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I. COMPLEX ANALYSIS

In classical physics, complex variables are sometimes
used to represent real variables. For example, cosωt =
Re eiωt. It could simplify a calculation since the multi-
plication of two sinusoidal functions is not as easy as the
multiplication of two exponentials. In quantum physics,
complex variable is indispensable since the imaginary
number i is explicit in the Schrödinger equation. Due
to its importance, we will learn about the basics of com-
plex analysis in this note.

A. Complex function

A complex variable z consists of a real part and an
imaginary part,

z = x+ iy, i ≡
√
−1. (1.1)

It can also be written in the polar form,

z = r cos θ + i sin θ = reiθ, (1.2)
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FIG. 1 Coordinates of the complex plane.

in which r and θ are the polar coordinates (Fig. 1), and

r =
√
x2 + y2, tan θ =

y

x
. (1.3)

The angle θ is called the argument of z.
The complex conjugate of z is defined as

z∗ ≡ x− iy. (1.4)

The norm (or modulus) of z is written as

|z| =
√
z∗z (1.5)

=
√

x2 + y2 = r. (1.6)

A complex-valued function of z consists of a real part
and an imaginary part,

f(z) = u(x, y) + iv(x, y). (1.7)

For example,

f(z) = z2 (1.8)

= x2 − y2 + i2xy. (1.9)

Suppose z = rei(θ̄+2πn) (n ∈ Z), in which θ̄ ∈ [0, 2π),
then

f(z) = z1/2 (1.10)

= r1/2eiθ̄/2eiπn. (1.11)

There are two possible outcomes, depending on whether
n is an even integer or an odd integer. We can take the
so-called principle value of z by restricting its argument
to the interval [0, 2π) (or (−π, π]). In what follows, the
square root of the principle value of z will be written as√
z, instead of z1/2.
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FIG. 2 (a) Circle around the origin two times. (b) The Rie-
mann surface of the square-root function.

Given z = reiθ̄, θ̄ ∈ [0, 2π), one has

√
z2 =

√
r2e2iθ̄+i2πn, n = 0,−1 (1.12)

= +reiθ̄ if θ̄ ∈ [0, π) (1.13)

−reiθ̄ if θ̄ ∈ [π, 2π). (1.14)

That is, depending on the argument of z,

√
z2 = ±z. (1.15)

In general, if f(z) = n
√
z, where n is a positive integer,

then f(z) is n-valued.
The second example is the logarithmic function,

f(z) = ln z = ln[rei(θ̄+2πn)], θ̄ ∈ [0, 2π) (1.16)

= ln r + iθ̄ + 2πni. (1.17)

This is a function with infinite possible values depending
on the integer n. If z is restricted to its principle value
with n = 0, then we write the logarithmic function as
Ln z, instead of ln z.
Given a complex number z = eiθ̄,

Ln z2 = Ln e2iθ̄ = 2iθ̄, if θ̄ ∈ [0, π). (1.18)

This is not equal to 2Ln z = 2iθ̄ if θ̄ is within [π, 2π). In
general, given a real number α,

Ln zα = αLn z + 2πni, n ∈ Z. (1.19)

It is possible to have the square root function single-
valued by extending its domain. Suppose one starts from
a point x on the positive x-axis (θ = 0), moves along a
circular path and comes back to x, then z1/2 acquires
a negative sign when θ = 2π. To prevent the double-
valuedness, let z1/2 be defined on the second sheet of
complex plane when θ ∈ [2π, 4π) (Fig. 2). The signs of
z1/2 for θ = θ̄ + 2πn (θ̄ ∈ [0, 2π)) depend on the integer
n being odd or even. Thus, only two sheets of complex
plane are needed.

On the other hand, to retain the single-valuedness of
the logarithmic function, an infinite number of sheets,
each corresponding to an integer n, are required. These
sheets of complex planes connected along some line (here
the positive x-axis) are called Riemann surfaces.

B. Differentiable complex function

Recall that a real function f(x) is differentiable at x
if its right derivative equals its left derivative,

lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

f(x)− f(x− h)

h
. (1.20)

Then one has a well defined derivative df
dx .

Now, a complex function f(z) is differentiable if

df

dz
≡ lim

δz→0

f(z + δz)− f(z)

δz
is independent of δz.

