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I. MEAN FIELD APPROXIMATION

A Hamiltonian with only quadratic operators is easy
to solve. For example,

H =
∑
αβ

hαβa
†
αaβ . (1)

Then all we need to do is to diagonalize the matrix hαβ ,

hαβ = (U†EU)αβ , (2)

where E is diagonal with diagonal matrix elements {εα},
and U is unitary, such that

H =
∑
α

εαã
†
αãα, ãα =

∑
β

Uαβaβ . (3)

The eigenvalues of the system are
∑

filled α εα, with the
corresponding eigenstates,

|Φ〉 =
∏

filled α

ã†α|0〉. (4)

A. Distinguishable particles

With the mean field approximation, we can approxi-
mate a Hamiltonian with quartic operators with one with
quadratic operators. Let’s first consider a system with 2
types of particles, aα, bα, and assume that the interaction
between different types are important, whereas the inter-
action within the same type are negligible (see Ref. (1)).
The Hamiltonian is

H =
∑
α

εaαa
†
αaα +

∑
α

εbαb
†
αbα ← H0

+
∑

αα′ββ′

Vαββ′α′a†αb
†
βbβ′aα′ . (5)

The quantum average of a†αaα′ at finite temperature T is

〈a†αaα′〉T =
1

Z

∑
{n}

e−βE{n}〈{n}|a†αaα′ |{n}〉, (6)

where {n} is an abbreviation of occupation numbers
(n1, n2, · · · ), E{n} and |{n}〉 are the exact manybody
eigenenergies and eigenstates of the Hamiltonian H, β ≡
1/kBT , and

Z =
∑
{n}

e−βE{n} (7)

is the partition function.
Most of the time, we are unable to obtain, either an-

alytically or numerically, the exact manybody eigenen-
ergies and eigenstates of an interacting Hamiltonian.
Therefore, the average above cannot be evaluated accu-
rately. In the mean field theory, one first decomposes the
operators to two parts,

a†αaα′ = 〈a†αaα′〉T︸ ︷︷ ︸
mean value

+ a†αaα′ − 〈a†αaα′〉T︸ ︷︷ ︸
quantum fluctuation

, (8)

b†βbβ′ = 〈b†βbβ′〉T + b†βbβ′ − 〈b†βbβ′〉T . (9)

There is no approximation being made so far. Substitut-
ing these to the Hamiltonian, one has

a†αb
†
βbβ′aα′ = 〈a†αaα′〉T b†βbβ′ + a†αaα′〈b†βbβ′〉T

− 〈a†αaα′〉T 〈b†βbβ′〉T
+ (fluctuation)2. (10)

Assuming the fluctuations in Eq. (10) are small compared
to the mean values, then we can ignore the (fluctuation)2

term above. This is called the mean-field approxima-
tion (MFA).

As a result,

HMF = H0 −
∑

αα′ββ′

Vαββ′α′〈a†αaα′〉T 〈b†βbβ′〉T (11)

+
∑

αα′ββ′

Vαββ′α′

(
〈a†αaα′〉T b†βbβ′ + a†αaα′〈b†βbβ′〉T

)
.

The mean-field Hamiltonian now has only quadratic op-
erators, similar to a free-particle Hamiltonian, and thus
can be easily solved,

HMF |{n}〉 = EMF
{n} |{n}〉. (12)

However, the coefficients 〈a†αaα′〉T and 〈b†βbβ′〉T in the

Hamiltonian HMF are unknown. Their values can be
evaluated only after the eigenvalues EMF

{n} and eigenstates

|{n}〉 have been obtained,

〈a†αaα′〉T =
1

Z

∑
{n}

e−βE
MF
{n} 〈{n}|a†αaα′ |{n}〉, (13)

where Z =
∑
{n} e

−βEMF{n} .

If the quantum numbers α, β both range from 1 to
N , then the number of unknown mean values 〈· · · 〉T are
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2N2. In numerical calculations, it’s difficult to explore
a parameter space with such a large dimension (say, if
N = 10). So one often needs to start with an educated

guess for rough distributions of 〈a†αaα′〉T and 〈b†βbβ′〉T ,

and plug them into the HMF in Eq. (12) to get updated
eigenvalues and eigenstates. This process is then iter-
ated many times until we get self-consistent solutions of
Eq. (12).

