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I. GENERAL FORMULATION

A piece of matter would be polarized, or conduct cur-
rent under an external electric field,

P = χeE, (1)

j = σE. (2)

If the electric field is not too strong, then the electric sus-
ceptibility χe and the conductivity σ are independent of
the electric field. They only depend on the material prop-
erties in the absence of the electric field (i.e., in equilib-
rium). This type of response is called the linear response.

The average of an observable (such as the electric po-
larization) in equilibrium is

〈A〉0 =
1

Z0

∑
{n}

e−βE
0
{n}〈{n}0|A|{n}0〉. (3)

Under an external field, the states {n}0 are perturbed to
become {n}, and the average becomes

〈A〉 =
1

Z0

∑
{n}

e−βE
0
{n}〈{n}|A|{n}〉 = 〈A〉0 + δ〈A〉. (4)

Our job is to find out δ〈A〉.
Note that in the equation above, we do not alter the

thermal distribution. This is valid only if the perturba-
tion is fast (compared to the time for reaching thermal
equilibrium), such that the thermal distribution of the
system are left unaltered. This is a tricky assumption
and the resulting response is called adiabatic response.
On the other hand, if the perturbation is slow so that
the system can be in equilibrium with the reservoir, then
the response is called isothermal response. For in-
depth discussions, see Sec. 3.2.11 of Ref. 1, and Sec. 8.3
of Ref. 2.

In the following, as long as there is no ambiguity, we
will write the labels of a manybody state {n} simply as
n. Before perturbation,

H0|n0〉 = E0
n|n0〉, (5)

where E0
n and |n0〉 are eigen-energies and eigenstates of

the manybody Hamiltonian H0. The external perturba-
tion is assumed to be,

H(t) = H0 +H ′(t). (6)

After the perturbation (~ ≡ 1),

H(t)|n(t)〉 = i
∂

∂t
|n(t)〉. (7)

It is helpful to write,

|n(t)〉 = e−iH0t|nI(t)〉. (8)

Then,

H ′I(t)|nI(t)〉 = i
∂

∂t
|nI(t)〉. (9)

where

H ′I(t) ≡ eiH0tH ′e−iH0t, (10)

We say that the states and operators with subscript I are
in the interaction picture.

To linear order,

|nI(t)〉 ' |n0
I〉 − i

∫ t

−∞
dt′H ′I(t

′)|n0
I〉. (11)

Substitute it into Eq. (4), and keep only the terms to
linear order in H ′I , we have

〈A(t)〉

= 〈A〉0 − i
∫ t

−∞
dt′
∑
n

〈n0|[AI(t), H ′I(t′)]|n0〉e
−βE0

n

Z0

= 〈A〉0 − i
∫ t

−∞
dt′〈[AI(t), H ′I(t′)]〉0, (12)

where

AI(t) ≡ eiH0tAe−iH0t. (13)

For example, if the following perturbation is turned on
abruptly at t0,

H ′(t) =

∫
dv B(r)︸︷︷︸

operator

· f(r, t)︸ ︷︷ ︸
C−number

, (14)

then

δ〈A(r, t)〉 (15)

= −i
∫
dv′
∫ t

t0

dt′〈[AI(r, t),BI(r
′, t′)]〉0 · f(r′, t′)

= −i
∫
dv′
∫ ∞
t0

dt′θ(t− t′)〈[AI(r, t),BI(r
′, t′)]〉0 · f(r′, t′).

This can be written as

δ〈A(x)〉 =

∫
dx′
∑
α

χABα(x, x′)fα(x′), (16)
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where x ≡ (r, t), dx′ ≡ dv′dt′, and

χABα(x, x′) = −iθ(t− t′)〈[AI(x), BIα(x′)]〉0. (17)

We will eventually let t0 → −∞, so that both space
and time integrals cover the whole space-time. Eq (16)
is called the Kubo formula, and χABα is called the
response function. Be aware that the operators are
written in the interaction picture.

II. DENSITY RESPONSE AND DIELECTRIC FUNCTION

A. Density response

In this section, we consider the perturbation of electron
density caused by an external electric potential. Before
perturbation,

H0 = T + VL + Vee, (18)

where VL is a one-body interaction, such as the electron-
ion interaction, and Vee is the electron-electron interac-
tion. The perturbation can be written in the following
form,

H ′ =

∫
dvρe(r)φext(r, t), (19)

where ρe = −e
∑
s ψ
†
s(r)ψs(r) is the electron density, and

φext is an external potential.
Because of the external potential, electron density

〈ρe〉0 → 〈ρe〉 = 〈ρe〉0 + δ〈ρe〉. (20)

Comparing with the Kubo formula, we find the following
replacement,

A → ρe, (21)

B → ρe, (22)

f → φext. (23)

The Kubo formula gives

δ〈ρe(x)〉 =

∫
dx′χρe(x, x

′)φext(x
′), (24)

and the response function is

χρe(x, x
′) = −iθ(t− t′)〈[ρe(x), ρe(x

′)]〉0. (25)

Remember that the operators are in the interaction pic-
ture, but the subscript I is neglected from now on.