(1.21)
Given the increment δz = δx + iδy, the change of the
function

δf = δu+ iδv, (1.22)

hence

δf

δz
=

δu+ iδv

δx+ iδy
. (1.23)

Consider two special directions of taking the limit: The
first is δz = δx, then

lim
δz→0

δf

δz
= lim

δx→0

(
δu

δx
+ i

δv

δx

)
=

∂u

∂x
+ i

∂v

∂x
. (1.24)

The second is δz = iδy, then

lim
δz→0

δf

δz
= lim

δy→0

(
−i δu

δy
+

δv

δy

)
= −i∂u

∂y
+

∂v

∂y
. (1.25)

If f is differentiable at z = x+ iy, then these two limits
should be same. It follows that,

∂u

∂x
=

∂v

∂y
, (1.26)

∂u

∂y
= −∂v

∂x
. (1.27)

This is called the Cauchy-Riemann condition.
Conversely, if u, v satisfies the Cauchy-Riemann (CR)

condition, then f = u + iv is differentiable. That is,
the CR condition is a necessary and sufficient condition
of differentiability. This sufficient condition is proved as
follows: Upon the shift z → z + dz,

f(z) → f(z + dz), (1.28)

or f(x, y) → f(x+ dx, y + dy). (1.29)

Thus,

df =
∂f

∂x
dx+

∂f

∂y
dy (1.30)

=

(
∂u

∂x
+ i

∂v

∂x

)
dx+

(
∂u

∂y
+ i

∂v

∂y

)
︸ ︷︷ ︸

=− ∂v
∂x+i ∂u

∂x

dy (1.31)

=

(
∂u

∂x
+ i

∂v

∂x

)
(dx+ idy), (1.32)
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FIG. 3 (a) A u-cruve and a v-curve are tangent to each other.
(b) The map of z → f(z) = z2.

in which the CR condition has been used. It follows that,

df

dz
=

∂u

∂x
+ i

∂v

∂x
=

∂f

∂x
, (1.33)

which is independent of the direction of dz. Thus the CR
condition implies differentiability.

If f(z) is differentiable and single-valued in a region M ,
then we say that f(z) is analytic in M . Note that z∗ is
not analytic since

z∗ = x− iy (u = x, v = −y), (1.34)

and the CR condition is not satisfied,

∂u

∂x
= 1 ̸= ∂v

∂y
= −1. (1.35)

Apparently, Re z or |z|2 is not differentiable either.
One can write dx and dy in terms of dz and dz∗,

dx =
1

2
(dz + dz∗), (1.36)

dy =
1

2i
(dz − dz∗), (1.37)

so that

df =
∂f

∂x
dx+

∂f

∂y
dy (1.38)

=
1

2

(
∂f

∂x
− i

∂f

∂y

)
dz +

1

2

(
∂f

∂x
+ i

∂f

∂y

)
dz∗.(1.39)

We can define

∂f

∂z
=

1

2

(
∂f

∂x
− i

∂f

∂y

)
, (1.40)

∂f

∂z∗
=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
, (1.41)

so that

df =
∂f

∂z
dz +

∂f

∂z∗
dz∗. (1.42)

Note that

∂f

∂z∗
=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
(1.43)

=
1

2

(
∂u

∂x
− ∂v

∂y

)
+

i

2

(
∂u

∂y
+

∂v

∂x

)
, (1.44)

which is zero if u, v satisfy the CR condition. That is,
the CR condition can simply be written as ∂f/∂z∗ = 0.
This is not satisfied by the examples (z∗, Rez, |z|2) given
above, thus they are not differentiable.
It follows that if f is differentiable, then

df =
∂f

∂z
dz, (1.45)

and there is no need to distinguish between df/dz and
∂f/∂z. Also, from Eq. (1.40), one has

∂f

∂z
=

1

2

(
∂u

∂x
+

∂v

∂y

)
+

i

2

(
∂v

∂x
− ∂u

∂y

)
(1.46)

=
∂u

∂x
+ i

∂v

∂x
=

∂f

∂x
, (1.47)

which is consistent with Eq. (1.33).

1. Properties of differentiable function

First, by combining the two equations in the CR con-
dition, it’s not difficult to see that

∂2u

∂x2
+

∂2u

∂y2
= 0, (1.48)

∂2v

∂x2
+

∂2v

∂y2
= 0. (1.49)

That is, both the real part and the imaginary part of
an analytic function satisfy the 2D Laplace equation.
They are called harmonic functions.
Second, the curves depicted by

u(x, y) = c1, (1.50)

and v(x, y) = c2 (c1, c2 are constants) (1.51)

are orthogonal to each other. This is proved as follows:
First, you need to know that the gradient ∇u is perpen-
dicular to the tangent of the curve u = c1. This is so
because the change of u(r) along dr,

du = ∇u · dr. (1.52)

