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I. INTRODUCTION

At T = 0, to get the expectation value of an observable
in the ground state, one only needs to take the quantum
average,

〈A〉 = 〈Ψ0|A|Ψ0〉. (1)

At T 6= 0, both quantum average and thermal average
are required,

〈A〉T =
∑
n

e−βEn

Z
〈Ψn|A|Ψn〉, (2)

in which β = 1/kBT , Z is the partition function, and Ψn

is the manybody eigenstates.
If the number of particles is not conserved, then we

need to use the grand canonical ensemble, and

〈A〉T,µ =

∞∑
N=0

∑
n

e−β(ENn −µN)

Z
〈ΨN

n |A|ΨN
n 〉, (3)

where

Z =
∑
N,n

e−β(ENn −µN) ≡ e−βΩ, (4)

in which Ω is known as the grand potential. Define
the grand canonical Hamiltonian and the density
operator as,

K̂ = Ĥ − µN̂, (5)

ρ̂G =
1

Z
e−βK̂ = eβ(Ω−K̂), (6)

then (neglect ˆ from now on)

Z = Tr e−βK (trace over |ΨN
n 〉), (7)

and 〈A〉T,µ = Tr
[
eβ(Ω−K)A

]
= Tr(ρGA). (8)

II. GREEN FUNCTION

The finite-temperature Green function is defined as,

Gαβ(t, t′) = −i
∑
N,n

e−β(ENn −µN)

Z
〈ΨN

n |Taα(t)a†β(t′)|ΨN
n 〉

= −iTr
[
eβ(Ω−K)Taα(t)a†β(t′)

]
, (9)

where

aα(t) = eiKt/~aαe
−iKt/~, (10)

a†α(t) = eiKt/~a†αe
−iKt/~. (11)

There are two types of exponential in the trace, ρG =
e−βK/Z and U(t) = e−iKt/~. They satisfy

∂ρG
∂β

= −KρG, (12)

and
i

~
∂U

∂t
= KU. (13)

These two equation are formally the same if we identify

t = −i~τ, or τ = it/~ ∈ R. (14)

Thus, define the Matsubara-Green function as,

Gαβ(τ, τ ′) = −Tr
[
eβ(Ω−K)Tτaα(τ)āβ(τ ′)

]
, (15)

in which

aα(τ) ≡ eKτaαe
−Kτ , (16)

āα(τ) ≡ eKτa†αe
−Kτ . (17)

These two operators are not hermitian conjugate to each
other when τ is real. From now on we set ~ = 1.

A. Basic property

The Matsubara-Green function Gαβ(τ, τ ′) has the fol-
lowing properties:
1. Gαβ(τ, τ ′) = Gαβ(τ − τ ′).
Pf: For τ > τ ′,

Gαβ(τ, τ ′) = −eβΩTr
[
e−βKeKτaαe

−K(τ−τ ′)a†βe
−Kτ ′

]
= −eβΩTr

[
e−βKeK(τ−τ ′)aαe

−K(τ−τ ′)a†β

]
= Gαβ(τ − τ ′). (18)

The proof for τ ′ > τ is similar.
2. Gαβ(τ) is discontinuous across τ = 0.
Pf: We consider the cases for bosons and fermions simul-
taneously,

Gαβ(0+)−Gαβ(0−) = −Tr eβ(Ω−K)
(
aαa

†
β ∓ a

†
βaα

)
︸ ︷︷ ︸

δαβ

= −δαβ . (19)
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FIG. 1 Matsubara Green function Gα(τ) for (a) bosons, and
(b) fermions. Fig from Coleman’s note.