If the unperturbed system H0 is uniform in both space
and time, then

χρe(x, x
′) = χρe(x− x′). (26)

In this case, the convolution theorem in Fourier analysis
tells us that

δ〈ρe(κ)〉 = χρe(κ)φext(κ), (27)

where κ ≡ (q, ω), κx ≡ q · r− ωt, and

δ〈ρe(x)〉 =
∑
κ

eiκxδ〈ρe(κ)〉, (28)

δ〈ρe(κ)〉 =

∫
dxe−iκxδ〈ρe(x)〉; (29)

φext(x) =
∑
κ

eiκxφext(κ), (30)

φext(κ) =

∫
dxe−iκxφext(x). (31)

The summation over κ should be understood as∑
κ

=
1

V0

∑
q

∫
dω

2π
. (32)

The Fourier expansion of the response function is

χρe(x− x′) ≡
∑
κ

eiκ(x−x′)χρe(κ), (33)

and

χρe(κ) =

∫
d(x− x′)e−iκ(x−x′)χρe(x− x′)

= −i
∫
d(t− t′)θ(t− t′)eiω(t−t′) (34)

×
∫
d3(r− r′)e−iq·(r−r

′)〈[ρe(r, t), ρe(r′, t′)]〉0.

Since the system is uniform in space, one can perform an
extra space integral 1

V0

∫
d3r′ to the space integral above,

and use

1

V0

∫
d3r′

∫
d3(r− r′) =

1

V0

∫
d3r

∫
d3r′. (35)

Then it is not difficult to see that

χρe(κ) = − i

V0

∫ ∞
0

dteiωt〈[ρe(q, t), ρe(−q, 0)]〉0. (36)

Note that ρe(−q, 0) can also be written as ρ†e(q, 0).
In the following, we may sometimes use the particle

density ρ and its response function χρ, which are related
to the electron density and its response function as

ρe = −eρ, χρe = e2χρ, (37)

and δ〈ρ〉 = −eχρφext. (38)

Also, note that these response functions are related to,
but not the same as, the electric susceptibility χe men-
tioned at the beginning of this chapter.

B. Dielectric function

The response function connects δρe with φext. How-
ever, the dielectric function connects φext with the to-
tal potential φ, which is the sum of φext and the potential
due to material response,

φ(κ) = φext(κ) + δφ(κ), (39)
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and

ε(κ) =
φext(κ)

φ(κ)
. (40)

The total particle density is

〈ρ〉 = 〈ρ〉ext + δ〈ρ〉. (41)

Particle densities are related to the potentials via the
Poisson equations,

q2φext(κ) = −4πe〈ρ(κ)〉ext, (42)

q2φ(κ) = −4πe〈ρ(κ)〉. (43)

Note that quantities such as φext(κ) = φext(q, ω) is al-
lowed to be frequency-dependent. If SI is used, then just
replace 4π with 1

ε0
.

Combine the three equations above, we get a relation
between φ and φext,

φ(κ) = φext + 4πe2χρ
φext
q2

. (44)

This leads to a relation between ε and χρ,

1

ε(κ)
= 1 +

4πe2

q2︸ ︷︷ ︸
V (2)(q)

χρ, (45)

in which V (2)(q) is the Fourier transform of the Coulomb
potential energy, V (2)(r) = e2/r.