Because of Eq. (10) (without fluctuation),

〈a†αb
†
βbβ′aα′〉T = 〈a†αaα′〉T 〈b†βbβ′〉T . (14)

That is, a-particle and b-particle are not correlated
within the mean field theory. This is no longer true if
the two sets of particles are indistinguishable.

B. Identical particles

Let us first consider non-interacting, identical parti-
cles. In this case, the operators a†α, aα creates or annihi-
lates a particle at state-α, without disturbing the parti-
cles at other single-particle states. When the quartic op-

erator a†αa
†
βaβ′aα′ acts on a manybody state |n1, n2, · · · 〉,

it removes the particles at states α′, β′, then fills two par-
ticles at states α, β. For the following expectation value
to be nonzero,

〈n1, n2, · · · |a†αa
†
βaβ′aα′ |n1, n2, · · · 〉, (15)

one must have either α = α′, β = β′, or α = β′, β = α′.
In the first case,

a†αa
†
βaβaα|n1, n2, · · · 〉 = nαnβ |n1, n2, · · · 〉. (16)

In the second case,

a†αa
†
βaαaβ |n1, n2, · · · 〉 = ±nαnβ |n1, n2, · · · 〉. (17)

The signs ± are for bosons/fermions. Therefore, in gen-
eral,

〈a†αa
†
βaβ′aα′〉{n} (18)

= δαα′δββ′nαnβ ± δαβ′δβα′nαnβ

= 〈a†αaα′〉{n}〈a†βaβ′〉{n} ± 〈a†αaβ′〉{n}〈a†βaα′〉{n},

where we have used 〈· · · 〉{n} to represent the expectation
value in Eq. (15).

A remark: If the particles are interacting, the opera-
tors a†α, aα would not only create or annihilate a parti-
cle at state-α, but also disturb particles at other single-
particle states. As a result, after removing a particle from
a manybody state |Ψ〉 with aα, even if one adds a particle

with a†α′ (α′ 6= α), a†αaα′ |Ψ〉 could still be non-zero.
The decomposition for non-interacting particles in

Eq. (18) motivates us to consider the following MFA for

interacting electrons (compare with Eq. (10); the sub-
script T is neglected from now on),

a†αa
†
βaβ′aα′ (19)

' 〈a†αaα′〉Ta†βaβ′ + a†αaα′〈a†βaβ′〉T − 〈a†αaα′〉T 〈a†βaβ′〉T
± 〈a†αaβ′〉Ta†βaα′ ± a†αaβ′〈a†βaα′〉T ∓ 〈a†αaβ′〉T 〈a†βaα′〉T .

After using the mean-field approximation, the Hamil-
tonian has only quadratic terms. It resembles a non-
interacting Hamiltonian, and its eigenstates resemble
non-interacting manybody states. Therefore,

〈a†αaα′〉T = δαα′nα. (20)

As an example, consider the following interaction be-
tween fermions,

Vee =
1

2

∑
αα′ββ′

Vαββ′α′a†αa
†
βaβ′aα′ . (21)

The matrix elements are,

Vαββ′α′ = 〈α|〈β|V (2)|α′〉|β′〉 (22)

=

∫
dvdv′φ†α(r)φ†β(r′)V (2)(r− r′)φβ′(r′)φα′(r),

The single-particle state φα(r) = ϕα̃(r)χs is composed of
an orbital ϕα̃(r) and a spinor χs. They form a normalized
and complete basis:

〈α|α′〉 =

∫
dv ϕ∗α̃(r)ϕα̃′(r) · χ†sχs′

= δα̃α̃′δss′ , (23)

and ∑
α

〈r|α〉〈α|r′〉 =
∑
α̃

ϕα̃(r)ϕ∗α̃(r′)
∑
s

χsχ
†
s (24)

= δ(r− r′) 12×2.