The upper sign is for boson, and the lower sign is for
fermion. 3. Gαβ(τ) converges only if −β < τ < β.
Pf: If τ > 0, then

Gαβ(τ) = −eβΩTr
[
eK(τ−β)aαe

−Kτa†β(0)
]
. (20)

Because the energy eigenvalues would approach +∞ (but
not −∞), the exponential factor e−Kτ converges, and
eK(τ−β) also converges when 0 < τ < β.
Similarly, if τ < 0, then the exponential factor eKτ con-
verges, and e−K(β+τ) also converges only when −β < τ <
0.
4. Periodicity:

Gαβ(τ) = ±Gαβ(τ + β) for τ < 0, (21)

Gαβ(τ) = ±Gαβ(τ − β) for τ > 0. (22)

Pf: For τ < 0,

Gαβ(τ + β) = −eβΩTr
[
e−βKe(τ+β)Kaαe

−(τ+β)Ka†β

]
= −eβΩTr

[
eτKaαe

−τKe−βKa†β

]
= −eβΩTr [e−βK a†βaα(τ)︸ ︷︷ ︸

=±Tτaα(τ)a†β

]

= ±Gαβ(τ). (23)

The proof for τ > 0 is similar.
The result of these four properties is summarized in
Fig. 1.

B. Fourier transformation

Since Gαβ(τ) is defined within the interval [−β, β], it
can be expanded as,

Gαβ(τ) =
1

β

∞∑
n=−∞

e−iπnτ/βGαβ(n). (24)

Its inverse transformation is,

Gαβ(n)

=
1

2

∫ β

−β
dτeiπnτ/βGαβ(τ)

=
1

2

∫ 0

−β
dτeiπnτ/β Gαβ(τ)︸ ︷︷ ︸

±Gαβ(τ+β)

+
1

2

∫ β

0

dτeiπnτ/βGαβ(τ)

=
e−iπn

2

∫ β

0

dτ ′eiπnτ
′/β [±Gαβ(τ ′)] + 2nd term above

=

∫ β

0

dτeiπnτ/βGαβ(τ), (25)

in which n is even for boson, odd for fermion. That is,

Gαβ(iωn) =

∫ β

0

dτeiωnτGαβ(τ), (26){
ωn = 2nπβ for bosons,

ωn = (2n+ 1)πβ for fermions.
(27)

The frequency ωn is known as the Matsubara fre-
quency.

A brief summary:
To move from T = 0 to T 6= 0, the following substitution
is required:

1. it→ τ, (28)

2. ω → iωm, (29)

3.

∫ ∞
−∞

dteiωt →
∫ β

0

dτeiωmτ , (30)

4.

∫
dωe−iωt → 1

β

∑
iωm

e−iωmτ . (31)

C. Spectral representation

Consider the following ground-state average at T = 0,

CRAB(t) = −iθ(t)〈[A(t), B(0)]∓〉0, (32)

where A,B are aα and/or a†α. If (A,B) = (aα, a
†
β), then

CRAB(t) is the retarded Green function GRαβ . Recall that

(Chap 6),

CRAB(ω) =

∫ ∞
−∞

dteiωtCRAB(t) (33)

=
∑
n

(
A0nBn0

ω − ωn0 + iη
∓ B0nAn0

ω + ωn0 + iη

)
,(34)

in which ωnm ≡ ωn − ωm. When T 6= 0, but still with
real time and canonical ensemble,

CRAB(ω)

=
∑
mn

Pm

(
AmnBnm

ω − ωnm + iη
∓ BmnAnm
ω + ωnm + iη

)
, (35)

=
∑
mn

(Pm ∓ Pn)
AmnBnm

ω − ωnm + iη
, Pn =

e−βEn

Z
. (36)
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Now with imaginary time (still in canonical ensemble),
for τ > 0, define

CAB(τ) = −〈TτA(τ)B(0)〉 (37)

= − 1

Z
Tr
(
e−βHeτHAe−τHB

)
(38)

= − 1

Z

∑
mn

e−βEme−τ(En−Em)AmnBnm.(39)

It follows that,

CAB(iω`) =

∫ β

0

dτeiω`τ

(
−
∑
mn

Pme
−τ(En−Em)AmnBnm

)