Instead of using δ〈ρ〉 = −eχρφext, an alternative rela-
tion is,

δ〈ρ〉 = −eχ0
ρφ, φ = φext + δφ. (46)

It’s not difficult to see that,

χρ =
χ0
ρ

1− 4πe2

q2 χ0
ρ

, (47)

and

ε(κ) = 1− 4πe2

q2
χ0
ρ. (48)

Thus, given φext = 4πe2/q2 ≡ V (q), one has

Veff (q) =
V (q)

ε(q)
=

V (q)

1− V (q)χ0
ρ(q)

. (49)

The calculation of χρ is based on Eq. (36), in which
one averages over unperturbed manybody states (includ-
ing electron interactions). A great advantage of using
the alternative response function χ0

ρ is that, since the lo-
cal field correction has been included in φ, one may
use non-interacting manybody states in the calculation of
the response function. This is justified as follows (Ref. 3):

The interaction term is, apart from a one-body correc-
tion (see Sec. IV.B.1 of Chap 1),

Vee =
1

2

∫
dvdv′V (2)(r− r′)ρe(r)ρe(r

′). (50)

Use the mean field approximation, and expand the charge
density with respect to a mean value 〈ρ(r)〉e,

ρe(r) = 〈ρe(r)〉+ ρe(r)− 〈ρe(r)〉︸ ︷︷ ︸
δρe(r)

. (51)

Neglecting the (δρe)
2 term, we have

Vee '
∫
dvdv′V (2)(r− r′)ρe(r)〈ρe(r′)〉 (52)

− 1

2

∫
dvdv′V (2)(r− r′)〈ρe(r)〉〈ρe(r′)〉.

The mean-field Hamiltonian under perturbation is
(dropping the second term in Eq. (52)),

HMF

= H̃0 +

∫
dvdv′V (2)(r− r′)ρe(r)〈ρe(r′)〉+

∫
dvρe(r)φext

= H̃0 +

∫
dvρe(r)φ(r), (53)

where H̃0 = T + VL, and

φ(r) = φext(r) +

∫
dv′V (2)(r− r′)〈ρe(r′)〉. (54)

The second term in φ(r) is the induced potential, or the
local field correction. That is, if one calculates the re-
sponse to the total perturbing potential φ(r), then the

unperturbed system is H̃0, which is non-interacting.

C. Calculation of χ0
ρ

We now drop the superscript and subscript 0 that refer
to equilibrium states. Recall that

χ0
ρ(κ) = − i

V0

∫ ∞
0

dteiωt〈[ρ(q, t), ρ(−q, 0)]〉. (55)

In the interaction picture, ρ(q, t) = eiH0tρ(q)e−iH0t. The
summation

I(q; t, 0)

≡
∑
n

e−βEn

Z
〈n|ρ(q, t)ρ(−q, 0)|n〉 (56)

=
∑
n,m

e−βEn

Z
ei(En−Em)t〈n|ρ(q, 0)|m〉〈m|ρ(−q, 0)|n〉,

where we have inserted a complete set
∑
m |m〉〈m|, and

used e−iH0t|m〉 = e−iEmt|m〉.
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Since both |n〉 and |m〉 are manybody states of non-

interacting particles, 〈m|a†ksak−q,s|n〉 can be non-zero
only if, when comparing with |n〉, the |m〉 state has one
more electron at state (k, s), but one less electron at
(k − q, s). Therefore, En − Em = −εk + εk−q, a dif-
ference of two single-particle energies. It follows that,

I(q; t, 0) (57)

=
∑
n

e−βEn

Z

∑
k,s

ei(εk−q−εk)t〈n|a†k−q,saksa
†
ksak−q,s|n〉.

For free-particle or Hartree-Fock-like states (consider q 6=
0),

〈a†k−q,saksa
†
ksak−q,s〉 = 〈a†k−q,sak−q,s〉〈aksa

†
ks〉. (58)

This is related to the Wick theorem at finite tempera-
ture. See, e.g., Appendix 3 of Ref. 1 and related discus-
sion. The q = 0 term, if not dropped, would be cancelled
out in Eq. (63) below anyway. Now, it is left as an exer-
cise to show that,

f(εk) ≡ 〈a†ksaks〉 =
∑
n

e−βEn

Z
〈n|a†ksaks|n〉

=
1

1 + eβεk
. (59)

Thus,

I(q; t, 0) = 2
∑
k

ei(εk−q−εk)tf(εk−q)[1− f(εk)]. (60)

Had grand canonical ensemble been used, we’d have

f(εk) =
1

1 + eβ(εk−µ)
. (61)

This is the Fermi-Dirac distribution function (spin-
independent here).

Similarly, one can show that,

I(−q; 0, t) = 2
∑
k

ei(εk−q−εk)tf(εk)[1− f(εk−q)]. (62)

From Eq. (55), we have

χ0
ρ(κ) = − i

V0

∫ ∞
0

dteiωt[I(q; t, 0)− I(−q; 0, t)] (63)

= − 2i

V0

∑
k

∫ ∞
0

dteiωtei(εk−q−εk)t[f(εk−q)− f(εk)].