The matrix elements has the following symmetry,

Vαββ′α′ = Vβαα′β′ . (25)

With the help of this relation, one can show that the
MFA gives (see Eq. (20))

Vee '
∑
αβ

(
Vαββα′a†αaα′nβ − Vαβα′βa

†
αaα′nβ

)
− 1

2

∑
αβ

(Vαββα − Vαβαβ)nαnβ

=
∑
α

VMF
αα′ a†αaα′ + a number, (26)

where

VMF
αα′ ≡

∑
β

(Vαββα′ − Vαβα′β)nβ . (27)
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II. HARTREE-FOCK THEORY

A. HF energy

We now apply the mean-field approximation to elec-
tron gas. It is also called the Hartree-Fock theory.
The single-particle energy is h0 = p2/2m + V (1), where
V (1)(r) is an external potential. The Hartree-Fock (HF)
Hamiltonian is, apart from a constant term,

HHF =
∑
α

h0
αa
†
αaα +

∑
α

∑
β

(Vαββα − Vαβαβ)nβ


︸ ︷︷ ︸

V HFαα

a†αaα

=
∑
α

εHFα a†αaα, (28)

where h0
α = 〈α|h0|α〉, Vαββ′α′ is defined in Eq. (22) with

V (2)(r, r′) = e2/|r − r′|. We have chosen a basis that
diagonalizes V HFαα′ . The HF eigenvalues are,

εHFα = h0
α +

∑
β

(Vαββα − Vαβαβ)nβ , (29)

which depend on the occupation numbers nβ of other
states.

The total energy is a functional of the single-particle
states,

EHF [{φα}] =
∑
α

εHFα nα + a number (30)

=
∑
α

h0
αnα +

1

2

∑
αβ

(Vαββα − Vαβαβ)nαnβ .

We have put back the c-number in Eq. (26), so there is
a factor of 1/2 in front of the second summation. For
the ground state at T = 0, the occupation numbers are
either 0 or 1. Thus,

EHF0 [{φα}] =
∑

filled α

h0
α +

1

2

∑
filled α,β

(Vαββα − Vαβαβ) .

(31)

B. HF state

The manybody ground state (at T = 0) of the HF
theory is,

|ΨHF 〉 =
∏

filled α

a†α|0〉. (32)

Under the coordinate representation, it is the Slater de-
terminant,

ΨHF
α1,α2,···(r1, r2, · · · ) =

1√
N !

∣∣∣∣∣∣∣
φα1

(r1) φα1
(r2) · · ·

φα2
(r1) φα2

(r2) · · ·
...

. . .

∣∣∣∣∣∣∣ .
(33)
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FIG. 1 Self-consistent Hartree-Fock approximation

It has the same form as the determinant of free fermions
in Chap 1, but the single-particle orbitals φα here are
under the influence of HF potentials (see next sub-sec).

Note that if the HF state is used, then Eq. (18) is
an identity, not an approximation. That is, the MFA
has already been made when we write down the many-
body wave function as a Slater determinant. In general, a
manybody wave function could be a linear superposition
of many Slater determinants.

Given

H =
∑
α

h0
αa
†
αaα +

1

2

∑
αββ′α′

Vαββ′α′a†αa
†
βaβ′aα′ , (34)

using the quantum state in either Eq. (32) (easy) or
Eq. (33) (hard), one can directly show that,

〈ΨHF |H|ΨHF 〉 =
∑
α

h0
α+

1

2

∑
αβ

(Vαββα − Vαβαβ) . (35)

This is the same as the one in Eq. (31) obtained via the
route of MFA.

C. HF equation

To evaluate the HF energy, we need to know the single-
particle states {φα} first, which are determined from the
Schrödinger equation. One can get the Schrödinger equa-
tion for φα using the method of variation. That is,
minimize EHF0 [{φα}] with respect to the variation of φα,
while keeping φα normalized,

δEHF0 [{φα}] = 0, 〈φα|φα〉 = 1 for ∀α. (36)

Or,

δ

δφ∗α̃,s

(
EHF0 [{φα}]−

∑
α

λα(〈φα|φα〉 − 1)

)
= 0, (37)

where λα is a Lagrange multiplier. It follows that,

h0|α〉+
∑
β

(
〈β|V (2)|β〉|α〉 − 〈β|V (2)|α〉|β〉

)
= λα|α〉.

(38)
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This is called the Hartree-Fock equation. Basically,
one just strip off the bra state 〈α| from the expression of
energy in Eq. (35). If T 6= 0, then the second term needs
to be multiplied by the occupation number nβ .

After multiplying this equation with a bra state 〈α|,
one can see that the Lagrange multiplier λα is nothing
but the HF eigenvalue εHFα in Eq. (29). This equation
determines the HF eigenvalues and eigenstates, but we
also need the latter to determine the interaction potential
in the HF equation. Therefore, iteration procedure is
required to reach self-consistent solutions (see Fig. 2 and
below).

