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I. FOURIER ANALYSIS

We will first study Fourier series of periodic func-
tions, then study Fourier transform for general functions.
These two topics are related, and we will call them to-
gether as Fourier analysis. They are widely used in,
among other things, all kinds of wave phenomena and
the physics of solids (which has a periodic crystalline en-
vironment).

A. Fourier series

1. General properties

First, recall that the periods of sinαx and cosαx are
2π
α . Hence, the periods of sin 2π

a nx and cos 2π
a nx (n =

1, 2, 3 · · · ) are a
n . It is obvious that∫ a

0

dx sin
2π

a
nx = 0, (1.1)

and

∫ a

0

dx cos
2π

a
nx = 0. (1.2)

The interval of integration can be shifted to [−a/2 +
δ, a/2 + δ] ((δ is arbitrary) without changing the results.
Furthermore, it can be shown that∫ a

0

dx sin
2π

a
mx sin

2π

a
nx =

a

2
δmn, (1.3)∫ a

0

dx sin
2π

a
mx cos

2π

a
nx = 0, (1.4)∫ a

0

dx cos
2π

a
mx cos

2π

a
nx =

a

2
δmn. (1.5)

Again the interval of integration can be shifted at
will, e.g., to [−a/2, a/2]. This practice applies to all
of the periodic integrands integrated over a period
below. These three equations are called orthogonality
relations. You need to memorize them, since they are
really useful.

Fourier theorem:
Suppose f(x) is a periodic function with period a, and
|f(x)|2 is integrable over the interval [0, a], then f(x) can
be expanded by sin 2π

a nx and cos 2π
a nx,

f(x) = a0 +

∞∑
n=1

(
an cos

2π

a
nx+ bn sin

2π

a
nx

)
. (1.6)

First, it is easy to check that f(x + a) = f(x). Next,
we can use the orthogonality relations to find out the
coefficients {a0, an, bn;n ≥ 1},

a0 =
1

a

∫ a

0

dxf(x) ≡ ⟨f⟩a, (1.7)

an =
2

a

∫ a

0

dxf(x) cos
2π

a
nx, (1.8)

bn =
2

a

∫ a

0

dxf(x) sin
2π

a
nx. (1.9)

Note that a0 is simply the average of f(x) over a period
a. The necessity of f(x) being square integrable over a
period will be explained later.
We can use Dirac’s bracket notation and define

⟨f |g⟩ =
∫ a

0

dxf∗(x)g(x). (1.10)

This is called the inner product of f and g. Further-
more, write cos 2π

a nx and sin 2π
a nx simply as ĉn and ŝn.
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(a) (b)

FIG. 1 (a) An unit of a sawtooth wave. (b) The superposition
of many sinusoidal waves from a Fourier series.

Then the Fourier series is,

f = a0 +

∞∑
n=1

(anĉn + bnŝn) . (1.11)

The orthogonality relations are,

⟨ŝm|ŝn⟩ =
a

2
δmn, (1.12)

⟨ŝm|ĉn⟩ = 0, (1.13)

⟨ĉm|ĉn⟩ =
a

2
δmn. (1.14)

The coefficients are,

a0 =
1

a
⟨1|f⟩, (1.15)

an =
2

a
⟨ĉn|f⟩, (1.16)

bn =
2

a
⟨ŝn|f⟩. (1.17)

These shorthand notations reveal clearly the overall
“structure” of the Fourier series.

2. Parity symmetry

If h(x) is an odd function with respect to the origin,
h(−x) = −h(x), then∫ L

−L

dxh(x) =

∫ 0

−L

dxh(x) +

∫ L

0

dxh(x) (1.18)

=

∫ 0

L

dx′h(x′) +

∫ L

0

dxh(x), (x′ ≡ −x)

= 0. (1.19)

The area below the curve h(x) for x < 0 cancels with the
one for x > 0.
With this property, we show that if f(x) has parity

symmetry with respect to the origin, then the loading of
the calculation can be halved. That is:
1. If f(x) is an even function, f(−x) = f(x), then bn = 0
for any n;
2. If f(x) is an odd function, f(−x) = −f(x), then
an = 0 for any n.

n

an
(a) (b)

FIG. 2 (a) A triangular wave. (b) The spectral analysis of
the triangular wave.

For example, if f(x) is an even function, then

bn =
2

a

∫ a/2

−a/2

dxf(x) sin
2π

a
nx (1.20)

= 0 (1.21)

The integral is zero because the integrand h(x) ≡
f(x) sin 2π

a nx is an odd function, h(−x) = −h(x). Simi-
lar proof applies to the case when f(x) is an odd function.
Ex 1: Find the Fourier series expansion of the sawtooth
wave,

f(x) =

{
x, 0 ≤ x < π,
x− 2π, π < x ≤ 2π.

(1.22)

Sol’n: The function f(x) is shown in Fig. 1(a). It is
convenient to write it as

f(x) = x, x ∈ [−π, π], period a = 2π. (1.23)

Since f(x) is an odd function, all of the coefficients an
(including a0) would vanish. It is not difficult to find out
that,

bn =
2

2π

∫ π

−π

dxx sinnx (1.24)

= 2
(−1)n

n
∼ 1

n
. (1.25)

Thus,

f(x) = 2

(
sinx− sin 2x

2
+

sin 3x

3
+ · · ·

)
. (1.26)

With more terms, the sum from the RHS would approach
the sawtooth wave on the LHS, see Fig. 1(b). If x = π/2,
then one has

π

4
= 1− 1

3
+

1

5
− 1

7
+ · · · . (1.27)

This is Leibniz’s formula.
Ex 2: Find the Fourier series expansion of the triangular
wave (Fig. 2(a)),

f(x) =

{
+x, 0 < x ≤ π,
−x, −π < x ≤ 0.

(1.28)

or = |x|, x ∈ [−π, π], a = 2π. (1.29)
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FIG. 3 The wave produced by a full-wave rectifier.

Sol’n: This is an even function so we only have to calcu-
late an. First,

a0 =
1

2π

∫ π

−π

dx|x| (1.30)

=
π

2
. (1.31)

Second,

an =
2

2π

∫ π

−π

dx|x| cosnx (1.32)

= − 4

π

1

n2
, n ∈ odd integer. (1.33)

The distribution of an is shown in Fig. 2(b). Thus,

f(x) =
π

2
− 4

π

∞∑
n ∈ odd

cosnx

n2
. (1.34)

Let x = π, then we will have

π2

8
= 1 +

1

32
+

1

52
+ · · · (1.35)

This series converges faster than the one in Eq. (1.27).
If we differentiate both sides of Eq. (1.34), then

f ′(x) =
4

π

∑
n ∈ odd

sinnx

n
. (1.36)

This would be the Fourier series expansion of a square
wave. It converges slowly (∼ 1/n) compared to the tri-
angular wave (∼ 1/n2). This is a general feature of the
Fourier series: The smoother the function, the faster the
convergence of its Fourier series.
Ex 3: Find the Fourier series expansion of the rectified
wave in Fig. 3,

f(t) =

{
+sinωt, 0 < ωt ≤ π,
− sinωt, −π < ωt ≤ 0.

(1.37)

Sol’n: This is an even function so we only have to calcu-
late an. First,

a0 =
1

π

∫ π

0

dωt sinωt (1.38)

=
2

π
. (1.39)

FIG. 4 The Fourier series overshoots the sawtooth wave at
discontinuities.

Second,

an =
2

π

∫ π

0

dωt sinωt cosnωt (1.40)

=

{
0, n ∈ odd
− 2

π
2

n2−1 , n ∈ even.
(1.41)

Thus,

f(t) =
2

π
− 4

π

(
cos 2ωt

22 − 1
+

cos 4ωt

42 − 1
+ · · ·

)
. (1.42)

More examples of the Fourier series can be found in, e.g.,
https://www.falstad.com/fourier/e-index.html.