The integral over time is∫ ∞
0

dtei(ω+iδ)tei(εk−q−εk)t =
i

ω + iδ + (εk−q − εk)
.

(64)
The positive infinitesimal δ is added to ensure the con-
vergence of the exponential at t =∞.

FIG. 1 Electric susceptibility of electron gas in different di-
mensions. Fig from Dugdale’s Phys Scr, 2016.

Finally,

χ0
ρ(q, ω) =

2

V0

∑
k

f(εk−q)− f(εk)

ω + iδ + (εk−q − εk)
, (65)

and

ε(q, ω) = 1− 4πe2

q2

2

V0

∑
k

f(εk−q)− f(εk)

ω + iδ + (εk−q − εk)
. (66)

This is called the Lindhard dielectric function.

1. Low-frequency limit

For frequency as low as ω � vF q, the ω in the denom-
inator can be neglected, and

χ0
ρ(q, 0) ' 2

V0

∑
k

f(εk−q)− f(εk)

εk−q − εk
. (67)

Recall that we are calculating the adiabatic response
(see Sec. I), which presumes the perturbation to be fast.
Thus, it seems risky to apply our result to the low-
frequency limit. However, for the density response, the
result reported below is indeed valid. See p. 136 of Ref. 1
for an explanation.

At long wavelength,

χ0
ρ(q, 0) ' − 2

V0

∑
k

(
−∂fk
∂ε

)
= −D(εF ), (68)

where D(εF ) is the density of states at the Fermi energy.
For 3D free electron gas,

D(εF ) =
mkF
π2~2

. (69)

In this limit, the dielectric function is

ε(q, 0) = 1 +
k2
TF

q2
, (70)
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where k2
TF = 4πe2D(εF ) is the Thomas-Fermi wave

vector. For Copper, kTF ' 1.8 × 1010/m. Thus the
screening length 1/kTF ' 0.55Å.

Given a point charge with φext(r) = Q/r, the screened
electrostatic potential is,

φ(r) =

∫
d3q

(2π)3

φext(q)

ε(q, 0)
eiq·r

=

∫
d3q

(2π)3

4πQ

q2 + k2
TF

eiq·r

=
Q

r
e−kTF r. (71)

For general wavelength (in 3D), it can be shown that
(see Sec. 14 of Ref. 4),

χ0
ρ(q, 0) ' −D(εF )F

(
q

2kF

)
, (72)

where

F (x) =
1

2
+

1− x2

4x
ln

∣∣∣∣1 + x

1− x

∣∣∣∣ (73)

is the Lindhard function (see Sec. III.A). The slope of
F (q/2kF ) has a logarithmic singularity at q = 2kF (see
Fig. 1), resulting in a sudden decrease of screening. This
is related the fact that the pair creation energy, δεq =

εk+q − εk = ~2

m q(±kF + q/2), can no longer be zero once
q > 2kF (see Fig. 3(a)).

It can be shown that (not easy), if we use Eq. (72), then
for kF r � 1, the induced charge density is (see Fig. 2),

δρ(r) ' cos(2kF r)

r3
. (74)

One can see p. 178 of Ref. 4 for a derivation. The os-
cillation of δρ (and accompanied potential variation) is
called the Friedel oscillation.

For reference, we show the electric susceptibility for
electron gas in lower dimensions (see Fig. 1). In 2D, it
is,

χ0
ρ(q) =

{
− m
π~2 if q ≤ 2kF ,

− m
π~2

[
1−

√
1− (2kF /q)2

]
if q > 2kF .

(75)
In 1D, it is,

χ0
ρ(q) = − 2m

π~2

1

q
ln

(
q + 2kF
q − 2kF

)
, (76)

which diverges at q = 2kF . One can find more details in,
e.g., Sec. 4.4 of Ref. 1.

2. High-frequency limit

The response function in Eq. (65) can be rewritten as,

χ0
ρ(q, ω) =

2

V0

∑
k

f(εk)
2(εk−q − εk)

ω2 − (εk−q − εk)2
. (77)

FIG. 2 Friedel oscillation. Fig from Chazalviel’s Coulomb
screening by mobile charges.

(a) (b)

FIG. 3 (a) Predicted dispersion curve of the plasmon (in
sodium) vs electron-hole continuum. (b) Measured plasmon
dispersion in sodium. The vertical bars are measured widths
of the plasmon resonances. Figs are from Ref. 5.

