
The birth of quantum mechanics (partial history)

1923: de Broglie’s matter wave hypothesis

while trying to explain diffraction using light-quanta,

realized that material particles might have wave property.

proposed l=h/p (from E=hn and E=cp for photons),

easily explains the formula L=nh in Bohr’s model.

1905: Einstein’s light quanta hypothesis, E=hn

explains photo-electric effect, but couldn’t explain the 
phenomena of interference and diffraction

1902: Lenard’s photo-electric effect (basis of photo-detector)

         varied the intensity of carbon arc light by a factor of 
1000 and observed NO effect on the electron energy
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1925: Davisson and Germer (Ref: Quantum Mechanics, by Tomonaga)

Study the pattern of electron scattering off Ni target to
determine the electric field in the atom

Upon a colleague’s (Elasser) advice, they realized that the angular
variation of the scattering maybe due to electron wave diffraction.

before annealing

(variation due to
electronic shells? )

after annealing
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1999: Zeilinger’s Vienna group

 2-slit interference using C60

The velocity of 210 m/s
corresponds to a de Broglie
wavelength for C60 of
l=h/p= 2.5 pm.



1925: Schrodinger (Ref: Schrodinger: life and thought, by Moore)

During Nov, 1925, Schrodinger gave a seminar on de
Broglie’s work. One audience (Debye) suggested that
there should be a wave equation. During the Christmas,
Schrodinger started from the usual wave eq.

∇ + = =2 2 0 2Ψ Ψk k   ( π λ/ )

When l=h/p and p2/2m=E-V are used,

the wave eq. becomes − ∇ + =
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He then obtained the correct energy spectrum for the hydrogen
atom (chap 13), and studied the spectrum of SHO (chap 7), the
Stark effect (chap 17), the absorption and emission of radiation
by an atom (chap 18), all within 6 months of his discovery. The
radiation problem led him to write down the time-dependent
Schrodinger eq.
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Low intensity photon interference

Duality (the same applies to electrons)
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Complementarity:

Once we know the path, the interference disappears.
Particle and wave properties are like 2 sides of a coin.

“Which-path” measurement

The formalism of QM says that we won’t and shouldn’t be
able to determine the path and keep the interference.

If we can, then QM is like statistical mechanics, and a
deeper theory (hidden variable theory) is required.
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Can we know the path but keep the interference?

A. Einstein’s thought experiment, 1927

To observe inteference,  we need
            
However,  from uncertainty relation,  
we know  
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Can the photons be cheated?

Delayed choice experiment (proposed by J.A. Wheeler, 1978)

We decide whether to
determine their paths
only after the particles
passed the slit (but
before they hit the
target)



Interference using particle pairs (Dopfer, 1998)

You don’t need to touch the particles to destroy the interference!

2‘ 1‘

1 2

1, 1‘ have antiparallel
momenta

2, 2‘ have antiparallel
momenta

• If we register the positions of 1’ and 2’, then no interference

• If we don’t register? Again NO interference!

• If we register in such a way that destroys the info about the
positions of 1 and 2, then interference appears



• QM is really more weird than particles showing wave
property, or the existence of uncertainty relation. (esp. after
we learned about multi-particle systems)

• In the following, we start to learn the basic rules of QM.
(slightly more general then Shankar’s.)

• Till now, all experiments are consistent with the predictions of
QM. Everybody knows how to use it, but nobody can give a
satisfying picture of the quantum phenomena.

• Einstein understood this serious conflict with traditional
physics long time ago and thought there is something wrong
with the theory.



Three postulate of quantum mechanics

I. The state of a system is represented by a vector |Y>

   in a Hilbert spaceY

• |Y> and c|Y> (c is a constant) describe the same
state for a physical system, so we always choose the
normalized state.

• In the |k> basis, <k| Y>= Y(k) is the Fourier-
transformed wave function in k-space.

Y W w

• In the |x> basis, <x| Y>= Y(x) is the familiar wave
function in (1-dim) real space, which is complex-valued.

Note:



II. To every physical observable, there is a corresponding

    Hermitian operator W

• An operator can have very different forms on different bases.
E.g., < >= < >

< >= < >

x x x x

p x i
d
dp

p

| $| |

| $| |

Ψ Ψ

Ψ Ψh

• Hermitian operator ´ physical observable

  Unitary operator ´ transformation of a state (space rotation,
time evolution...)

  Neither of the above: anti-unitary operator for time reversal,
creation/annihilation operators a, a+ (chap 7)…  etc

• It’s not always easy to know the operator for an observable,
some can be constructed from x and p (e.g. L=x¥p), some
cannot (e.g. spin S)

W
For example, the operators

x and p=h/i (d/dx)

are the position and momentum operators (in 1-dim)

Note:



III. Assume {|wi>} is the complete set of eigenstates of the the
physical observable W. The state of the system can be expanded
as | | |Ψ Ψ>= >< >∑ ω ω ωi i

i

     (  can be discrete or continuous)i

(a) Born’s rule: When we measure W experimentally, we’ll get one
of the eigenvalues wi , with the probability

P(wi )=|< wi |Y>|2  (Si P(wi )=1)

(b) The state of the system is changed from |Y> to the eigenstate
|wi> as a result of the measurement !!

