Quantum Mechanics 12/4/2001 (10:10-12:00),

1. (30 points) Consider a three-dimensional ket space. If a certain set of orthonormal kets - say, |1>, |2>, and |3> -- are used as the base kets, the operators A and B are represented by (a and b are both real)

$$
A=\left(\begin{array}{ccc}
a & 0 & 0 \\
0 & -a & 0 \\
0 & 0 & -a
\end{array}\right), \quad B=\left(\begin{array}{ccc}
b & 0 & 0 \\
0 & 0 & -i b \\
0 & i b & 0
\end{array}\right)
$$

(a) Obviously A exhibits a degenerate spectrum. Does B also exhibit a degenerate spectrum?
(b) Show that A and B commute.
(c) Find a new set of orthonormal kets which are simultaneous eigenkets of both A and B. Specify the eigenvalues of A and B for each of the three eigenkets.
2. (20 points) Consider a particle in an infinitely deep square well (see the figure).

If the wave function of the particle is $\mathrm{C}\left(\mathrm{x}^{2}-\mathrm{a}^{2} / 4\right)$, where C is a constant, what is the energy fluctuation (standard deviation of the energy) $\Delta \mathrm{E}$ of such a state?

3. (20 points) Consider a system which has only two states Ψ_{1} and Ψ_{2}, with energies E_{0} and $-\mathrm{E}_{0}$. At time $\mathrm{t}=0$ a perturbation V is introduced. V has the property that $\left\langle\Psi_{1}\right| V\left|\Psi_{1}\right\rangle=\left\langle\Psi_{2}\right| V\left|\Psi_{2}\right\rangle=0$ and $\left\langle\Psi_{1}\right| V\left|\Psi_{2}\right\rangle=\left\langle\Psi_{2}\right| V\left|\Psi_{1}\right\rangle=V_{0}$, where V_{0} is a constant. Assume that the system is in state 1 at $\mathrm{t}=0$. Calculate the probability as a function of time that the system can be found in either state 1 or state 2 .
4. (30 points) A coherent state is defined as an eigenstate of the lowering operator a, $a|\lambda>=\lambda| \lambda>$, where λ is a complex number.
(a) Show that $\left|\lambda>=\exp \left(-|\lambda|^{2} / 2\right) \exp \left(\lambda a^{+}\right)\right| 0>$ satisfies the definition above.
(b) Find out the scalar product of two coherent states $\mid \lambda>$ and $\mid \lambda \gg$.
(c) Given the Hamiltonian $\mathrm{H}=\hbar \omega\left(\mathrm{a}^{+} \mathrm{a}+1 / 2\right)$, an initial coherent state $|\lambda, 0\rangle=|\lambda\rangle$ will evolve with time to another coherent state $\mid \lambda, t>$. Assuming a $|\lambda, t>=\lambda(t)| \lambda, t\rangle$, find out the function $\lambda(\mathrm{t})$.
(Hint: $\quad e^{A} e^{B}=e^{A+B} e^{[A, B] / 2}$ if $[A, B]$ commutes with both A and B;

$$
\left.\mathrm{e}^{\mathrm{A}} \mathrm{Be}^{-\mathrm{A}}=\mathrm{e}^{\gamma} \mathrm{B} \text { if }[\mathrm{A}, \mathrm{~B}]=\gamma \mathrm{B} .\right)
$$