=
∑
mn

(Pm ∓ Pn)
AmnBnm
iω` − ωnm

. (40)

Comparing Eq. (36) with Eq. (40), we have

CRAB(ω) = CAB(iω` → ω + iη). (41)

The advanced function can be obtained in a similar way
with the substitution iω` → ω − iη. This remains valid
for grand canonical ensemble. One only needs to replace

En → Kn = En − µN, (42)

and
∑
n

→
∑
N,n

, Z → Z. (43)

Note (important): The analytic continuation iω` → ω ±
iη cannot be applied before doing the τ -integral. See
p. 263 (and p.297) of Ref. 3.

In the spectral representation, the Matsubara-Green
function for fermions can be written as,

Gαβ(iω`) =
∑
mn

(Pm + Pn)
(aα)mn(a†β)nm

iω` − ωnm
(44)

=

∫
dω

2π

Aαβ(ω)

iω` − ω
, (45)

where

Aαβ(ω) ≡ 2π
∑
mn

(Pm + Pn)(aα)mn(a†β)nmδ(ω − ωnm)

also = −2 Im Gαβ(iω` → ω + iη). (46)

III. NON-INTERACTING SYSTEM

Consider non-interacting bosons/fermions with the
grand canonical Hamiltonian,

K0 = H0 − µN =
∑
α

(εα − µ)a†αaα. (47)

In the Heisenberg picture, aα(t) = eiH0taαe
−iH0t. Also,

e−µNaαe
µN = eµaα, (48)

e−µNa†αe
µN = e−µa†α. (49)

Since [H0, N ] = 0, we have

aα(τ) = eK0τaαe
−K0τ = e−ε̃ατaα, (50)

āα(τ) = eK0τa†αe
−K0τ = eε̃ατa†α, (51)

where ε̃α ≡ εα − µ.
One can show that,

〈a†αaβ〉0 =
δαβ

eβε̃α ∓ 1
= nαδαβ , (52)

where nα ≡
1

eβε̃α ∓ 1
.

Pf: Ref: p. 224 of Kubo, Statistical Physics II.

〈a†αaβ〉0 = Tr

(
e−βK0

Z
a†αaβ

)
(53)

=
1

Z
Tr
(
1aβe

−βK0a†α
)

(54)

= e−βε̃α〈aβa†α〉0, (55)

where we have inserted e−βK0eβK0 at the location “1”.
From the (anti-) commutation relation, one has

∓〈a†αaβ〉0 = δαβ − 〈aβa†α〉0, (56)

and Eq. (52) follows.
With time dependence, we have

〈aα(τ)āβ(τ ′)〉0 = e−ε̃α(τ−τ ′)〈aαa†α〉0δαβ . (57)

Therefore,

G0
αβ(τ − τ ′)

= −〈Tτaα(τ)āβ(τ ′)〉0
= −θ(τ − τ ′)〈aα(τ)āβ(τ ′)〉0 ∓ θ(τ ′ − τ)〈āβ(τ ′)aα(τ)〉0
= −δαβ [θ(τ − τ ′)(1± nα)± θ(τ ′ − τ)nα] e−ε̃α(τ−τ ′). (58)

See Fig. 1 for plots of the non-interacting Matsubara-
Green functions. Its Fourier transformation gives,

G0
α(iωn) =

∫ β

0

dτeiωnτG0
α(τ)

= −(1± nα)

∫ β

0

dτe(iωn−ε̃α)τ

=
1

iωn − ε̃α
. (59)

Note that G0
α(iωn → ω + iη) gives the non-interacting

retarded Green function.
Now we transform the Matsubara-Green function back

to the time domain,

G0
α(τ) =

1

β

∑
iωn

e−iωnτG0
α(iωn)︸ ︷︷ ︸

≡g(iωn)

, (60)

where ωn = 2nπ/β for bosons, or (2n + 1)π/β for
fermions. A trick can be used to evaluate the summa-
tion:
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FIG. 2 (a) Poles at iωn and the encircling path. (b) An
inflated path of integration, avoiding the other poles. (c)
Since the large circle and the opposing horizontal paths in
(b) make no contribution, only the small circles around other
poles are left.