Finally, we comment on a peculiar feature of the
Fourier series. If f(x) is discontinuous, as the sawtooth
wave in Example 1, then near a discontinuity, the sum
of the series would “overshoot” by about 18 % (Fig. 4).
This is called Gibbs phenomena. This overshoot can-
not be removed by summing more terms in the Fourier
series. Also, at a point x0 of discontinuity, the Fourier
series converges to

lim
ε→0

1

2
[f(x0 + ε) + f(x0 − ε)] . (1.43)

3. Exponential bases

Instead of expanding with sinx and cosx, one can ex-
pand the Fourier series with eix. First, write

cos
2π

a
nx =

1

2

(
ei

2π
a nx + e−i 2π

a nx
)
, (1.44)

sin
2π

a
nx =

1

2i

(
ei

2π
a nx − e−i 2π

a nx
)
, (1.45)

then

f(x) = a0 +

∞∑
n=1

(
an cos

2π

a
nx+ bn sin

2π

a
nx

)

=

∞∑
n=−∞

cne
i 2π

a nx, (1.46)
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in which (n > 0)

c0 = a0, (1.47)

cn =
1

2
(an − ibn), (1.48)

c−n =
1

2
(an + ibn) = c∗n. (1.49)

There is only one orthogonality relation,∫ a

0

dxe−i 2π
a nxei

2π
a mx = aδmn. (1.50)

Using this relation, one can find the coefficients of expan-
sion,

cn =
1

a

∫ a

0

dxf(x)e−i 2π
a nx. (1.51)

With the shorthand notation ên ≡ ei
2π
a nx, the Fourier

series becomes,

f =
∑
n

cnên. (1.52)

The orthogonality relation is

⟨ên|êm⟩ = aδmn, (1.53)

from which we get the coefficients of expansion,

cn =
1

a
⟨ên|f⟩. (1.54)

Some general properties of the Fourier series are listed
below:

Property 1. If

∞∑
n=−∞

cne
i 2π

a nx = 0, (1.55)

then cn = 0 for any n. This can be easily proved by
identifying the 0 on the RHS with f(x) and applying
Eq. (1.51).
Property 2. If

∞∑
n=−∞

cne
i 2π

a nx =

∞∑
n=−∞

dne
i 2π

a nx, (1.56)

then cn = dn for any n. This can be proved by moving
two summations to the same side of the equation and
identifying cn − dn with the cn in Property 1.
Property 2 shows that the Fourier series expansion of

a function f(x) must be unique. There cannot be two
different expansions that sum up to the same function
f(x).
3. The inner product between two functions is

⟨f |g⟩ =
∑
nm

c∗ndm⟨ên|êm⟩ (1.57)

= a
∑
n

c∗ndn. (1.58)

Hence,

⟨f |f⟩ = a
∑
n

|cn|2. (1.59)

These properties seem to be familiar because they are
analogous to the expansion of a vector,

v = v1ê1 + v2ê2 + v3ê3. (1.60)

If the bases are orthogonal,

êi · êj = δij (1.61)

then the coefficients of expansion are uniquely deter-
mined, and

vi = êi · v. (1.62)

Also, the inner product between two vectors are,

u · v =
∑
i

uivi. (1.63)

Here {ên} plays the role of the orthogonal bases {êi},
and cn plays the role of the coefficient of expansion vi.
However, note that
1. The dimension of the “vector space” for f(x) is infi-
nite.
2. The components of the f(x)-vector can be complex-
valued.
Such a vector space for functions is called a Hilbert

space. One requirement for the functions f(x) in the
Hilbert space is that they have to be square integrable.
That is, their “length”, |f | =

√
⟨f |f⟩, has to be finite.

In quantum mechanics, a wave function ψ(x) is such a
state vector in Hilbert space. According Born’s interpre-
tation, |ψ(x)|2dx is the probability of finding the particle
within the interval dx, and∫ ∞

−∞
dx|ψ(x)|2 = 1. (1.64)

Therefore, ψ(x) needs to be normalizable (or square in-
tegrable) to fit in such a theoretical framework.

B. Fourier transform

In general, an integral transform of a function f(t) has
the following form,

f(t)→ g(s) =

∫ a

b

dtf(t)K(s, t), (1.65)

in which K(s, t) is called a kernel of the integral trans-
form. For example, Fourier transform is given as

g(ω) =

∫ ∞

−∞
dtf(t)eiωt. (1.66)
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FIG. 5 Lorentzian distribution vs Gaussian distribution.

and Laplace transform is

g(s) =

∫ ∞

0

dtf(t)e−st. (1.67)

We will discuss only the Fourier transform in this Note.
Write an integral transform as

f(t)→ g(s) = Lf(t) ≡
∫ a

b

dtf(t)K(s, t). (1.68)

It is then clear that

L(cf) = cLf, c is a const (1.69)

L(f1 + f2) = Lf1 + Lf2. (1.70)

That is, an integral transform is a linear transformation.
In physics, if f(t) is a function of time t, then the kernel

of the Fourier integral, K(ω, t) = eiωt, is a harmonic
oscillation with frequency ω. The Fourier integral can be
considered as a superposition of these oscillations that
sums up to f(t).
Fourier transform can help us solving linear differen-

tial equations. For example, the differential equation for
f(t) would become an algebraic equation for g(ω). After
solving for g(ω), one can then obtain f(t) by performing
an inverse Fourier transform on g(ω):

Diff eq for f(t)
transform−−−−−−−→ Alg eq for g(ω)

↓ solve
f(t)

inverse tranf←−−−−−−−−− g(ω)

(1.71)

We will learn how to do this in this Note.

1. Fourier integral

Ex 1: Given f(t) = e−α|t| (α > 0), one has

g(ω) =

∫ ∞

−∞
dte−α|t|eiωt (1.72)

=
2α

ω2 + α2
, (1.73)

which is a Lorentzian distribution (Fig. 5). Its half-
width is roughly of the order of α.

Ex 2: Consider the Gaussian distribution, f(t) =

e−αt2 (α > 0). Its half-width is roughly of the order
of 1/

√
α (Fig. 5). Its Fourier transform,

g(ω) =

∫ ∞

−∞
dte−αt2eiωt (1.74)

=

√
π

α
e−ω2/4α, (1.75)

which is also a Gaussian distribution. Its half-width is
roughly of the order of

√
α. It can be seen that if α gets

smaller, then f(t) gets broader, but g(ω) gets sharper
(Fig. 6).

2. Dirac delta function

Before introducing the inverse Fourier transform, let’s
have a brief review of the Dirac delta function. The Dirac
delta function is an even function that satisfies the fol-
lowing properties,

1. δ(x− x0) =
{
∞ x = x0
0 x ̸= x0

(1.76)

2.

∫ ∞

−∞
dxδ(x− x0) = 1, (1.77)

3.

∫ ∞

−∞
dxf(x)δ(x− x0) = f(x0). (1.78)

The second property shows that the “area” below the
delta function distribution is one. Among other proper-
ties of the delta function, here we cite only one (c is a
constant)

δ[c(x− x0)] =
1

|c|
δ(x− x0). (1.79)

Ex 3: Given a Dirac delta function, f(t) = δ(t − t0),
one has

g(ω) =

∫ ∞

−∞
dtδ(t− t0)eiωt (1.80)

= eiωt0 . (1.81)

Note that f(t) is infinitely sharp, while its Fourier trans-
form |g(ω)| = 1 is flat.
The Dirac delta function can be considered as the limit

of a very sharp distribution. There are different choices of
such distributions, as long as they can satisfy the require-
ments above. For example, both the Lorentzian distribu-
tion and the Gaussian distribution above could approach
the delta function when α→ 0. Write

gLα(x) =
2α

x2 + α2
, (1.82)

gGα (x) = e−x2/4α, (1.83)
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sharp

sharp

broad

broad

FIG. 6 A Gaussian curve and its Fourier transformation.
When one is narrow, the other is broad.

then the areas below this two curves are∫ ∞

−∞
dxgLα(x) = 2 tan−1 x

α

∣∣∣∞
−∞

= 2π, (1.84)∫ ∞

−∞
dxgLα(x) = 2π. (1.85)

Thus, define

δα(x) =
1

2π
gLα(x) =

α/π

x2 + α2
, (1.86)

or δα(x) =
1

2π
gGα (x) =

1√
4πα

e−x2/4α. (1.87)

Both would lead to

lim
α→0

δα(x− x0) = δ(x− x0), (1.88)

From Example 1, we get∫ ∞

−∞
dte−α|t|eiωt = 2πδα(ω), (1.89)

let α→ 0, then

∫ ∞

−∞
dteiωt = 2πδ(ω). (1.90)

The second equation can be written in alternative forms,∫ ∞

−∞
dtei(ω−ω0)t = 2πδ(ω − ω0), (1.91)

or

∫ ∞

−∞
dωeiω(t−t0) = 2πδ(t− t0). (1.92)

This very important identity is called an orthogonality
relation.