In coordinate representation, the HF equation be-
comes,

h0φα(r) +
∑
β

∫
dv′V (2)(r− r′)φ†β(r′)φβ(r′)︸ ︷︷ ︸

nβ(r′)

φα(r)

−
∑
β

∫
dv′V (2)(r− r′)φ†β(r′)φα(r′)φβ(r)

= εHFα φα(r). (39)

Recall that φα(r) = ϕα̃(r)χs, and

χ†sχs′ = δss′ . (40)

Define the Hartree potential and the Fock poten-
tial as,

V̄ H(r) =
∑
β

∫
dv′V (2)(r− r′)nβ(r′), (41)

V̄ Fss′(r, r
′) =

∑
β̃

V (2)(r− r′)φ†
β̃,s′

(r′)φβ̃,s(r). (42)

Because of Eq. (40), the Fock potential has a factor of
δss′ . Now, the HF equation can be written as[
h0 + V̄ H(r)

]
φα̃,s(r) −

∑
s′

∫
dv′V̄ Fss′(r, r

′)φα̃,s′(r
′)

= εHFα φα̃,s(r). (43)

The Hartree (or direct) potential is nothing but the clas-
sical electrostatic potential. However, the Fock (or ex-
change) potential does not have a classical counterpart.
It is spin-dependent because of the factor δss′ : the ex-
change potential exists only between electrons with paral-
lel spins. Furthermore, it is non-local, which makes the
HF equation difficult to solve.

III. HF THEORY OF UNIFORM ELECTRON GAS

A. HF energy

Let’s consider N interacting electrons in a box with
volume V0. There is an uniform positive background
charge density in the box, so that the whole box car-
ries no net charges. There is no external potential, so

V (1) = 0, and the single-particle states are plane waves
|α〉 = |k, s〉.
Note: This is not self-evident. But you can check that
when V (1) = 0, plane waves indeed are self-consistent
solutions of the HF equation.

The HF Hamiltonian is,

HHF =
∑
ks

(
~2k2

2m
+ V HFks,ks

)
a†ksaks, (44)

where

V HFks,ks =
∑
k′s′

(Vks,k′s′,k′s′,ks − Vks,k′s′,ks,k′s′)nk′s′(45)

≡ V Hks,ks − V Fks,ks.

Recall that, for example,

Vks,k′s′,k′s′,ks (46)

=

∫
dvdv′φ†ks(r)φ†k′s′(r

′)
e2

|r− r′|
φk′s′(r

′)φks(r),

and φks(r) = 1√
V0
eik·rχs. Therefore, the Hartree energy

of an electron is,

V Hks,ks =
∑
k′s′

1

V 2
0

∫
dvdv′

e2

|r− r′|
nk′s′

=

∫
dvdv′

e2

|r− r′|
1

V0

N

V0
. (47)

This is the electrostatic energy between one negative
charge and the other negative charges. The total Hartree
energy for all negative charges is V Hks,ks times N , and di-
vided by 2 to avoid double counting.

The positive charges also have the same repulsive (pos-
itive) self-energy. In addition, there is an attractive (neg-
ative) energy between positive and negative charges that
would cancel with the two energies above (since it is un-
necessary to be divide it by 2 to avoid the double count-
ing). So the classical electrostatic energy of the whole
box is zero, as it should be, since the whole box is elec-
trically neutral.

On the other hand, the Fock energy of an electron is,

V Fks,ks =
∑
k′s′

δss′
e2

V 2
0

∫
dvdv′

ei(k
′−k)·(r−r′)

|r− r′|
nk′s′

=
1

V0

∑
k′

4πe2

|k− k′|2︸ ︷︷ ︸
V (2)(k−k′)

nk′s, (48)

where V (2)(k − k′) is the Fourier transform of the
Coulomb potential energy V (2)(r − r′). For the ground
state at T = 0, which is a Fermi sphere with radius kF ,
nk′s is 1/0 inside/outside of the sphere. So the energy
for an electron is

εks =
~2k2

2m
−
∫
k′≤kF

d3k′

(2π)3

4πe2

|k− k′|2
. (49)
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F(x)

F’(x)

x

x
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(b)

FIG. 2 (a) The Lindhard function F (x). (b) Derivative of
the Lindhard function, F ′(x), shows a logarithmic divergence
at x = 1.