First, note that the Matsubara frequencies iωn are poles
of the distribution functions,

n(z) =
1

eβz − 1
for bosons, (61)

or =
1

eβz + 1
for fermions. (62)

Therefore,

1

2πi

∮
c

n(z)g(z)dz = ± 1

β

∑
iωn

g(iωn). (63)

Pf: Because of the Cauchy residue theorem,

1

2πi

∮
c

n(z)g(z)dz =
∑
`

Res [n(z`)]g(z`), (64)

in which C is the path in Fig. 2(a). Near a pole,

1

eβz ∓ 1
=

1

eβiωneβ(z−iωn) ∓ 1
(65)

' 1

±[1 + β(z − iωn)]∓ 1
(66)

= ± 1/β

z − iωn
. (67)

Therefore,

Res n(iωn) = ± 1

β
, (68)

and Eq. (63) follows.
Second, we now inflate the contour C to a large circle,

but avoid crossing the poles of g(z) (see Fig. 2(b)). If
n(z)g(z) decays faster than 1/z, then the integral around
the circle at infinity is zero. Therefore, only the integra-
tion around the poles of g(z) survive (see Fig. 2(c)),∮

c

dz =

∮
c∞

dz +

∮
c′︸︷︷︸

clockwise

dz (69)

= 0−
∮
c̄′
dz, (c̄′ is counter− clockwise). (70)

Apply the Cauchy residue theorem to the second integral,
it follows that (cf: Eq. (64)),

± 1

β

∑
iωn

g(iωn) = −
∑
`

n(z`)Res g(z`), (71)

where z` are the poles of g(z).
Now, choose

g(z) = e−τzG0
α(z) =

e−τz

z − ε̃α
, (72)

which has a simple pole at ε̃α, and Res g(z`) = e−τε̃α .
Also, note that

n(z)g(z) ' e−βze−τz/z for Re(z)� 0, (73)

' ∓e−τz/z for Re(z)� 0. (74)

Both cases lead to converged result if−β < τ < 0. There-
fore, from Eqs. (60) and (71), we have

G0
α(τ < 0) =

1

β

∑
iωn

g(iωn) (75)

= ∓ 1

eβε̃α ∓ 1
e−ε̃ατ

= ∓n(ε̃α)e−ε̃ατ . (76)

What if τ > 0? In this range, we need to choose

n(−z) =
1

e−βz ∓ 1
, (77)

then

n(−z)g(z) ' ∓e−τz/z for Re(z)� 0, (78)

' eβze−τz/z for Re(z)� 0. (79)

Both cases lead to converged result if 0 < τ < β. There-
fore,

G0
α(τ > 0) = ± 1

e−βε̃α ∓ 1
e−ε̃ατ

= ±n(−ε̃α)e−ε̃ατ . (80)

Since

1± n(ε̃α) = ∓n(−ε̃α), (81)

combining Eqs. (76) and (80), we are back to Eq. (58).
For reference, for bosons/fermions, one has

n(ε̃α)[1± n(ε̃α)] = − 1

β

dn

dε̃α
. (82)

It follows that, for fermions,

lim
T→0

βn(1− n) = δ(ε̃α). (83)
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IV. INTERACTING SYSTEM

For an interacting fermion system,

H = H0 +H ′, (84)

or K = K0 +H ′. (85)

Gαβ(τ, τ ′) = −〈Tτaα(τ)āβ(τ ′)〉 (86)

= −
Tr
[
e−βKTτaα(τ)āβ(τ ′)

]
Tr (e−βK)

, (87)

in which aα(τ) = eKτaαe
−Kτ , and one traces over exact

manybody energy eigenstates |ΨN
n 〉. Similar to the T = 0

case in the preceding chapter, we treat the interaction
as a perturbation and trace over non-interacting states
|ΦNn 〉. Note that here the adiabatic assumption is not
required.