For high frequency and long wavelength (ω � vF q),

χ0
ρ(0, ω) ' q2

mω2

2

V0

∑
k

f(εk) =
q2n

mω2
, (78)

where n is the particle density. Therefore,

ε(0, ω) = 1−
ω2
p

ω2
, (79)

where ω2
p = 4πne2/m is the plasma frequency. For

copper, n = 8 × 1022/cm3, and the plasma frequency is
ωp = 1.6× 1016/s (corresponding to a wavelength about

1200 Å). A piece of metal becomes transparent to an EM
wave with frequency ω if ω > ωp.

It is possible to consider the shift of plasma frequency
when q is finite. To leading order, we have

ε(q, ω) ' 1− 4πe2

mω2

2

V0

∑
k

f(εk)

(
1 +

~2q2

m2ω2
k2

)
. (80)

At T = 0,

2

V0

∑
k

f(εk)k2 =
3

5
nk2

F . (81)

It follows that,

ε(q, ω) ' 1−
ω2
p

ω2

[
1 +

3

5

(
~kF
mω

)2

q2

]
. (82)
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There is longitudinal plasma oscillation when ε(q, ω) = 0.
Thus,

ω2 = ω2
p +

3

5
v2
F q

2 + · · · . (83)

See Fig. 3 for details. The electron-hole continuum in
Fig. 3(a) is the domain where the creation of an electron-
hole pair out of a Fermi sphere is allowed (more in Chap
6).

For reference, the plasma frequency for 2D electron gas
is,

ω2 =
2πne2

m
q +

3

4
v2
F q

2 + · · · , (84)

which is gapless. See p. 204 of Ref. 1 for more details.
Finally, note that (see Eqs. (70), (79))

lim
q→0

lim
ω→0

ε(q, ω) 6= lim
ω→0

lim
q→0

ε(q, ω). (85)

That is, the dielectric function is not analytic at (q, ω) =
(0, 0).

III. CURRENT RESPONSE AND CONDUCTIVITY

A. Current response

In this section, we consider the electric current driven
by an external electric field. Before perturbation,

H0 =

∫
dvψ†(r)

p2

2m
ψ(r) + VL + Vee, (86)

where VL is the one-body potential energy, and Vee is the
electron interaction. In general, the external electric field
depends on both scalar and vector potentials,

E(r, t) = −∇φ− 1

c

∂A

∂t
. (87)

For a static field, it is common to use E = −∇φ, as in
Eq. (19). A static and uniform field then has φ(r) =
−E · r, A(r) = 0. A disadvantage of this scalar potential
is that it is not bounded at infinity. To avoid such a
problem, one can choose a gauge such that

E(r, t) = −1

c

∂A

∂t
. (88)

In this case, a static and uniform field has A(t) = −cEt,
and φ(r) = 0.

After applying the electric field, the Hamiltonian be-
comes,

H =

∫
dvψ†(r)

(
p + e

cA
)2

2m
ψ(r) + VL + Vee

= H0 +
e

2mc

∫
dv
(
ψ†p ·Aψ + ψ†A · pψ

)
+

e2

2mc2

∫
dvA2ψ†ψ, (89)

where H0 refers to the parts that do not depend on A.
The particle current density operator J is related to the
variation of the Hamiltonian as follows,

δH =
e

c

∫
dvJ · δA, (90)

where

J ≡ 1

2mi

[
ψ†∇ψ −

(
∇ψ†

)
ψ
]

︸ ︷︷ ︸
paramagnetic current Jp

+
e

mc
Aψ†ψ.︸ ︷︷ ︸

diamagnetic current JA

(91)
We would like to find out the connection between 〈J〉

and A (to first order). After perturbation, a manybody
state

|n0〉 → |n〉 ' |n0〉+ |n1〉, (92)

where |n1〉 is of order A. Therefore,

〈n|J|n〉 = 〈n0|JA|n0〉+ 〈n0|Jp|n1〉+ 〈n1|Jp|n0〉+O(A2).
(93)

We have assumed, of course, that the equilibrium state
carries no current, 〈n0|Jp|n0〉 = 0.