C. Inverse Fourier transform

With the help of the orthogonality relation, we can
immediately obtain the inverse Fourier transform of g(ω):

g(ω) =

∫ ∞

−∞
dtf(t)eiωt, (1.93)

→
∫ ∞

−∞

dω

2π
g(ω)e−iωt =

∫ ∞

−∞
dt′f(t′)

∫ ∞

−∞

dω

2π
eiω(t′−t)︸ ︷︷ ︸

=δ(t−t′)

= f(t). (1.94)

R

C
R

Reω

Imω

iα

iα−

t < 0

t > 0

FIG. 7 The integrand in Eq. (1.102) has two poles. One
needs to choose a semi-circle CR appropriately depending on
whether t > 0 or t < 0.

That is, the Fourier transform and its inverse transform
are.

g(ω) = Ff(t) =
∫ ∞

−∞
dtf(t)eiωt, (1.95)

f(t) = F−1g(ω) =

∫ ∞

−∞

dω

2π
g(ω)e−iωt. (1.96)

You can trace the factor 2π to its origin from the orthog-
onality relation in Eq. (1.92). It’s impossible to remove
this factor by rescaling the variables. Some prefer to
distribute it equally between two transformations. For
example,

g(s) =
1√
2π

∫ ∞

−∞
dtf(t)eist, (1.97)

f(t) =
1√
2π

∫ ∞

−∞
dsg(s)e−ist, (1.98)

or

g(s) =

∫ ∞

−∞
dtf(t)e2πist, (1.99)

f(t) =

∫ ∞

−∞
dsg(s)e−2πist. (1.100)

We will not adopt these conventions. The 2π factor would
always appear in dω/2π.
Ex 4: Given g(ω) = 2α

ω2+α2 , find out its inverse Fourier
transform.

f(t) =

∫ ∞

−∞

dω

2π

2α

ω2 + α2
e−iωt (1.101)

=

∫ ∞

−∞

dω

2π

2α

(ω + iα)(ω − iα)
e−iωt. (1.102)

This can be evaluated with the help of complex integra-
tion. Consider the contour integral,∮

C

=

∫ ∞

−∞
+

∫
CR

, (1.103)

in which CR a large semi-circle with radius R, as shown
in Fig. 7. In order for

∫
CR

to vanish as R → ∞, if
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t > 0, then CR has to go around lower complex plane; if
t < 0, then it has to go around upper complex plane. In
either case, only one pole is within contour C. Using the
residue theorem, we have

f(t) =

 e−αt if t > 0
1 if t = 0
e+αt if t < 0

(1.104)

= e−α|t|. (1.105)

Note that the case with t = 0 has been evaluated in
Eq. (1.84). This result is consistent with Example 1.

1. Uniqueness of Fourier transform

Lemma 1: If ∫ ∞

−∞

dω

2π
g(ω)eiωt = 0, (1.106)

then

g(ω) = 0. (1.107)

This can be easily proved by performing the inverse trans-
formation to f(t) = 0.

Lemma 2: If∫ ∞

−∞

dω

2π
g(ω)eiωt =

∫ ∞

−∞

dω

2π
h(ω)eiωt, (1.108)

then

g(ω) = h(ω). (1.109)

This can be proved by moving the two integrals to the
same side, and identify g − h with the g in Lemma 1.

Lemma 2 shows that there cannot be two different
functions, g(ω), h(ω), that transform to the same func-
tion f(t), and vice versa. This is analogous to the expan-
sion of a vector,

v = v1ê1 + v2ê2 + v3ê3. (1.110)

If the bases are orthogonal, then the coefficients of ex-
pansion are uniquely determined,

vi = êi · v. (1.111)

Here {eiωt} plays the role of the orthogonal bases {êi},
and g(ω) plays the role of the coefficient of expansion
vi. This is very similar to the discussion in Sec. A3.
A major difference is that the dimension of the Hilbert
space there is countably infinite, whereas it is uncountably
infinite here.

(a)

(b)

(c)

FIG. 8 (a) A Wilberforce pendulum. (b) Vertical displace-
ment and angle of rotation in time. (c) Vertical displacement
and angle of rotation in frequency. Figs. from P. Devaux et
al, Emergent Scientist 3, 1 (2019)

D. Spectral analysis

As we have mentioned in Sec. A, if f(t) is a waveform,
then its Fourier integral,

f(t) =

∫ ∞

−∞

dω

2π
g(ω)e−iωt, (1.112)

can be considered as a superposition of numerous har-
monic oscillations {e−iωt}. The coefficient g(ω) is the
weight of each component. We call it the frequency dis-
tribution, or the spectral distribution, of f(t). Hence
Fourier analysis can also be referred to as spectral anal-
ysis.
The insight we gained from frequency distribution can

be very useful. For example, a Wilberforce pendu-
lum is a mass suspended by a helical spring (Fig. 8(a)).
The displacement f(t) of the pendulum (either vertical
or angular) would appear to be irregular (Fig. 8(b)). Its
regularity would emerge only if you analyze its frequency
distribution g(ω), which has two peaks from two charac-
teristic frequencies (related to vertical and angular oscil-
lations), see Fig. 8(c).
From Example 2, we learned that

f(t) = e−αt2 ↔ g(ω) =

√
π

α
e−ω2/4α. (1.113)

The Fourier transform of a Gaussian peak is also a Gaus-
sian peak. However, if one is broader, then the other is
sharper, and vice versa. This is similar to the optical
diffraction from a slit. The sharper the slit, the broader
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(a) (b)

FIG. 9 A finite wave train (a) and its Fourier transform (b).

the diffraction pattern, and vice versa. This is not a co-
incident, since a diffraction pattern is indeed related to
the Fourier transform of its incident wave within the slit
(see Zangwill, 2013).

From Example 3, we learned that

f(t) = e−iω0t ↔ g(ω) = 2πδ(ω − ω0). (1.114)

This can be considered as an extreme case of the prop-
erty just mentioned: When a distribution is infinitely
sharp, its Fourier transform is flat throughout. Another
way to look at this is that, given a simple harmonic oscil-
lation e−iω0t, its spectral distribution contains only one
single frequency ω0. Similarly, the spectral distribution
of sinω0t = (eiω0t − e−iω0t)/2i would have two delta-
peaks at −ω0 and +ω0. Note that this is true only for a
harmonic oscillation that lasts forever. It is not so for a
finite wave train, as explained below.
Ex 5: Given a finite wave train with N oscillations
(Fig. 9(a)),

f(t) =

{
sinω0t for t ∈

[
−NT

2 .NT
2

]
, T = 2π

ω0
,

0 otherwise.
(1.115)

find its spectral distribution g(ω).
Sol’n:

g(ω) =

∫ NT/2

−NT/2

dt sinω0te
iωt (1.116)

=
1

2i

∫ NT/2

−NT/2

dt(eiω0t − e−iω0t) eiωt (1.117)

= i

[
sin NT

2 (ω − ω0)

ω − ω0
−

sin NT
2 (ω + ω0)

ω + ω0

]
.