First, write

e−Kτ = e−K0τUI(τ, 0), (88)

where UI(τ, τ
′) = eK0τe−K(τ−τ ′)e−K0τ

′
. Then,

∂UI(τ)

∂τ
= eK0τ (K0 −K)e−K0τUI(τ, 0)

= −H ′I(τ)UI(τ, 0). (89)

It follows that,

UI(τ, 0) =
∑
n

(−1)n

n!

∫ τ

0

dτ1 · · · dτnTτ [H ′I(τ1) · · ·H ′I(τn)]

= Tτe
−

∫ τ
0
dτ ′H′I(τ ′). (90)

Since aIα(τ) = eK0τaαe
−K0τ , we have

aα(τ) = eKτe−K0︸ ︷︷ ︸
UI(0,τ)

aIα(τ) eK0τe−Kτ︸ ︷︷ ︸
UI(τ,0)

, (91)

āβ(τ ′) = UI(0, τ
′)āIβ(τ ′)UI(τ

′, 0). (92)

Also, write

e−βK = e−βK0UI(β, 0), (93)

then for τ > τ ′,

Gαβ(τ, τ ′) (94)

= −
Tr
[
e−βK0UI(β, τ)aIα(τ)UI(τ, τ

′)āIβ(τ ′)UI(τ
′, 0)

]
Tr [e−βK0UI(β, 0)]

.

The case for τ < τ ′ works similarly. Thus, the
Matsubara-Green function can be written as,

Gαβ(τ, τ ′) = −〈TτUI(β, 0)aIα(τ)āIβ(τ ′)〉0
〈UI(β, 0)〉0

(95)

= −〈Tτe
−

∫ β
0
dτ ′′H′I(τ ′′)aIα(τ)āIβ(τ ′)〉0
〈Tτ e−

∫ β
0
dτ ′H′I(τ ′)〉0

.(96)

The subscript “0” means that we use e−βK0 for thermal
average and trace over non-interacting eigenstates |ΦNn 〉.
This is the finite-temperature generalization of the Gell-
mann and Low theorem. To calculate it, we need to
expand the exponential with the interaction. Again the
Wick theorem would be of great help for our calculations.

A. Wick theorem

Recall that for T = 0, the Wick theorem (1950) is
about moving aα to the right, and taking advantage of
aα|Φ0〉 = 0. It is an operator identity, and the ground-
state average of the operator product is eventually left
with fully contracted terms.

In comparison, the Wick theorem for T 6= 0 (1955)
is not about moving aα to the right, since aα|Φn〉 6= 0
for excited states. Also, it is not an operator identity,
since ensemble average is required, and the thermal fac-
tor e−βK0 is essential for this theorem. However, the
algebraic forms of this two theorems are quite similar,
and the Matsubara-Green function would also be decom-
posed as fully contracted terms.

First, recall that

〈A〉0 = Tr(ρ0A), ρ0 =
e−βK0

Tr (e−βK0)
= eβΩ−βK0 . (97)

Second, the contraction between two operators is de-
fined as, ︷︸︸︷

AB = 〈TτAB〉0 = Tr{ρ0Tτ (AB)}. (98)

For example,︷ ︸︸ ︷
aαaβ = 0, (99)︷ ︸︸ ︷
a†αa

†
β = 0, (100)︷ ︸︸ ︷

a†αaβ = 〈a†αaβ〉 =
δαβ

eβε̃k ∓ 1
= nαδαβ , (101)︷ ︸︸ ︷

aαa
†
β = 〈aαa†β〉 =

δαβ
1∓ e−βε̃k

= (1± nα)δαβ ,(102)︷ ︸︸ ︷
aα(τ)āβ(τ ′) = −G0

αβ(τ, τ ′). (103)