After taking the thermal average, the first term be-
comes,

〈JA〉 =
e

mc
A(r, t)ρ(r). (94)

The other two terms are evaluated using the Kubo for-
mula in Eq. (16), with the following replacement,

A → Jpα, (95)

B → Jp, (96)

f → e

c
A. (97)

This gives us (recall that x = (r, t))

〈Jpα(x)〉 =
e

c

∫
dx′χpαβ(x, x′)Aβ(x′), (98)

where

χpαβ(x, x′) = −iθ(t− t′)
〈

[Jpα(x), Jpβ(x′)]
〉
. (99)

After combining with the diamagnetic term in Eq. (94),
the response function for the total current is,

χαβ(x, x′) = δαβδ(x− x′)
ρ(x)

m
+ χpαβ(x, x′). (100)

Since H0 is time independent, ρ(x) = ρ(r), and the
response function χαβ(x, x′) = χαβ(r, r′; t − t′). Apply-
ing the convolution theorem to the time variable (see
Eq. (27)), one has

〈Jα(r, ω)〉 =
e

c

∫
dv′χαβ(r, r′;ω)Aβ(r′, ω), (101)
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where

χαβ(r, r′;ω) = δαβδ(r− r′)
ρ(r)

m
+ χpαβ(r, r′;ω), (102)

in which

χpαβ(r, r′;ω) = −i
∫
dtθ(t)eiωt〈[Jα(r, t), Jβ(r′, 0)]〉.

(103)
The vector potential is related to the electric field as fol-
lows,

E(ω) = i
ω

c
A(ω). (104)

Therefore, for the electric current density Je = −eJ, one
has

〈Jeα(r, ω)〉 =

∫
dv′σαβ(r, r′;ω)Eβ(r′, ω). (105)

The conductivity tensor is

σαβ(r, r′;ω) = i
e2

ω
χαβ(r, r′;ω). (106)

Since the conductivity in general is a non-local quantity,
the current density at point r would not only depend on
the electric field at r, but also on neighboring electric
field.

For a homogeneous material,

σαβ(r, r′;ω) = σαβ(r− r′;ω). (107)

We can then apply the convolution theorem to the space
variable and get

〈Jeα(q, ω)〉 = σαβ(q, ω)Eβ(q, ω), (108)

where

σαβ(q, ω) = i
e2

ω

[
δαβ

ρ0

m
+ χpαβ(q, ω)

]
, (109)

in which ρ0 is the homogeneous particle density, and (Cf.
Eq. (36))

χpαβ(q, ω) = − i

V0

∫
dtθ(t)eiωt〈[Jα(q, t), Jβ(−q, 0)]〉.

(110)
Note that the diamagnetic part diverges as ω → 0. For
usual conductors and insulators, this divergence would
be cancelled by part of the paramagnetic term, so that
the DC conductivity remains finite. In a superconduc-
tor, which is a perfect diamagnet (think of the Meissner
effect), the paramagnetic term vanishes in the DC limit,
and the conductivity is purely imaginary,

σSCαβ (q, ω) = i
e2

ω
δαβ

ρ0

m
. (111)

A purely imaginary conductivity leads to inductive be-
havior, and would not cause energy dissipation.

B. Electrical conductivity

We would like to start from a formulation that does
not presume spacial homogeneity:

χpαβ(r, r′;ω) = −i
∫ ∞

0

dteiωt
〈[
Jpα(r, t), Jpβ(r′, 0)

]〉
,

(112)
where Jpα(r, t) = eiH0tJpα(r)e−iH0t. Therefore,

Iαβ(r, t, r′, 0)

≡
∑
n

e−βEn

Z
〈n|Jpα(r, t)Jpβ(r′, 0)|n〉 (113)

=
∑
n,m

e−βEn

Z
ei(En−Em)t〈n|Jpα(r, 0)|m〉〈m|Jpβ(r′, 0)|n〉.

We have inserted a complete set
∑
m |m〉〈m|, and used

e−iH0t|m〉 = e−iEmt|m〉.
The particle current density operator can be written

as (see Chap 1),

Jpα(r) =
∑
µν

〈µ|J (1)
α (r)|ν〉a†µaν , (114)

where J
(1)
α (r) is the one-body operator that can be found

in the Table of Chap 1.

From now on, assume the electrons are not interacting
with each other. Substitute Jpα(r) into Eq. (113), we get
terms with the form,

〈n|a†1a2|m〉〈m|a†3a4|n〉, (115)

where 1, 2 · · · are simplified notations for single-particle
state labels µ, ν. For this type of term to be non-zero,
the single-particle states have to satisfy (1 = 4, 2 = 3),
or (1 = 2, 3 = 4). They both lead to En − Em = ε1 − ε2

(the second case has ε1 = ε2).

