)^{-1 / 2} \\
Y_{1}^{ \pm 1} & =\mp(3 / 8 \pi)^{1 / 2} \sin \theta e^{ \pm i \phi} \\
Y_{1}^{0} & =(3 / 4 \pi)^{1 / 2} \cos \theta \\
Y_{2}^{ \pm 2} & =(15 / 32 \pi)^{1 / 2} \sin ^{2} \theta e^{ \pm 2 i \phi} \\
Y_{2}^{ \pm 1} & =\mp(15 / 8 \pi)^{1 / 2} \sin \theta \cos \theta e^{ \pm i \phi} \\
Y_{2}^{0} & =(5 / 16 \pi)^{1 / 2}\left(3 \cos ^{2} \theta-1\right)
\end{aligned}
$$

3. [30 points] Assume the Hamiltonian of a two-electron system is as follows:

$$
H=J \vec{S}_{1} \cdot \vec{S}_{2}+\alpha \frac{\hbar}{4}\left(S_{1 z}+S_{2 z}\right)
$$

where J and α are constants.
(a) Write the Hamiltonian as a 4×4 matrix using the $|+,+>,|+,->|-,,+>$ and $|-,->$ basis.
(b) Find the energy eigenvalues and their corresponding eigenstates.