• The uncertainty of the measurement is defined by

∆Ω Ω Ω= < > − < >2 2     (standard deviation)

w

• The expectation value of the physical observable W after
many measurements:

< >= = < > =< >∑ ∑Ω Ψ Ψ Ω Ψω ω ω ωi i
i

i i
i

P( ) | | | | |2

Note:



Example. (dim of Hilbert space = •)

• the state of an electron is described by |Y> (postulate I)

Note that the new wave function is <x|x1>=d(x-x1)

(“collapse” of the wave function)

• the position of an electron is a physical observable

  the corresponding hermitian operator is x (postulate II)

• its eigenvalues are x, with eigenstates |x>

  when we measure the position,

  we get one particular eigenvalue x1 (a dot on the screen),

  with probability P(x1)=|<x1| Y>|2=|Y(x1)|2   (postulate III a)

  and |Y>  |x1>   (postulate III b)



A note on the wave function: (Ref: Introduction to QM, by Griffith)

|Y(x)|2

x

|Y(x1)|2dx

Q: Where was the particle just before we made the measurement?

1. The realist view (shared by Einstein, de Broglie, Schrodinger...)
The particle was at x.

1964: Bell’s inequality, we can distinguish 1 and 2 by experiment !!

3. The agnostic view
Refuse to answer. It makes no sense to talk about things 
before the measurement.

2. The orthodox view (the “Copenhagen interpretation”, shared by Bohr,
Heisenberg, Born...)

The particle wasn’t really anywhere, it’s the measurement 
that produces the result.

The particle is found at x1

1982: The Aspect experiment, view 2 wins, as expected.



Measuring two different physical observables
(Ref: Sakurai, Modern QM, chap 1)

Can have a complete set of simultaneous eigenstates {|wi, lj>}

In general,  we can expand       | >=
i, j

Ψ Ci j i j, | ,ω λ >∑
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1) Compatible observables,  [W,L] = 0



2) Incompatible observables [W,L] π 0

Note: can have a “subset” of simultaneous eigenstates

In general,  we can expand | >=

                                             or =

i
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The final state depends on the order of the measurement

Do not have a “complete set” of simultaneous eigenstates
(If they do, then they will commute. Prove it!)



Spin system (Ref: Chap 1, Modern QM, by Sakurai;  
           Chap 5, 6 in Feynman’s lectures, vol. 3)

SG experiment

Sequential SG experiment



More sequential experiments and results

Z

Z

Z

Z

X

X Z

50% |Sx,+>

50% |Sx,->

50% |+>

50% |->

The measurement of Sx completely destroys the info about Sz

\Sz and Sx cannot be determined simultaneously (do not commute)

Similarly for Sz and Sy (incompatible observables)

100% |+>
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Analogy with the polarization of light

E x kz t E x kz t y kz t

E y kz t E x kz t y kz t

E e E x y ei kz t i kz t

0 0

0 0

0 0

1
2

1
2

1
2

1
2

1
2

1
2

$'cos( ) $ cos( ) $ cos( ) ,

$'cos( ) $ cos( ) $ cos( ) .

Re Re $ $( ) ( )

− = − + −

− = − − + −

= ± +− −

ω ω ω

ω ω ω

ω ωor
r

x

y

S x y
S x y

z

x

± ↔
± ↔

 atoms  polarized light
 atoms  polarized light

,
' , '

x’y’

| ; | ; | ;S S Sx z z± >= ± + > + − >→
±F

HG
I
KJ

1
2

1
2

1
2

1
1

r
E z t E x kz t y kz t

E x
i

y e

R
L

i kz t

( , ) $ cos( ) $ cos

$ $ ( )

= − ± − +

± −

0

0

1
2

1
2 2

1
2 2

ω ω
π

ω           = Re

S

S
y

y

+ ↔

− ↔

 atoms  ?

 atoms  ?

| ; | ; | ;S S
i

S
iy z z± >= + > ± − >→

±
F
HG

I
KJ

1
2 2

1
2

1

S

S
y

y

+ ↔

− ↔

 atoms  right circularly polarized

 atoms  left circularly polarized



23

Another of Einstein’s attack on the uncertainty principle:

EPR paradox (Einstein, Podolsky, and Rosen, 1935)

[x1- x2, p1+p2] = 0

1 2

So x1- x2 and p1+p2 can both be measured precisely

Therefore, x1 and p1 (via p2) can both be determined precisely

\ Dx1 Dp1 = 0 ! 

Spooky action at a distance is required!
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Bohm’s version of EPR paradox

2 electrons have zero total angular momentum

  if we measure S1x, then we know S2x(= -S1x)

  if we measure S2y, then we know S1y(= -S2y)

    \ DS1xDS1y= 0 !

1 2

Quantum nonlocality, or entanglement