The Wick theorem at finite temperature goes as,

〈TτABC · · ·XY Z〉0 (104)

= 〈Tτ
︷︸︸︷
AB C · · ·XY Z〉0 + 〈Tτ

︷ ︸︸ ︷
ABC · · ·XY Z〉0 + · · · ,

where A,B, · · · are creation or annihilation operators.
The contracted terms can be moved out of the brackets.
One then keeps contracting the operators till everyone is
paired. A proof of this theorem can be found in, e.g.,
p. 679 of Ref. 1.

It’s clear that, further derivation just duplicate the
analysis in the T = 0 theory. For example, the T 6= 0
theory also has the linked cluster theorem and the
Dyson equation (see Chap 6).

V. GREEN FUNCTION IN MOMENTUM SPACE

Consider

K =
∑
kα

(εkα − µ)a†kαakα + Vee, (105)
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the Matsubara-Green function at the zeroth order is,

G0
αβ(k, iωn) =

1

V0

∑
k

∫ β

0

dτeiωnτe−ik·rG0
αβ(r, τ)

= δαβ
1

iωn − ε̃kα
. (106)

To the first order,

Gαβ(k, iωn) = G0
αβ(k, iωn) (107)

−
∫ β

0

dτeiωn(τ−τ ′)(−1)

∫
dτ1〈TτVee(τ1)akα(τ)ākβ(τ ′)〉0,c,

where

Vee(τ) =
1

2V0

∑
k1k2q

V (2)
γ1γ2γ2γ1(q)āk1+q,γ1 āk2−q,γ2ak2γ2ak1γ1 .

(108)
The operators are all at the same time τ . To contract
operators with the same time, use

〈āαaβ〉 = −〈Tτaβa†α(0+)〉
= G0

βα(0−)

=
1

β

∑
n

eiωnηGβα(iωn), η = 0+. (109)

That is, when G0
αβ connects to the same wavy line, the

factor eiωnη needs be inserted.
Using the Wick theorem, and following the same pro-

cedure as the T = 0 theory, one would get the Hartree-
Fock self-energy below (see Chap 6, assuming εkα = εk
is spin-independent),

q
= −2

∫
d3q

(2π)3

1

β

∑
n

G0(q, iωn)eiωnη︸ ︷︷ ︸
G0(q,0−)

[−V (0)],(110)

q

k-q

=

∫
d3q

(2π)3

1

β

∑
n

G0(q, iωn)eiωnη [−V (k− q)] .(111)

The Matsubara-Green function is spin-independent, and
the subscript is omitted (see Eq. (58)),

G0(q, 0−) =
1

eβε̃q + 1
= nq. (112)

It follows that,

ΣH = 2

∫
d3q

(2π)3
nqV (0) =

N

V0
V (0), (113)

ΣF = −
∫

d3q

(2π)3
nqV (k− q). (114)

This is the same as the T = 0 result in Chap 6, except
that nq can be a fraction of one.

At finite temperature, the Feynman rules for electron
self-energy are:

1. At the n-th order, draw all topologically distinct con-
nected diagrams with n wavy lines, 2n vertices, and 2n+1
solid lines.
2. Each solid line is G0

αβ(k), k ≡ (k, iωn). For a closed
loop, or a segment linked by the same wavy line, alter it
to G0

αβ(k)eiωnη.

3. Each wavy line is V
(2)
γ′1γ
′
2γ2γ1

(q).

4. Associate each line with a 4-momentum, and the 4-
momentum flow needs be conserved at each vertex.
5. Sum over internal degrees of freedom (4-momentum,
spin ... etc), (1/V0)

∑
kα···. The energy integral should

be understood as the Matsubara-frequency sum.
6. Multiply the summation by (−1)n(−1)F , where n is
the order (or half of the number of vertices), and F is
the number of closed fermion loops. Note: for photon
self-energy, n is one-half of the number of vertices (or
the number of internal momenta).
This is essentially the same as the Feynman rules at zero
temperature, except numerical factor in the last one.