This function consists of two peaks, centered at ω0 and
−ω0. One of the peak centered at ω0 is shown in
Fig. 9(b). The height of the peak α = NT/2, and the
half-width of the peak ∆ω ≃ 1/α ≃ ω0/N . Thus, if N
gets larger, then the peak gets sharper and higher.

Suppose ω0 is large so that this two peaks are widely
separated. Let’s focus on one of the peak. It can be
shown that the area between the curve g(ω) and the hor-

izontal axis remains fixed as N changes. First, recall that∫ ∞

0

dx
sinx

x
=
π

2
, (1.118)

It follows that, for the peak g+(ω) at +ω0,∫ ∞

−∞
dωg+(ω) = i

∫ ∞

−∞
dω

sin NT
2 (ω − ω0)

ω − ω0
(1.119)

= πi. (1.120)

That is, if we define

δα(x) =
1

π

sinαx

x
, (1.121)

then

lim
α→∞

δα(x− x0) = δ(x− x0). (1.122)

This is the third representation of the delta function be-
ing introduced, in addition to the ones in Eqs. (1.86) and
(1.87). Finally, when N →∞,

g(ω) = πiδ(ω − ω0)− πiδ(ω + ω0). (1.123)

It can be easily checked that

f(t) =

∫ ∞

−∞

dω

2π
g(ω)e−iωt = sinω0t, (1.124)

as it should be.

1. Uncertainty relation

Similar to the wave train in Example 5, the function
f(t) = e−iω0t, t ∈ [−NT/2, NT/2] describes a wave train
that lasted ∆t = NT . Its spectral distribution has only
one peak at ω = ω0 with a width roughly of the order of
∆ω = ω0/N . According to quantum physics, the associ-
ated energy uncertainty ∆E = ℏ∆ω. Hence,

∆E∆t ≃ h. (1.125)

This is Heisenberg’s uncertainty relation for energy
and time: If a physical events lasts longer, then its energy
uncertainty is smaller. On the other hand, if a physics
event exists only for a short time, then its energy uncer-
tainty can be large. For example, suppose a laser can
emit a beam with a precise period. Nevertheless, if it
emits an ultrafast, femto-second pulse, then the energy
uncertainty of this pulse can be as large as one electron
volt.
Exactly the same analysis applies to the pair of vari-

ables (x, k). That is, if f(x) = eikx describes a
wavepacket with an extent ∆x = Nλ, then its spectral
distribution is a peak with a width roughly of the order
of ∆k = k/N . The associated momentum uncertainty
∆p = ℏ∆k. Hence,

∆p∆x ≃ h. (1.126)

This is Heisenberg’s uncertainty relation for momentum
and position.
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2. Fourier transform of multiple variables

Similar to the pair of conjugate variables (t, ω), the
Fourier transforms of the conjugate variables (x, k) for
position and wavevector are,

g(k) =

∫ ∞

−∞
dxf(x)e−ikx, (1.127)

f(x) =

∫ ∞

−∞

dk

2π
g(k)eikx. (1.128)

Note that we have flipped the signs of the exponents in
the kernel by choice, Cf. Eqs. (1.95) and (1.96).

In many cases, the physics described by k is simpler
than that described by x. For example, elementary con-
cepts in solid state physics, such as energy band and
Fermi surface, are functions of wavevector, not position.

In general, one can have the following transformations,

f(x, t) =

∫ ∞

−∞

dk

2π

∫ ∞

−∞

dω

2π
g(k, ω)ei(kx−ωt),(1.129)

g(k, ω) =

∫ ∞

−∞
dx

∫ ∞

−∞
dtf(x, t)e−i(kx−ωt). (1.130)

That is, a general waveform f(x, t) moving in one dimen-
sion can be decomposed as a superposition of {ei(kx−ωt)}.
The Fourier transforms of f(t) and f(x) can be consid-
ered as special cases of f(x, t). This explains why we
prefer to choose opposite signs for the exponents in the
kernel, e+iωt vs e−ikx, since we often write a plane wave
as ei(kx−ωt), not as ei(kx+ωt).
Generalize this to three dimensions, we then have

f(r) =

∫
d3k

(2π)3
g(k)eik·r, (1.131)

g(k) =

∫
dvf(r)e−ik·r, dv = d3r (1.132)

in which the integrations are over the whole k-space and
the whole r-space.
In general, for waves travelling in three dimension, we

have

f(r, t) =

∫
d3k

(2π)3

∫
dω

2π
g(k, ω)ei(k·r−ωt),(1.133)

g(k, ω) =

∫
dv

∫
dtf(r, t)e−i(k·r−ωt). (1.134)

That is, a general waveform f(r, t) moving in three
dimension can be decomposed as a superposition of
monochromatic plane waves {ei(k·r−ωt)}.
Ex 6: In 1934, H. Yukawa suggested that the strong nu-
clear force is mediated by the quantas of nuclear-force
field called mesons. The nuclear force is short-ranged,
with the following form (now calledYukawa potential),

V (r) =
e−αr

r
, α > 0. (1.135)

Find out its Fourier transform.
Sol’n:

V (k) =

∫
dv
e−αr

r
e−ik·r (1.136)

= 2π

∫ ∞

0

drre−αr

∫ π

0

d cos θe−ikr cos θ(1.137)

=
2πi

k

∫ ∞

0

dre−αr
(
eikr − e−ikr

)
(1.138)

=
4π

k2 + α2
. (1.139)

If α→ 0, then

V (k) = F
(
1

r

)
=

4π

k2
. (1.140)

This is the Fourier transform of the Coulomb potential
in 3D. Note that for the Coulomb potential in 2D, its
Fourier transform would be

V (k) = F
(
1

r

)
=

2π

k
. (1.141)

It is left as an exercise to confirm this.

Remarks: The coefficient α is proportional to the mass
m of the meson. Therefore, from the range of the nuclear
force, which is of the order of fermis, Yukawa estimated
the mass of the meson to be around 100 MeVs. Such a
particle was first detected in 1947 with a mass of 135 Mev,
which is close to the theoretical prediction. Analogously,
photons are the quanta of electromagnetic field. If a pho-
ton has mass, then the Coulomb potential would also be
of the Yukawa form with a tiny non-zero α. Therefore,
by detecting any deviation from the inverse square law of
the Coulomb force, one can determine whether a photon
has a mass or not.

E. Fourier convolution theorem

Consider two functions and their Fourier transforms,

f(t)
F−→ f̃(ω) =

∫ ∞

−∞
dtf(t)eiωt, (1.142)

g(t)
F−→ g̃(ω) =

∫ ∞

−∞
dtg(t)eiωt, (1.143)

That is,

f̃(ω)
F−1

−−−→ f(t) =

∫ ∞

−∞

dω

2π
f̃(ω)e−iωt, (1.144)

g̃(ω)
F−1

−−−→ g(t) =

∫ ∞

−∞

dω

2π
g̃(ω)e−iωt. (1.145)



10

We’d like to find out the inverse transform of their prod-
uct:

F−1
(
f̃(ω)g̃(ω)

)
=

∫ ∞

−∞

dω

2π
f̃(ω)g̃(ω)e−iωt (1.146)

=

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2f(t1)g(t2)

∫ ∞

−∞

dω

2π
eiω(t1+t2−t)︸ ︷︷ ︸

=δ(t1+t2−t)

=

∫ ∞

−∞
dt1f(t1)g(t− t1) or

∫ ∞

−∞
dt2f(t− t2)g(t2)

≡ (f ∗ g) (t). (1.147)

This is called the convolution integral of f(t) and g(t).
Conversely, we have

F (f ∗ g) (t) = f̃(ω)g̃(ω). (1.148)

For example, in electromagnetism, the Ohm’s law is

J(ω) = σ(ω)E(ω), (1.149)

in which the “∼” has been neglected. Its inverse Fourier
transform gives

J(t) =

∫ ∞

−∞
dt′σ(t− t′)E(t′). (1.150)

Similarly, in higher dimensions, we have∫
d3k

(2π)3
f(k)g(k)eik·r =

∫
dv′f(r− r′)g(r′). (1.151)

Conversely, you can check that∫
dvf(r)g(r)e−ik·r =

∫
d3k′

(2π)3
f(k− k′)g(k′). (1.152)

1. Parseval relation

From

f(t) =

∫ ∞

−∞

dω

2π
f̃(ω)e−iωt, (1.153)

g(t) =

∫ ∞

−∞

dω

2π
g̃(ω)e−iωt. (1.154)

one has∫ ∞

−∞
dtf∗(t)g(t)

=

∫ ∞

−∞
dt

∫ ∞

−∞

dω1

2π

∫ ∞

−∞

dω2

2π
f̃∗(ω1)g̃(ω2)e

iω1t−iω2t

=

∫ ∞

−∞

dω

2π
f̃∗(ω)g̃(ω), (1.155)

in which the integral over t gives 2πδ(ω1−ω2). You may
consider these integral as an “inner product” between
two functions. Then,

⟨f(t)|g(t)⟩ = ⟨f̃(ω)|g̃(ω)⟩. (1.156)

That is, the inner product is invariant under the Fourier
transform. Note: For the inner product with frequency
integral, we use

∫
dω/2π, instead of

∫
dω.