The summation over m can now be removed, and

Iαβ(r, t, r′, 0) =
∑

1,2,3,4

ei(ε1−ε2)t〈1|J (1)
α |2〉〈3|J

(1)
β |4〉

× 〈a†1a2a
†
3a4〉(δ14δ23 + δ12δ34). (116)

The thermal averages are (see Eq. (59)),

〈a†1a2a
†
2a1〉 = f1(1− f2), (117)

〈a†1a1a
†
2a2〉 = f1f2. (118)

where f is the Fermi-Dirac distribution function. As a
result, one can show that

Iαβ(r, t, r′, 0)− Iβα(r′, 0, r, t)

=
∑
12

ei(ε1−ε2)t〈1|J (1)
α |2〉〈2|J

(1)
β |1〉(f1 − f2). (119)
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FIG. 4 Real part of the optical conductivity for alkali metals.
The Drude peaks can be seen at low frequency. Smith, Phys
Rev B 2, 2840 (1970).

Therefore,

χPαβ(r, r′, ω)

= −i
∫ ∞

0

dteiωt[Iαβ(r, t, r′, 0)− Iβα(r′, 0, r, t)]

=
∑
12

(f1 − f2)
〈1|J (1)

α (r)|2〉〈2|J (1)
β (r′)|1〉

Ω + ε1 − ε2
, (120)

where Ω ≡ ω + iδ.
If the material is homogeneous, then

χPαβ(q, ω) =
1

V0

∑
12

(f1 − f2)
〈1|J (1)

α (q)|2〉〈2|J (1)
β (−q)|1〉

Ω + ε1 − ε2
,

(121)
in which (see Chap 1),

J (1)
α (q) =

1

2m

(
pαe
−iq·r + e−iq·rpα

)
. (122)

1. Uniform limit

For the uniform case (q = 0), the conductivity is
(rewrite 1, 2 as µ, ν),

σαβ(0, ω) (123)

=
ie2

ω

[
δαβ

ρ0

m
+

1

m2V0

∑
µν

(fµ − fν)
〈µ|pα|ν〉〈ν|pβ |µ〉

Ω + εµ − εν

]
.

The denominator can be decomposed as

1

εµν ± Ω
=

1

εµν

(
1∓ Ω

εµν ± Ω

)
, (124)

where εµν ≡ εµ − εν . Substitute this to Eq. (123), then
the first term of the decomposition would cancel with the
diamagnetic term, because of the following f -sum rule:

1

V0

∑
µν

(fµ − fν)
〈µ|pα|ν〉〈ν|pβ |µ〉

εµν
= −mρ0δαβ . (125)

As a result,

σαβ(0, ω) =
e2

im2V0

∑
µν

(fµ−fν)
〈µ|pα|ν〉〈ν|pβ |µ〉
εµν(Ω + εµν)

. (126)

Let’s apply this to a metal, and consider only the intra-
band contribution, such that |µ〉, |ν〉 are the Bloch states
|nk〉, |nk′〉 (see p. 414 of Ref. 6). For small q, but before
taking q = 0, we have

〈nk′|eiq·rpβ |nk〉 ' mvβδk′,k+q. (127)

Thus,

σαβ(q, ω) ' 2e2

iV0

∑
k

fk − fk+q

ωk − ωk+q

vαvβ
ωk − ωk+q + ω + iδ

.

(128)
For q � k, we have

fk+q − fk
ωk+q − ωk

' ∂f

∂ε
. (129)

It follows that,

σαβ(q, ω)

' 2ie2

∫
d3k

(2π)3

(
−∂f
∂ε

)
vαvβ

ωk − ωk+q + ω + iδ

= 2e2

∫
d3k

(2π)3

(
−∂f
∂ε

)
vαvβτ

1− iτ(ω − q · v)
, (130)

in which we have used ωk − ωk+q ' −q · v, and the
relaxation time τ = 1/δ. This agrees with the result
based on the Boltzmann equation (e.g., see Sec. 23.2 of
Marder’s).

Finally, in the uniform limit,

σαβ(0, ω) =
2ie2

ω + iτ−1

∫
d3k

(2π)3

(
−∂f
∂ε

)
vαvβ . (131)

When ωτ � 1, the real part of the conductivity ap-
proaches a Dirac delta function. Define a broadened delta
function as,

δτ (ω) =
1

π

τ

1 + (ωτ)2
, (132)

then,

Re σαβ(0, ω) = D δτ (ω) + Re σRegαβ (0, ω). (133)

The coefficient D is known as as the Drude weight (see
Fig. 4). We have added a possible regular part at higher
frequency due to inter-band transition.
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FIG. 5 Quantized Hall conductivity of a 2D electron gas in
strong magnetic field.