The integral can be evaluated as,∫
k≤kF

d3k

(2π)3

4πe2

|k− k′|2

=
e2

π

∫ kF

0

∫ 1

−1

k′2dk′d cos θ

k2 + k′2 − 2kk′ cos θ

= − e
2

kπ

∫ kF

0

k′dk′ (ln |k − k′| − ln |k + k′|) ,

= −2e2

π
kFF (k/kF ), (50)

where

F (x) =
1

2
+

1− x2

4x
ln

∣∣∣∣1 + x

1− x

∣∣∣∣ (51)

is called the Lindhard function (see Fig. 2). Thus,

εks =
~2k2

2m
− 2e2

π
kFF

(
k

kF

)
. (52)

The energy of an electron is shown in Fig. 3.
The total energy is,

EHF =
∑
ks

~2k2

2m
nks +

1

2

∑
ks

V HFks,ksnks

=
∑
ks

~2k2

2m
nks −

1

2

e2

V0

∑
kqs

4π

q2
nksnk+q,s. (53)

D(k)

ε(k)

k/kF

k/kF

(a)

(b)

FIG. 3 (a) Free-particle energy (green) vs Hartree-Fock en-
ergy (red) of an electron. (b) Density of states for a free
electron (green) and a Hartree-Fock electron (red).

For the ground state at T = 0, it can be shown that (e.g.,
see p. 91 of Ref. (3)),

EHF

V0
=

1

5π2

~2k5
F

2m
− e2

2

k4
F

2π3
, (54)

in which we have used

2
4
3πk

3
F

(2π)3
=
N

V0
. (55)

Define the inter-particle distance r0 via

4

3
πr3

0N = V0, and rs ≡ r0/a0, (56)

a0 = ~2/me2 is the Bohr radius, and

1 Ry ≡ e2

2a0
' 13.6 eV. (57)

In these units, the energy can be written as,

EHF

N
=

e2

2a0

[
3

5
(kFa0)2 − 3

2π
(kFa0)

]
' 2.21

r2
s

− 0.961

rs
(in units of Ry). (58)

The total energy is positive if rs . 2, which means
that the electron gas is unstable. It becomes negative at
larger spacing, thanks to the Fock energy.

Some comments are in order:
1. At high density, the kinetic energy is more important
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than the interaction energy. On the contrary, at lower
density, the interaction energy is more important than
the kinetic energy. This is opposite to the intuition based
on a gas of classical charges.
2. For alkali metals Li, Na, K, the inter-particle spacing
rs ' 3.25, 3.93, 4.86. In this range, the second term is
larger than the first term. This means that the higher
order interaction terms being neglected in the MFA could
be important.
3. In 1957, Gell-mann and Brueckner used perturbation
theory to find out higher order terms,

EHF

N
' 2.21

r2
s

−0.961

rs
+0.062 ln rs − 0.096 +O(rs)︸ ︷︷ ︸

correlation energy

. (59)

The correction to the HF energy is called the correlation
energy, or ”stupidity energy” in Feynman’s language,
since its magnitude is proportional to our own stupidity.

B. Density of states

The density of states (DOS) D(ε) is defined as,

D(ε) = 2

∫
d3k

(2π)3
δ(ε− εk). (60)

Using the spherical coordinate, d3k = 4πk2dk, we have

D(ε) =
1

π2

∫
k2δ(ε− εk)

dk

dε
dε

=
1

π2

k2

dεk/dk
. (61)

In Fig. 3 (b), we plot the DOS as a function of k (instead
of ε). Note that in the HF theory, dεk/dk diverges at
k = kF , because of the singularity in Fig. 2 (b). As a
result, the DOS vanishes at k = kF (or Fermi energy),
which does not fit reality.

Quantities such as electric conductivity and specific
heat are proportional to the DOS at Fermi energy. Thus,
HFA gives erroneous result regarding these quantities.

C. Pair distribution function

The density operator for particles with spin-s is (see
Sec IV.A of Chap 1),

ρs(r) =
∑
i

δ(ri − r)δsis, (62)

and the particle density ns(r) = 〈Ψ|ρs(r)|Ψ〉. The pair
distribution function gives the conditional probability
of finding an electron with spin s′ at r′, when there is
already an electron with spin s at r. It is defined as,

gss′(r, r
′) =

〈Ψ|
∑
i,j;i6=j δ(ri − r)δ(rj − r′)δsisδsjs′ |Ψ〉

ns(r)ns′(r′)
.