Ex 7: Suppose there are two charge distributions, ρ1(r)
and ρ2(r), then the electrostatic potential energy between
them is

V =

∫
dv1

∫
dv2

ρ1(r1)ρ1(r2)

|r1 − r2|
. (1.157)

Write this integral in terms of ρ1(k) and ρ2(k), which are
Fourier transforms of ρ1(r) and ρ2(r).
Sol’n: First, we need

ρ(r) =

∫
d3k

(2π)3
ρ(k)eik·r. (1.158)

Also, from Example 6, we have

1

|r1 − r2|
=

∫
d3k

(2π)3
4π

k2
eik·(r1−r2). (1.159)

It follows that

V =

∫
dv1

∫
dv2

∫
d3k

(2π)3
4π

k2
ρ1(r1)ρ2(r2)e

ik·(r1−r2)

=

∫
d3k

(2π)3
4π

k2
ρ1(−k)ρ2(k) (1.160)

or =

∫
d3k

(2π)3
4π

k2
ρ∗1(k)ρ2(k). (1.161)

Note that ρ(−k) = ρ∗(k) if ρ(r) ∈ R (see below).

F. Solving differential equations

1. Fourier transform of derivatives

Recall Lemma 2: If∫ ∞

−∞

dω

2π
g(ω)eiωt =

∫ ∞

−∞

dω

2π
h(ω)eiωt, (1.162)

then

g(ω) = h(ω). (1.163)

Now,

f(t) =

∫ ∞

−∞

dω

2π
g(ω)e−iωt, (1.164)

f∗(t) =

∫ ∞

−∞

dω

2π
g∗(−ω)e−iωt. (1.165)
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Therefore, if f(t) is a real-valued function, f∗(t) = f(t),
then

g∗(ω) = g(−ω). (1.166)

Similarly,

f(r) =

∫
d3k

(2π)3
g(k)eik·r, (1.167)

f∗(r) =

∫
d3k

(2π)3
g∗(−k)eik·r. (1.168)

If f(r) is a real-valued function, f∗(r) = f(r), then

g∗(k) = g(−k). (1.169)

Furthermore, from

df

dt
=

∫ ∞

−∞

dω

2π
[−iωg(ω)]e−iωt, (1.170)

we get

F
(
df

dt

)
= −iωg(ω). (1.171)

Similarly, from

d2f

dt2
=

∫ ∞

−∞

dω

2π
(−iω)2g(ω)e−iωt, (1.172)

we get

F
(
d2f

dt2

)
= (−iω)2g(ω). (1.173)

Also, from

∇f =

∫
d3k

(2π)3
ikg(k)eik·r, (1.174)

we get

F (∇f) = ikg(k). (1.175)

Similarly, from

∇2f =

∫
d3k

(2π)3
ik · ikg(k)eik·r, (1.176)

we get

F
(
∇2f

)
= −|k|2g(k). (1.177)

From the relations above, we know that under a Fourier
transform, a differential operator would become a simple
variable. Thus, a linear differential equation for f would
become an algebraic equation for g,

D
(
∇, ∂

∂t

)
f(r, t) = h(r, t), (1.178)

→ D(ik,−iω)g(k, ω) = h̃(k, ω), (1.179)

in which D is a function with the same form as the dif-
ferential operator D, and h̃ is the Fourier transform of
h.

2. Second-order differential equations

First consider two variables x, y, and write ψxx =
∂2ψ/∂x2, ψxy = ∂2ψ/∂x∂y ... etc, then a second-order
linear differential equation has the general form,

aψxx + bψxy + cψyy + dψx + eψy + fψ = 0, (1.180)

in which the coefficients a, b, · · · are constants for now.
Define α = b2 − 4ac, then depending on the sign of α, a
differential equation can be one of three types:
1. α > 0: Hyperbolic type, such as the wave equation
(y → t),

∂2ψ

∂x2
− 1

v2
∂2ψ

∂t2
= 0, (1.181)

2. α = 0: Parabolic type, such as the diffusion equation
(y → t),

D
∂2ψ

∂x2
− ∂ψ

∂t
= 0, (1.182)

3. α < 0: Elliptic type, such as the Laplace equation.

∂2ψ

∂x2
+
∂2ψ

∂y2
= 0, (1.183)

They are named in such a way because, after Fourier
transform, the differential equation becomes,(

ak2x + bkxky + ck2y + · · ·
)
ψ̃ = 0. (1.184)

The quadratic form inside the parenthesis describes a
parabola, a hyperbola, or an ellipse on the kx−ky plane,
depending on the sign of α = b2 − 4ac.

If the coefficients a, b, c are functions of x, y, then de-
pending on the location, the same differential equation
can vary from one type to the other. Similar classifica-
tion can be generalized to linear second-order differential
equations with more than two variables (see wiki: partial
differential equation).

Ex 8: Solve the wave equation in 1D,

∂2ψ

∂x2
− 1

v2
∂2ψ

∂t2
= 0, (1.185)

with the initial condition (IC),

ψ(x, 0) = f(x),
∂ψ(x, 0)

∂t
= 0. (1.186)

Sol’n: Decompose ψ(x, t) as

ψ(x, t) =

∫ ∞

−∞

dk

2π
ψ̃(k, t)eikx, (1.187)

then ψ(x, 0) = f(x) =

∫ ∞

−∞

dk

2π
ψ̃(k, 0)eikx.(1.188)
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Fourier transform the wave equation with respect to x,
one then has

Fx

(
∂2ψ

∂x2
− 1

v2
∂2ψ

∂t2

)
= 0, (1.189)

→ k2ψ̃(k, t) +
1

v2
∂2ψ̃

∂t2
= 0. (1.190)

The solution is

ψ̃(k, t) = αeikvt + βe−ikvt. (1.191)

From the IC, one has

α = β =
1

2
ψ̃(k, 0), (1.192)

where

ψ̃(k, 0) =

∫ ∞

−∞
dxf(x)e−ikx. (1.193)

Thus,

ψ(x, t) =

∫ ∞

−∞

dk

2π

1

2
ψ̃(k, 0)

(
eikvt + e−ikvt

)
eikx

=
1

2

∫ ∞

−∞

dk

2π
ψ̃(k, 0)

[
eik(x+vt) + eik(x−vt)

]
=

1

2
f(x+ vt) +

1

2
f(x− vt). (1.194)

It is an equal superposition of a right-moving wave and a
left-moving wave because initially the wave has no “ve-
locity”, ∂ψ(x, 0)/∂t = 0.

