Quantum mechanics final exam (10:10-12:00, 6/9/2003)

1. [20] Which of the following matrix elements of the hydrogen atom vanishes and which does not? If it vanishes, explain why; if not, give a rough estimate of its magnitude.
(a) $\langle 211| \mathrm{p}_{\mathrm{z}}|200\rangle$, where the $|\mathrm{nlm}\rangle$ basis has been used.
(b) $\langle 211| x^{2}|200\rangle$
2. [20] A particle is moving in a 1 -dim potential $V(x)=\alpha x^{4}$.
(a) Use the quantization condition below to show that the energy E_{n} of the n -th bound state is proportional to $(\mathrm{n}+1 / 2)^{4 / 3}$.

$$
\oint p(x) d x=(n+1 / 2) h
$$

(b) This result is more accurate for small n or large n ? What is the physical reason?
3. [30] Consider a spin-1 particle with the following Hamiltonian $\mathrm{H}=\mathrm{aS}{ }_{\mathrm{z}}{ }^{2}+\mathrm{b}\left(\mathrm{S}_{\mathrm{x}} \mathrm{S}_{\mathrm{y}}+\mathrm{S}_{\mathrm{y}} \mathrm{S}_{\mathrm{x}}\right)$, where a and b are constants and $\mathrm{a} \gg \mathrm{b}$.
Treating the b term as a perturbation, find the normalized eigenstates of $\mathrm{H}_{0}=\mathrm{aS}_{\mathrm{z}}{ }^{2}$ that are stable under perturbation and calculate the energy shifts to first order in b.
(DO NOT use the exact diagonalization method!)

$$
S_{x}=\frac{\hbar}{\sqrt{2}}\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), S_{y}=\frac{\hbar}{\sqrt{2}}\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & -i \\
0 & i & 0
\end{array}\right)
$$

4. [30] A hydrogen atom at the ground state is placed between the plates of a capacitor with time-dependent but spatial uniform electric field $\mathbf{E}(\mathrm{t})=\mathbf{E}_{0} \exp (-\mathrm{t} / \tau)$ along z-axis (the electric field is zero at $\mathrm{t}<0$). Find out the probabilities that the atom to be found at the 2 s and 2 p states after $\mathrm{t} \gg \tau$.

$$
\begin{aligned}
& \Psi_{100}(\vec{r})=\left(\frac{1}{a_{0}}\right)^{3 / 2} \frac{1}{\sqrt{\pi}} e^{-r / a_{0}}, \\
& \Psi_{200}(\vec{r})=\left(\frac{1}{a_{0}}\right)^{3 / 2} \frac{1}{2 \sqrt{2 \pi}}\left(1-\frac{r}{2 a_{0}}\right) e^{-r / 2 a_{0}}, \\
& \Psi_{210}(\vec{r})=\left(\frac{1}{a_{0}}\right)^{3 / 2} \frac{1}{4 \sqrt{2 \pi}} \frac{r}{a_{0}} e^{-r / 2 a_{0}} \cos \theta, \Psi_{2 \mid \pm 1}(\vec{r})=\left(\frac{1}{a_{0}}\right)^{3 / 2} \frac{1}{8 \sqrt{\pi}} \frac{r}{a_{0}} e^{-r / 2 a_{0}} \sin \theta e^{ \pm i \phi} . \\
& d_{f}(t)=\frac{1}{i \hbar} \int_{0}^{t} d t^{\prime}<f^{0}\left|H^{\prime}\left(t^{\prime}\right)\right| i^{0}>e^{i \omega \sigma_{i} t^{\prime}}, \\
& R_{i \rightarrow f}=\frac{2 \pi}{\hbar}|<f| V|i>|^{2} \delta\left(\varepsilon_{f i} \mp \hbar \Omega\right) .
\end{aligned}
$$