Remark: For the longitudinal conductivity, in general,

lim
q→0

lim
ω→0

σαα(q, ω) 6= lim
ω→0

lim
q→0

σαα(q, ω). (134)

To get the correct DC conductivity, one needs to take the
limit on the RHS. For the limit on the left, the energy
levels are discrete while the system is still finite (finite
q). As a result, inter-level transitions would be frozen in
the DC limit (ω → 0), and the current vanishes.

2. Hall conductivity, uniform and static

Finally, we would like to consider the DC Hall con-
ductivity. According to Eq. (126), it can be re-written
as

σDCα6=β =
e2

iV0

∑
µν,µ 6=ν

fµ
〈µ|vα|ν〉〈ν|vβ |µ〉 − 〈µ|vβ |ν〉〈ν|vα|µ〉

ε2
µν

.

(135)
If the single-particle states are Bloch states (µ → nk),
〈r|nk〉 = eik·runk(r), where unk(r) is the cell-periodic

function. Define H̃k ≡ e−ik·rH(r,p)eik·r, then

〈nk| p
m
|n′k〉 = 〈unk|

p + ~k

m
|un′k〉

= 〈unk|
∂H̃k

~∂k
|un′k〉. (136)

With the help of the identity (for µ 6= ν),

〈unk|
∂H̃k

∂k
|un′k〉 = (εnk − εn′k) 〈∂unk

∂k
|un′k〉, (137)

one can show that,

σDCα6=β =
e2

~V0

∑
nk

fnk
1

i

(〈
∂unk
∂kα

|∂unk
∂kβ

〉
−
〈
∂unk
∂kβ

|∂unk
∂kα

〉)
︸ ︷︷ ︸

Berry curvature Ωγnk

,

(138)

where α, β, and γ are cyclic. This is also known as the
TKNN formula (see Ref. 7).

In 2D, for a filled band (usually a Landau subband),

C
(n)
1 ≡ 1

2π

∫
filled BZ

d2kΩznk (139)

must be an integer (see Sec. II.B of Ref. 8). Therefore,
the Hall conductivity from filled bands is quantized,

σDCxy =
e2

h

∑
filled n

C
(n)
1 . (140)

The quantized (topological) nature of such an inte-
gral is first shown by D.J. Thouless to explain the
integer quantum Hall effect (see Fig. 5). Note
that h/e2 ' 25.813 kΩ, and quantized Hall resistance
RH = h

e2 /i, where i is a positive integer.

1. (a) Show that the Fourier transformations of
the Coulomb potential φ(r) = 1/r in 3D and 2D are,

3D : φ(q) =
4π

q2
; 2D : φ(q) =

2π

q
. (141)

(b) Show that the density of states of free electron gases
in 3D and 2D are,

3D : D(εF ) =
mkF
π2~2

; 2D : D(εF ) =
m

π~2
. (142)

2. Put a point charge Q in a 2D electron gas.
(a) Under the long-wavelength (Thomas-Fermi) approxi-
mation (i.e., χρ(q) = −m/π~2 in Eq. (75) is used), show
that the screened electrostatic potential at kF r � 1 is,

φ(r) =
Q

r
−Qπq0

2
[H0(q0r)−N0(q0r)], (143)

where q0 = 4πme2/h, H0(x) is a Struve function, and
N0(x) is a von Neumann function. Related integral can
be found in, for example, Gradshteyn and Ryzhik’s Table
of integrals, series, and products.
(b) Following (a), show that at large distance,

φ(r) ' Q

q2
0r

3
. (144)

Note: If the complete form of Eq. (75) is used, then

φ(r) ' Q sin(2kF r)

(2kF r)2
, (145)

which shows the Friedel oscillation. Ref: Frank Stern,
Phys. Rev. Lett. 18, 546 (1967). Also, p. 225 of Ref. 1.
3. Assume H0 = p2/2m+ VL(r). With the help of

[H0, rα] =
~
im

pα, (146)



10

derive the f -sum rule,

1

V0

∑
µν

(fµ − fν)
〈µ|pα|ν〉〈ν|pβ |µ〉

εµν
= −mρ0δαβ , (147)

in which ρ0 is the particle density.
4. Start from Eq. (126), derive the conductivity sum rule,∫ ∞

−∞
Re σαα(ω)dω =

1

4
ω2
p. (148)

That is, the area below a curve in Fig. 4 is fixed by the
plasmon frequency. More sum rules can be found in, e.g.,
Chap 4 of Pines and Nozières, The theory of quantum
liquids, Addison-Wesley Publishing, 1989.

References

[1] G.F. Giuliani and G. Vignale, Quantum theory of the elec-
tron liquid, Cambridge University Press, 2005.
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