(63)

The summation in the numerator can also be written as,∑
i,j;i 6=j

δ(ri − r)δ(rj − r′)δsisδsjs′

= ρs(r)ρs′(r
′)− δ(r− r′)δss′ρs(r). (64)

At large separation |r − r′|, the numerator approaches
ns(r)ns′(r

′), and gss′(r, r
′) is normalized such that it ap-

proaches one at large separation.
Note: In the discussion here, we only consider cases

with T = 0. If T 6= 0, then the pair distribution function
needs be defined in terms of density matrix.

In the language of second quantization, the particle-
density operator is,

ρs(r) = ψ†s(r)ψs(r), (65)

and (see Sec IV.B of Chap 1)

ρs(r)ρs′(r
′)−δ(r−r′)δss′ρs(r) = ψ†s(r)ψ†s′(r

′)ψs′(r
′)ψs(r).

(66)
Therefore, the pair distribution function can also be writ-
ten as,

gss′(r, r
′) =

〈Ψ|ψ†s(r)ψ†s′(r
′)ψs′(r

′)ψs(r)|Ψ〉
ns(r)ns′(r′)

. (67)

To calculate it, first expand

ψs(r) =
∑
α̃

ϕα̃(r)aα̃s. (68)

The Fermi sea is filled by electrons in states (α̃, s). With
the help of

〈ΨHF |a†α̃1s
a†α̃2s′

aα̃3s′aα̃4s|ΨHF 〉
= δα̃1α̃4δα̃2α̃3 − δα̃1α̃3δα̃2α̃4δss′ , (69)

in which states α̃1, α̃2 need be filled, it follows that,

gHFss′ (r, r′)

=

∑
filled α̃α̃′

[nα̃s(r)nα̃′s′(r
′)− δss′ϕ∗α̃(r)ϕ∗α̃′(r′)ϕα̃(r′)ϕα̃′(r)]

ns(r)ns′(r′)

= 1− δss′

∣∣∣∣ ∑
filled α̃

ϕ∗α̃(r)ϕα̃(r′)

∣∣∣∣2
ns(r)ns′(r′)

, (70)

in which ns(r) =
∑
α̃ nα̃s(r).

For the uniform electron gas, ϕα̃(r) = 1√
V0
eik·r, and

the pair distribution function for anti-parallel spins is,

gHF↑↓ (r, r′) = 1. (71)

For parallel spins, it becomes (ns = N/2V0)

gHF↑↑ (r, r′) = 1−

∣∣∣∣∣∣ 2

N

∑
k≤kF

eik·(r−r
′)

∣∣∣∣∣∣
2

= 1−
[
3

sin(kFR)− kFR cos(kFR)

k3
FR

3

]2

(72)

or = 1−
[

3

kFR
j1(kFR)

]2

, (73)
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(a) (b)

1 1

FIG. 4 Pair distribution functions for two electrons with same
spin (a) and opposite spins (b). If the effect of correlation is
included, then we’ll get the dashed lines.

where R ≡ |r − r′|, and jµ(x) =
√

π
2xJµ+1/2(x) is the

spherical Bessel function. Qualitative plot of the pair
distribution function can be found in Fig. 4. The hole
near R = 0 is called an exchange hole, or an exchange-
correlation (xc) hole if the correlation has been in-
cluded.

It is left as an exercise to show that the gHFss′ for an
uniform electron gas in 2D and 1D are,

2D gHFss′ (R) = 1− δss′
[
2
J1(kFR)

kFR

]2

, (74)

1D gHFss′ (R) = 1− δss′
[

sin(kFR)

kFR

]2

, (75)

in which J1 is the Bessel function. See App. 4 of Ref. (2)
for more details.

D. Exchange energy

In terms of the Hartree potential and the Fock poten-
tial in Eqs. (41),(42), the Hartree-Fock potential energy
in Eq. (30) can be written as,

V HF =
1

2

∑
α

∫
dvV̄ H(r)nα(r)

− 1

2

∑
α̃ss′

∫
dvdv′V̄ Fss′(r, r

′)φ∗α̃s(r)φα̃s′(r
′) (76)

=
e2

2

∫
dvdv′

∑
ss′

ns′(r
′)ns(r)

|r− r′|
gHFss′ (r, r′), (77)

in which gHFss′ is given in Eq. (70). The connection be-
tween HF potential energy and pair distribution function
becomes apparent when one writes