Ex 9: Solve the diffusion equation in 1D,

a2
∂2ψ

∂x2
=
∂ψ

∂t
, (1.195)

with the IC ψ(x, 0) = f(x). There is no need to know
∂ψ(x, 0)/∂t because the diffusion equation is only first
order in time derivative.
Sol’n: Decompose ψ(x, t) as

ψ(x, t) =

∫ ∞

−∞

dk

2π
ψ̃(k, t)eikx. (1.196)

Fourier transform the diffusion equation with respect to
x, one then has

Fx

(
a2
∂2ψ

∂x2

)
= Fx

(
∂ψ

∂t

)
(1.197)

→ −a2k2ψ̃(k, t) =
∂ψ̃

∂t
. (1.198)

The solution is

ψ̃(k, t) = C(k)e−a2k2t. (1.199)

( , )x tψ

FIG. 10 The profile of diffusion as time evolves.

From the IC, one has

ψ̃(k, 0) =

∫ ∞

−∞
dxψ(x, 0)e−ikx, (1.200)

or C(k) =

∫ ∞

−∞
dxf(x)e−ikx. (1.201)

Finally,

ψ(x, t) =

∫ ∞

−∞

dk

2π
C(k)e−a2k2teikx. (1.202)

This can be calculated if an explicit form of f(x) is given.
For example, suppose

ψ(x, 0) = f(x) = δ(x), (1.203)

then C(k) = 1. It follows that

ψ(x, t) =

∫ ∞

−∞

dk

2π
e−a2k2teikx (1.204)

=
1

2a
√
2πt

e−
x2

4a2t =
1√
2π

1

∆(t)
e
− x2

∆2(t) ,

where ∆(t) ≡ 2a
√
t is the width of the Gaussian distribu-

tion. Initially, all particles are located at x = 0. As time
evolves, they diffuse to an extent ∆(t) ∝

√
t (Fig. 10). It

can be checked that the area below the Gaussian curves
(or the total number of particles) remains conserved,∫ ∞

−∞
dxψ(x, t) =

1√
2π

1

∆

∫ ∞

−∞
e−

x2

∆2 (1.205)

=
1√
2π

1

∆

√
2π∆ = 1. (1.206)

3. Method of Green function

Consider an inhomogeneous differential equation,

Df(r) = h(r), (1.207)
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in which D is a linear differential operator, and h(r) will
be referred to as a “source”. For example, the Poisson
equation in electrostatics is of this form,

∇2ϕ(r) = −ρ(r)
ε0

. (1.208)

The general source h(r) can be considered as a collection
of point sources at r′ with weight h(r′),

h(r) =

∫
dv′δ(r− r′)h(r′). (1.209)

Because D is a linear operator, we can first study the
effect of one point source,

DG(r, r′) = δ(r− r′), (1.210)

then superpose the results from these point sources to
obtain f(r),

f(r) = f0(r) +

∫
dv′G(r, r′)h(r′), (1.211)

where f0 is a solution of the homogeneous equation,
Df0 = 0. It can be checked that

Df(r) = Df0(r) +
∫
dv′DG(r, r′)h(r′) (1.212)

=

∫
dv′δ(r− r′)h(r′) (1.213)

= h(r). (1.214)

The solution G(r, r′) of a point source is called a Green
function, and this way of solving a differential equation
is called the method of Green function.
Ex 10: Find the Green function of thePoisson equation
in 3D,

∇2G(r, r′) = δ(r− r′). (1.215)

Sol’n: First, take the Fourier transform of the 3D Poisson
equation,

Fr

[
∇2G(r, r′)

]
= Fr [δ(r− r′)] . (1.216)

Suppose g(k, r′) is the Fourier transform of G(r, r′), then
we have

−k2g(k, r′) = e−ik·r′ , (1.217)

→ g(k, r′) = − 1

k2
e−ik·r′ . (1.218)

It follows that

G(r, r′) =

∫
d3k

(2π)3
g(k, r′)eik·r (1.219)

= −
∫

d3k

(2π)3
1

k2
eik·(r−r′) (1.220)

· · · = − 1

4π

1

|r− r′|
. (1.221)

Re k

Im k

Re k

Im k
(a) (b)

C
R

C
R

R R

FIG. 11 Two ways to shift the poles off the real axis.

In Eq. (1.208), h(r) can be identified as −ρ(r)/ε0.
Therefore, according to Eq. (1.211), the potential pro-
duced by ρ(r) would be

ϕ(r) =

∫
dv′

(
− 1

4π

1

|r− r′|

)(
−ρ(r

′)

ε0

)
(1.222)

=
1

4πε0

∫
dv′

ρ(r′)

|r− r′|
, (1.223)

which is a familiar result in electrostatics. There is no
need to add an f0 term since in a space without any
charge, Df0 = 0, the potential would be just a constant.
Ex 11: Find the Green function of the modified
Helmholtz equation in 3D,

(∇2 − k20)G(r, r′) = δ(r− r′). (1.224)

Sol’n: This is similar to the example above. First, take
the Fourier transform of both sides, then

−(k2 + k20)g(k, r
′) = e−ik·r′ , (1.225)

→ g(k, r′) = − 1

k2 + k20
e−ik·r′ . (1.226)

It follows that

G(r, r′) =

∫
d3k

(2π)3
g(k, r′)eik·r (1.227)

= −
∫

d3k

(2π)3
1

k2 + k20
eik·(r−r′) (1.228)

It is left as an exercise to calculate this integral and show
that

G(r, r′) = − 1

4π

e−k0|r−r′|

|r− r′|
. (1.229)

Ex 12: Find the Green function of theHelmholtz equa-
tion in 3D,

(∇2 + k20)G(r, r
′) = δ(r− r′). (1.230)

Sol’n: First, take the Fourier transform of both sides,
then

−(k2 − k20)g(k, r′) = e−ik·r′ , (1.231)

→ g(k, r′) = − 1

k2 − k20
e−ik·r′ . (1.232)
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TABLE I Green functions (see p. 554 in the 5th ed of Mathematical Methods for Physicists, by Arfken and Weber)

Laplace, ∇2 Helmholtz, ∇2 + k2
0 Modified Helmholtz, ∇2 − k2

0

1D No sol’n − i
2k
eik|x−x′| − 1

2k
e−k|x−x′|

2D 1
2π

ln |ρ− ρ′| − i
4
H

(1)
0 (k|ρ− ρ′|) − 1

2π
K0(k|ρ− ρ′|)

3D − 1
4π

1
|r−r′| − 1

4π
eik0|r−r′|

|r−r′| − 1
4π

e−k0|r−r′|

|r−r′|

It follows that

G(r, r′) =

∫
d3k

(2π)3
g(k, r′)eik·r (1.233)

= −
∫

d3k

(2π)3
1

k2 − k20
eik·(r−r′), |r− r′| ≡ R

= − 1

(2π)2iR

∫ ∞

0

kdk

k2 − k20

(
eikR − e−ikR

)
= − 1

(2π)2iR

∫ ∞

−∞

kdk

k2 − k20
eikR. (1.234)

There are two poles along the real axis, and there are
several ways to avoid them, which would give different
results. Some physics judgement is required to pick up a
valid answer.

For example, in Fig. 11(a), both poles are shifted up-
ward to ±k0+ iε. To evaluate the integral in Eq. (1.234),
consider an integral around a closed contour C,∫ ∞

−∞︸︷︷︸
≡I

+

∫
CR

=

∮
C

= 2πi
∑

Res. (1.235)

The integral over CR is zero as R→∞. Thus,

I =

∮
C

kdk

(k + k0)(k − k0)
eikR (1.236)

= 2πi

(
−k0
−2k0

e−ik0R +
k0
2k0

e+ik0R

)
(1.237)

= 2πi cos k0R. (1.238)

Hence,

G(r, r′) = − 1

2πR
cos k0R. (1.239)

On the other hand, if both poles are shifted downward to
±k0 − iε, then there is no pole inside C and the integral
is zero. Hence G(r, r′) = 0, which is clearly not a good
answer.