When dr is along the curve of constant c1, the change
du = 0. Hence ∇u ⊥ dr.
Similarly, ∇v is perpendicular to v = c2. Now, if u, v

satisfy the CR condition, then their inner product

∇u · ∇v =
∂u

∂x

∂v

∂x
+

∂u

∂y

∂v

∂y
(1.53)

=
∂u

∂x

(
−∂u

∂y

)
+

∂u

∂y

∂u

∂x
= 0. (1.54)

This shows that ∇u ⊥ ∇v. Therefore, at an intersection
point of two u, v curves, their tangent vectors must be
perpendicular to each other, as shown in Fig. 3.



4

(a) (b)

FIG. 4 (a) A simply-connected region. (b) A multiply-
connected region.

Such a property of the u, v curves fit perfectly with the
field lines in electrostatics. In a charge-free region M , the
electric potential satisfies the Laplace equation ∇2ϕ = 0.
In two dimension, the equation ϕ(x, y) = c draws out
an equipotential line. We know that the electric lines
are perpendicular to the equipotential lines. Therefore,
the mesh of constant u, v lines can be identified with the
mesh of equipotential lines and field lines.

Third, a function being analytic is a very strong prop-
erty. Later we will show that if df/dz exists, then
dnf/dzn exists for all n ∈ Z+. This is obviously not
true for real functions. Furthermore, if f(z) is analytic
around a point z0 in a region M , then it can always be
expanded with respect to z0 as a Taylor series in that
region. In fact, the original meaning of the term ana-
lytic function refers to a function that can be expanded
by a Taylor series. Again this is not always true for real
functions. But for a complex function, being differen-
tiable (and single-valued) is enough to guarantee that it
has a Taylor series expansion. That is, it is analytic (see
Sec. I.E.1).

2. Derivative rules

The rules for the derivative of complex functions are
similar to those for real functions. For example,

d

dz
zn = nzn−1, (1.55)

d

dz
sin z = cos z, (1.56)

d

dz
cos z = − sin z, (1.57)

d

dz
ez = ez, (1.58)

d

dz
ln z =

1

z
, (1.59)

d

dz
f(g(z)) =

df

dg

dg

dz
, (1.60)

d

dz
f(z)g(z) =

df

dz
g + f

dg

dz
. (1.61)

These can be checked with the use of real variables. For
example, since ln z is an analytic function (in one sheet

of the Riemann surface), one has

d

dz
ln z =

∂

∂x
ln z (1.62)

=
∂ ln r

∂x
+ i

∂θ

∂x
(1.63)

=
x

r2
− i

y

r2
=

1

z
. (1.64)

C. Cauchy’s integral theorem

The integral of a complex function can be carried out
with the help of real variables. For example, integrate
f(z) from point 1 to point 2 over a path on the complex
plane,∫ 2

1

f(z)dz =

∫ 2

1

(u+ iv)(dx+ idy) (1.65)

=

∫ 2

1

(udx− vdy) + i

∫ 2

1

(vdx+ udy).

The real part and the imaginary are just the usual inte-
grals of real functions.
A region M on the complex plane can be simply con-

nected or multiply connected. It is simply connected
if any closed loop C in M can be continuously shrunk
to a point. If not, then M is multiply connected (see
Fig. 4).
Theo: Cauchy’s integral theorem (in a simply connected
region)
If f(z) is analytic in a simply connected region M , then

for any closed curve C in M ,∮
C

f(z)dz = 0. (1.66)

Note that by convention, a path of integration is always
counter-clockwise.
Pf: Recall the Stokes theorem,∫

S

∇×V · da =

∮
C

V · dr, (1.67)

in which C is the boundary of an area S. In two dimen-
sion, V = Vxx̂ + Vyŷ, and the theorem can be written
as, ∫

S

(
∂Vy

∂x
− ∂Vx

∂y

)
dxdy =

∮
C

(Vxdx+ Vydy). (1.68)

Applying this to the loop integral above, one then has∮
C

f(z)dz =

∮
C

(udx− vdy) + i

∮
C

(vdx+ udy) (1.69)

= −
∫
S

(
∂v

∂x
+

∂u

∂y

)
dxdy + i

∫
S

(
∂u

∂x
− ∂v

∂y

)
dxdy

= 0. (1.70)
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FIG. 5 Closed curves in (a) simply connected region and (b)
multiply-connected region.

These two integrands are both zero because of the CR
condition. QED.