V HF = (78)

e2

2

∫
dvdv′

∑
ss′

〈ΨHF |ψ†s(r)ψ†s′(r
′)ψs′(r

′)ψs(r)|ΨHF 〉
|r− r′|

,

and uses Eq. (67).
Define spin-averaged distribution gHF (r) = (gHF↑↓ +

gHF↑↑ )/2. With the help of the identity (G+R, 5th ed.

p. 715),∫ ∞
0

J2
µ(αx)x−νdx, with 2µ+ 1 > ν > 0, α > 0

=
αν−1Γ(ν)Γ

(
µ− ν

2 + 1
2

)
2νΓ

(
ν+1

2

)
Γ
(
µ+ ν+1

2

)
Γ
(
ν+1

2

) , (79)

one can show that,∫
dv[1− gHF (r)] =

V0

N
. (80)

That is, the volume of an exchange hole equals the aver-
age volume of one electron. Furthermore, the Coulomb
energy of an exchange hole is actually equal to the ex-
change energy in Eq. (58),

Eex
N

=
1

2

∫
dv
e
[
1− gHF (r)

]
r

(
−e
V0

)
(81)

= −3e2

4π
kF . (82)

IV. VALIDITY OF THE MEAN FIELD RESULT

The result from a mean-field theory, even if self-
consistent, could still be totally wrong. In the
calculation above, we start from plane waves, which
are self-consistent solutions to the HF equation (you’re
welcomed to check this). However, in reality, within
certain range of parameters, the uniform electron gas
could spontaneously develop charge density wave (CDW)
or spin density wave (SDW), if one of them has lower
ground state energy. In a more complete investigation,
one can consider such possibilities, start with non-plane
waves, and calculate the ground state energies in the
CDW phase and SDW phase. The phase with the lowest
energy is more likely to be the actual phase. But there is
no guarantee, since there could be other possibilities not
considered (such as the Wigner crystal phase). Despite
this drawback, the mean-field theory could be very
useful when the mean-field phase is close to the phase in
reality.

Exercise:
1. The Hartree-Fock energy of an electron gas is,

EHF =
∑
α

(
T (1)
α +

1

2
V HFαα

)
nα. (83)

(a) Show that it takes energy εγ to add an electron to
a |γ〉-state outside the Fermi sphere (assuming the other
electrons are not affected), where εγ is the HF eigenvalue.
(b) Show that it takes energy εδ to remove an electron
from a |δ〉-state inside the Fermi sea (assuming the other
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electrons are not affected).
(c) To create an electron-hole pair, one needs

∆EHF = εγ − εδ −∆γδ. (84)

Show that ∆γδ = Vγδδγ − Vγδγδ. The HF solution is
stable if ∆EHF is positive.
Note: In reality, the other electrons could be affected
by the addition or removal of one electron, especially for
small systems.
2. Calculate the pair distribution functions in 3D, 2D,
and 1D (Eqs. (73), (74), and (75)).

3. Instead of using |ΨHF 〉 =
∏

ks a
†
ks|0〉, one can use

a mean-field state with spin density wave (Overhauser,
1962). Its one-particle state is,

φα(r) =
eik·r√
V0

(
cos θk2
sin θk

2 e
iQ·r

)
, (85)

in which θk is independent of r, and Q is a constant vec-
tor.
(a) Find out the orientation of spin 〈σ〉 using the one-
particle state. Describe and draw (qualitatively) the spin
configuration in space.
(b) In the language of second quantization, the many-
body HF state becomes,

|ΨHF
Q 〉 =

∏
filled k

(
cos

θk
2
a†k↑ + sin

θk
2
a†k+Q↓

)
|0〉. (86)

Starting from

H =
∑
ks

~2k2

2m
a†ksaks

+
1

2V0

∑
kk′q

∑
ss′

V (q)a†k+qsa
†
k′−qs′ak′s′aks, (87)

one can get its mean-field Hamiltonian,

H =
∑
k

(
~2k2

2m
− h1(k)

)
a†k↑ak↑

+
∑
k

(
~2|k + Q|2

2m
− h2(k)

)
a†k+Q↓ak+Q↓

−
∑
k

g(k)a†k+Q↓ak↑ −
∑
k

g(k)a†k↑ak+Q↓. (88)

Find out the functions h1(k), h2(k) and g(k).
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