It is also possible to move the pole at −k0 downward
and the one at +k0 upward, k20 → k20 + iε, as shown in
Fig. 11(b). It follows that

I = 2πi

(
0 +

k0
2k0

e+ik0R

)
(1.240)

= πie+ik0R. (1.241)

This leads to

G(r, r′) = − 1

4πR
e+ik0R. (1.242)

On the other hand, if we move the pole at −k0 upward
and the one at +k0 downward, k20 → k20 − iε, then

I = 2πi

(
−k0
−2k0

e−ik0R + 0

)
(1.243)

= πie−ik0R. (1.244)

This leads to

G(r, r′) = − 1

4πR
e−ik0R. (1.245)

We now have three results from Eqs. (1.239), (1.242),
and (1.245). If you combine it with e−iωt, then
e±ik0Re−iωt/R = e±i(k0R∓ωt)/R represent outgoing and
incoming spherical waves, while the first solution in
Eq. (1.239) has both. The boundary condition of the
physics problem would tell you which one to keep. In
most cases, the spherical wave is propagating outward,
so we should pick the one in Eq. (1.242).
Note: If you do not move the poles away from the

real axis, but choose a contour C that walks around the
poles with a tiny semi-circle (again there are 4 ways to
do that), then you’ll get a result different from the ones
above. This is not a valid approach.
Finally, some more Green functions in lower dimen-

sions can be found in Table I.

G. Connection between Fourier series and Fourier integral

Finally, we comment on the connection between
Fourier series and Fourier integral. The former deals
with periodic functions, whereas the latter does not have
such a restriction. In physics, to avoid the divergence
of field-related quantities due to an infinite space, we
would sometimes contain a system in a box. The space
is expanded to be infinite only at the end of a calcula-
tion. This is called box normalization. If the peri-
odic boundary condition (PBC) is imposed, then any
physical quantity that is originally non-periodic in space
would become periodic. Thus, Fourier series and Fourier
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h(k)

k∆ k

FIG. 12 A function h(k) with discrete variables kn.

integral should be closely related when L → ∞, as we’ll
show.

Let’s consider a 1D box with PBC. A wave eikx inside
has to satisfy the PBC,

eik(x+L) = eikx. (1.246)

As a result, the wave vectors are discrete,

eikL = 1, or kn =
2π

L
n, n ∈ Z. (1.247)

This wave can be, e.g., an EM wave (in the study of
blackbody radiation), or an electron wave (in the study
of electron gas) etc. We can superpose these waves with
different kn’s to build a general waveform,

f(x) =
1

L

∑
kn

g(kn)e
iknx. (1.248)

Obviously this satisfies f(x + L) = f(x). With the or-
thogonality relation,∫ L/2

−L/2

dxe−iknxeikmx = Lδnm, (1.249)

we can get the coefficients of expansion,

g(kn) =

∫ L/2

−L/2

dxf(x)e−iknx. (1.250)

Now, to discuss a wave in an infinite space, we need to
let L→∞. It follows that ∆kn = 2π/L→ 0. That is kn
approaches a continuous variable k, and g(kn) approaches
a continuous function g(k). In a graph (see Fig. 12), the
summation

A =
∑
kn

∆k h(kn), ∆kn =
L

2π
. (1.251)

represents the sum of the areas of rectangles with width
∆k and height h(kn). When ∆k is very small, this area
approaches the area below the curve h(k),∑

kn

∆k h(kn)
L≫1−−−→

∫
dkh(k). (1.252)

Alternatively, one can write∑
kn

h(kn) =
1

∆k

∑
kn

∆kh(kn) (1.253)

L≫1−−−→ L

2π

∫
dkh(k). (1.254)

Thus,

f(x) =
1

L

∑
kn

g(kn)e
iknx, (1.255)

L≫1−−−→ f(x) =

∫ ∞

−∞

dk

2π
g(k)eikx. (1.256)

Also,

g(kn) =

∫ L/2

−L/2

dxf(x)e−iknx, (1.257)

L≫1−−−→ g(k) =

∫ ∞

−∞
dxf(x)e−ikx (1.258)

Furthermore, there are two versions of the orthogo-
nality relation: one discrete, the other continuous. To
connect these two, we need to connect in some way Kro-
necker delta function with Dirac delta function. This can
be done as follows: To discretize a continuous variable k,
we can chop it to pieces, each with size ∆k, so that

δnm ≃ δ

(
k

∆k
− k′

∆k

)
(1.259)

= ∆kδ(k − k′) (1.260)

=
2π

L
δ(k − k′). (1.261)

As a result, the discrete version in Eq. (1.249),∫ ∞

−∞
dxei(k−k′)x = 2πδ(k − k′),(1.262)

L≫1−−−→
∫ L/2

−L/2

dxe−iknxeikmx = Lδnm. (1.263)

1. Higher dimensions

The correspondence above can be generalized to (two
or) three dimensions. The space is a cubic box with
length L. Because of the PBC, the wave vectors are
discrete,

k =
2π

L
nx̂+

2π

L
lŷ +

2π

L
lẑ, n,m, l ∈ Z

and ∆3k =

(
2π

L

)3

=
(2π)3

V
. (1.264)

In the discrete version,

f(r) =
1

V

∑
k

g(k)eik·r. (1.265)
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With the correspondence,∑
k

h(k)←→
∫

d3k

∆3k
h(k) = V

∫
d3k

(2π)3
h(k), (1.266)

one has

f(r) =

∫
d3k

(2π)3
g(k)eik·r. (1.267)

To convert between two orthogonality relations, one
can use,

δk,k′ ←→ δ3
(

k

∆k
− k′

∆k

)
(1.268)

= ∆3k δ3(k− k′). (1.269)

Note that the k’s on the LHS (RHS) of the equation
are discrete (continuous). The orthogonality relation for
discrete variables is∫

box

dve−ik′·reik·r = V δk,k′ . (1.270)

When L→∞, it becomes∫
whole

dve−ik′·reik·r = (2π)3δ(k− k′). (1.271)

Finally, the inverse transforms for discrete k and contin-
uous k have the same form,

g(k) =

∫
box

dvf(r)e−ik·r, (1.272)

and g(k) =

∫
whole

dvf(r)e−ik·r. (1.273)

H. Poisson summation formula

Suppose f(x) is a localized function. That is, it decays
exponentially when |x| ≫ 1. Its Fourier transform and
inverse Fourier transform are

f(x) =

∫ ∞

−∞

dk

2π
f̃(k)eikx, (1.274)

f̃(k) =

∫ ∞

−∞
dxf(x)e−ikx. (1.275)

Consider the following lattice sum of f(x),

F (x) =

∞∑
n=−∞

f(x+ na). (1.276)

Since F (x) is a periodic function, F (x + a) = F (x), it
can be expanded as a Fourier series,

F (x) =

∞∑
n=−∞

Fne
2πin/ax. (1.277)

The coefficients of expansion,

Fn =
1

a

∫ a

0

dxF (x)e−2πin/ax (1.278)

=
1

a

∞∑
m=−∞

∫ a

0

dxf(x+ma)e−2πin/ax (1.279)

=
1

a

∞∑
m=−∞

∫ (m+1)a

ma

dxf(x)e−2πin/ax e2πinm︸ ︷︷ ︸
=1

=
1

a

∫ ∞

−∞
dxf(x)e−2πin/ax (1.280)

=
1

a
f̃(kn), kn ≡

2π

a
n (1.281)

where f̃ is given in Eq. (1.275). Substitute this result to
the Fn in Eq. (1.277), then the lattice sum

∞∑
n=−∞

f(x+ na) =
1

a

∞∑
n=−∞

f̃(kn)e
2πin/ax. (1.282)

This is the Poisson summation formula, which relates
the lattice sum of f(x) to the lattice sum of f̃(kn).
Recall that if f(x) is a broad distribution, then f̃(k)

is sharp, and vice versa. So if f(x) is broad, then the
lattice sum of f̃(kn) would converge quickly, or the other
way around. As an extreme case, take f(x) = δ(x), then
f̃(k) = 1, and

∞∑
n=−∞

δ(x+ na) =
1

a

∞∑
n=−∞

e2πin/ax. (1.283)