For example, for the bubble diagram, we have

k

k+q

= (−1)22

∫
d3k

(2π)3

1

β

∑
m

G0(k)G0(k + q)

≡ Π0(q), (115)

in which k = (k, iωm), q = (q, iνn). Be aware that
the νn from the photon propagator is bosonic, instead
of fermionic. Now, for fermions, using

1

β

∑
iωn

f(iωn) =
∑
`

n(z`)Res f(z`), (116)

we have

1

β

∑
m

G0G0 =
1

β

∑
m

1

iωm − ε̃k
1

iωm + iνn − ε̃k+q
(117)

=
∑
`

n(z`)Res

(
1

z − ε̃k
1

z + iνn − ε̃k+q

)
=

1

eβε̃k + 1

1

iνn + ε̃k − ε̃k+q

+
1

eβε̃k+q + 1

1

−iνn − ε̃k + ε̃k+q
(118)

=
nk − nk+q

iνn + εk − εk+q
. (119)

Note that eiβνn = 1, since νn is bosonic. Thus,

Π0(q, iνn) = 2

∫
d3k

(2π)3

nk − nk+q

iνn + εk − εk+q
. (120)

Again after the analytic continuation iνn → ν + iη, it is
the same as the ΠR

0 at T = 0, except that now nq can be
a fraction of one.

One can consider the bubble diagram with dressed
fermion lines,

Π(q) = 2

∫
d3k

(2π)3

1

β

∑
m

G(k)G(k + q), (121)
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in which

G(k) =
1

iωn − ε̃k − Σ(k)
. (122)

Σ(k) is the proper self-energy due to, e.g., impurity scat-
terings (next Chap) or electron-electron interactions. Us-
ing the spectral representation in Eq. (45),

G(k, iωm) =

∫
dω

2π

Ak(ω)

iωm − ω
, (123)

one has

1

β

∑
m

G(k)G(k + q)

=
1

β

∑
m

∫ ∞
−∞

dωdω′

(2π)2

Ak(ω)Ak+q(ω
′)

(iωm − ω)(iωm + iνn − ω′)
(124)

=

∫ ∞
−∞

dωdω′

(2π)2
Ak(ω)Ak+q(ω

′)
nk(ω)− nk+q(ω

′ + iνn)

iνn + ω − ω′
.(125)

The right-hand side can also be rewritten as,∫ ∞
−∞

dω

2π
nk(ω) [Ak(ω)G(k + q, ω + iνn)

+ Ak+q(ω)G(k, ω − iνn)]. (126)

Thus,

Π(q) = 2

∫ ∞
−∞

dω

2π

∫
d3k

(2π)3
nk(ω) (127)

× [Ak(ω)G(k + q, ω + iνn) +Ak+q(ω)G(k, ω − iνn)].

Exercise:
1. Show that the real-time Green function at finite
temperature (see Eq. (9)) satisfies,

Gαβ(t, t′) = ±Gαβ(t+ iβ, t′) for t > t′ (128)

= ±Gαβ(t− iβ, t′) for t < t′. (129)

2. Start from Eq. (60), using similar procedure that leads
to Eq. (75) for G0

α(τ < 0), verify that the Matsubara-
Green function G0

α(τ > 0) is given in Eq. (80).

3. (a) Show that the grand potential Ω for non-
interacting bosons/fermions is

Ω = ± 1

β

∑
α,iωn

ln(−iωn + ε̃α)eiωnη. (130)

(b) Sum over the Matsubara frequencies, and show that

Ω = ± 1

β

∑
α

ln
(
1∓ e−βε̃α

)
. (131)
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