Such a summation appears in the theory of crystal
diffraction (see Chap 2 of Kittel): The coherent super-
position of diffracted waves on the RHS gives rise to the
diffraction peaks on the LHS.
Let’s consider two special cases:
1) Take x = 0, then one has

∞∑
n=−∞

f(na) =
1

a

∞∑
m=−∞

f̃(kn). (1.284)

Suppose f(x) ∈ R, then f(−k) = f∗(k). Decompose the
summation on the RHS, such that

∞∑
n=−∞

f̃(kn) = f̃(0) +

∞∑
n=1

f̃(kn) +

∞∑
n=1

f̃(−kn)

= f̃(0) + 2Re

∞∑
n=1

f̃(kn) (1.285)

It follows that

a

∞∑
n=−∞

f(na) =

∫ ∞

−∞
dxf(x)︸ ︷︷ ︸

=f̃(0)

+2Re

∞∑
n=1

f̃(kn). (1.286)
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When a → 0, the LHS should approach the integral on
the RHS, since both are the area bounded between the
curve f(x) and the x-axis (see Fig. 12). That is, the
summation over f̃(kn) (→ 0 since kn = 2πn/a ≫ 1) on
the RHS should approach zero (see Modern Condensed
Matter Physics, by Girvin and Yang). For a finite a, one
can use this formula to evaluate a summation with an
integral, plus a controllable correction.

2) Take x = a/2, then one has

∞∑
n=−∞

f
(
na+

a

2

)
=

1

a

∞∑
m=−∞

f̃(kn)e
πin. (1.287)

Suppose f(−x) = f(x), then the LHS

∞∑
n=−∞

f
(
na+

a

2

)
(1.288)

= f
(a
2

)
+

∞∑
n=1

f
(
na+

a

2

)
+

∞∑
n=1

f
(
−na+ a

2

)
= 2

∞∑
n=0

f
(
na+

a

2

)
. (1.289)

On the RHS, one has

∞∑
n=−∞

f̃(kn)e
πin (1.290)

= f̃(0) +

∞∑
n=1

(−1)nf̃(kn) +
∞∑

n=1

(−1)nf̃(−kn)

= f̃(0) + 2Re

∞∑
n=1

(−1)nf̃(kn). (1.291)

Combining these two equations, one then has

a

∞∑
n=0

f
(
na+

a

2

)
(1.292)

=
f̃(0)

2
+ Re

∞∑
n=1

(−1)nf̃(kn) Cf. Eq. 1.286

=

∫ ∞

0

dxf(x) + 2

∞∑
n=1

(−1)n
∫ ∞

0

dxf(x) cos
2πn

a
x.

This has been used in the theory of de Haas-van Alphen
effect, in which one has to sum over Landau-level energies
(see Principles of the Theory of Solids, by Ziman).

1. Casimir effect

The ground state energy of a simple harmonic oscil-
lator is ℏω/2, which is the zero-point energy. The
oscillating mass cannot have both x = 0 and p = 0 since
this would violate the uncertainty principle. Similar zero-
point energies exist in the oscillation of electromagnetic

field. An EM wave has the energy dispersion ωk = ck,
and the zero-point energy for k-mode is ℏωk/2. Since the
number of oscillation modes is infinite, total zero-point
energy diverges,

E0 = 2
∑
k

1

2
ℏωk →∞. (1.293)

The factor 2 comes from two polarizations for each k-
mode.

In the presence of two parallel, infinite metal plates,
the modes of oscillations would be altered. As a re-
sult, the zero-point energy between the plates would be
slightly different. This results in an interaction between
two metal plates (the Casimir effect). We now cal-
culate this Casimir force with the help of the Poisson
summation formula (Lin, College Physics, 27, 9 (2008)).

Suppose the two plates are separated with a distance
a. The modes within the plates have the wavevectors

k =
(
kx, ky,

nπ

a

)
, kx, ky ∈ R, n = 0, 1, 2 · · · . (1.294)

Without the plates, kz would be continuous. This is the
source of the energy difference between these two setups.

First, without the plates, total zero-point energy

E0 =
∑
k

ℏωk, ωk = ck (1.295)

= ℏcV
∫

d3k

(2π)3
k (1.296)

=
ℏcV
(2π)3

∫
d2k∥dkz

√
k2∥ + k2z , kz →

π

a
x (1.297)

=
ℏcV
(2π)2

∫ ∞

0

k∥dk∥

∫ ∞

−∞

π

a
dx

√
k2∥ +

(π
a
x
)2

.(1.298)

On the other hand, with the plates,

E′
0 =

∑
k∥

∑
kz

ℏωk, kz =
π

a
n (1.299)

= ℏcS
∫

d2k∥

(2π)2

∑
kz

√
k2∥ + k2z , V = Sa (1.300)

=
ℏcS
2π

∫ ∞

0

k∥dk∥

[
1

2
k∥ +

∞∑
n=1

√
k2∥ +

(π
a
n
)2

]
.(1.301)

The n = 0 mode is taken out of the summation and is
divided by 2 because this mode has only one polarization
(parallel to the plate).

Both Eqs. (1.298) and (1.301) have similar integrands.
Define

f(x) =

∫ ∞

0

kdk

√
k2 +

(π
a
x
)2

, (1.302)
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where k∥ is simply written as k. then

E0 =
ℏcS
4π

∫ ∞

−∞
dxf(x), (1.303)

E′
0 =

ℏcS
2π

[
f(0)

2
+

∞∑
n=1

f(n)

]
. (1.304)

From Eq. (1.286), one has

f(0) + 2

∞∑
n=1

f(n) = 2

∫ ∞

0

dxf(x) + 2Re

∞∑
n=1

f̃(kn).

(1.305)
It follows that (∆E ≡ E′

0 − E0)

∆E

S
=

ℏc
2π

[
f(0)

2
+

∞∑
n=1

f(n)−
∫ ∞

0

dxf(x)

]
(1.306)

=
ℏc
2π

Re

∞∑
n=1

f̃(kn) (1.307)

=
ℏc
2π

∞∑
n=1

∫ ∞

0

kdk

∫ ∞

−∞
dx

√
k2 +

(π
a
x
)2

cos(2πnx).

The force per unit area between plates is given by the

gradient of energy, F = d∆E/S
da , hence

F =
ℏc
2π

∞∑
n=1

∫ ∞

0

kdk

∫ ∞

−∞
dx

−π2

a3 x
2√

k2 +
(
π
ax

)2 cos(2πnx)

= −ℏc
π2

∞∑
n=1

∫ ∞

0

kdk

∫ ∞

0

du
u2√

k2 + u2
cos(2nau)︸ ︷︷ ︸

≡I

,

in which u ≡ π
ax. We can write

cos(2nau) = − 1

(2nu)2
d2

da2
cos(2nau), (1.308)

then the integral

I = − 1

(2n)2
d2

da2

∫ ∞

0

du
cos(2nau)√
k2 + u2︸ ︷︷ ︸

=K0(2nak)

, (1.309)

The following identify has been used to get the Hankel
function (see e.g., the 5th ed. of Mathematical Methods
for Physicists, by Arfken and Weber),

K0(x) =

∫ ∞

0

dv
cosxv√
1 + v2

. (1.310)

It follows that

F =
ℏc
4π2

∞∑
n=1

1

n2

∫ ∞

0

kdk
d2

da2
K0(2nak). (1.311)

From the identity∫ ∞

0

dxxK0(αx) =
1

α2
, (1.312)

we finally have

F (a) =
ℏc
4π2

∞∑
n=1

1

n2
d2

da2
1

4n2a2
(1.313)

=
6ℏc
16π2

1

a4

∞∑
n=1

1

n4︸ ︷︷ ︸
=π4/90

(1.314)

=
π2

240

ℏc
a4
≃ 0.01

( a
µm )4

dyn

cm2
. (1.315)

This is an attractive force. For a experimental demon-
stration, see Lamoreaux, Phys. Rev. Lett. 78, 5 (1997).
The Casimir force is not necessarily attractive, however.
It can be repulsive, for example, if one of the plate is
replaced by a dielectric.
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