The reverse statement of this theorem is also true: In
a simply connected region M , if∮

C

f(z)dz = 0 for any C ∈M, (1.71)

then f(z) is analytic in M . For a proof, see p. 489 of
Arfken.
Ex: Consider f(z) = zn, (n ∈ Z), which is analytic for
n ≥ 0. If n < 0, then it is not analytic at the origin.
Choose C to be a circle with radius r centered at the
origin, then along the circle z = reiθ, and dz = idθreiθ.
Hence ∮

C

zndz = irn+1

∫ 2π

0

ei(n+1)θdθ (1.72)

=

{
0 if n ̸= −1,

2πi if n = −1. (1.73)

This result is consistent with Cauchy’s integral theorem
when zn is analytic (n ≥ 0). When it is not analytic,
the integrals are still mostly zero (for n ≤ −2). The only
exception is when n = −1,∮

C

1

z
dz = 2πi. (1.74)

The function zn (n ≤ −1) is not analytic at z = 0.
So there is a “hole” in the region where the function is
analytic. As a result, a closed loop circling the origin
cannot be continuously shrunk to a point. That is, the
function zn (n ≤ −1) is analytic in a multiply-connected
region. For this type of functions, we have the following
integral theorem.
Theo: Cauchy’s integral theorem (in a multiply con-
nected region)

Suppose a loop C1 surrounding a non-analytic region
can be continuously deformed to another loop C2 without
crossing that region, then∮

C1

f(z)dz =

∮
C2

f(z)dz. (1.75)

Pf: One can connect the two loops to build a closed path
C = C1+ ← +(−C2)+ → (see Fig. 5(b)). Since C can

be continuously shrunk to a point without crossing the
non-analytic region, one has∮

C

f(z)dz = 0, (1.76)

However, since∮
C

=

∫
C1

+

∫
←

+

∫
−C2

+

∫
→

(1.77)

=

∮
C1

−
∮
C2

, (1.78)

in which
∫
← and

∫
→ cancel with each other. Therefore,∮

C1

f(z)dz =

∮
C2

f(z)dz. QED. (1.79)

Based on Cauchy’s integral theorem, Eq. (1.73) can be
generalized as follows: For any closed curve C surround-
ing point z0,∮

C

(z − z0)
ndz =

{
0 if n ̸= −1,

2πi if n = −1. (1.80)

This is valid since a closed curve surrounding z0 can be
continuously deformed to a circle surrounding z0.

D. Cauchy integral formula

Theo: Suppose f(z) is analytic along a closed loop C
and inside, then

1

2πi

∮
C

f(z)

z − z0
dz =

{
f(z0) if z0 is inside C,

0 if z0 is outside C.
(1.81)

Pf: The point z0 is the only singularity of the integrand
f(z)/(z−z0). If z0 is outside C, then the integrand is an-
alytic everywhere inside C. Thus, according to Cauchy’s
integral theorem, the integral is zero.
If z0 is inside C, then we can deform C to a small

circle Cr surrounding z0 without changing the value of
the integral. Along the circle Cr,

z = z0 + reiθ (r ≪ 1), dz = irdθeiθ. (1.82)

Thus, ∮
Cr

f(z)

z − z0
dz =

∫ 2π

0

f(z0 + reiθ)

reiθ
ireiθdθ (1.83)

(r → 0) = if(z0)

∫ 2π

0

dθ (1.84)

= 2πif(z0). QED. (1.85)

Ex 1: Evaluate

I =

∮
C

dz

z(z + 2)
, (1.86)
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where C is a unit circle centered at the origin.
Sol’n

I =

∮
C

1/(z + 2)

z − 0
dz (1.87)

= 2πi× 1

2
= πi. (1.88)

Ex 2: Evaluate

I =

∮
C

dz

4z2 − 1
, (1.89)

where C is a unit circle centered the origin.
Sol’n

I =
1

4

(∮
C

dz

z − 1/2
−
∮
C

dz

z + 1/2

)
(1.90)

=
1

4
(2πi− 2πi) = 0. (1.91)

1. Derivatives of f(z)

Suppose f(z) is analytic along a closed loop C and
inside. According to Cauchy’s integral formula, if the
value of f(z) along C is known, then its value at any z0
inside C is known,

f(z0) =
1

2πi

∮
C

f(z)

z − z0
dz. (1.92)

It follows that

f ′(z0) =
1

2πi

∮
C

f(z)

(z − z0)2
dz, (1.93)

f ′′(z0) =
2

2πi

∮
C

f(z)

(z − z0)3
dz, (1.94)

...

f (n)(z0) =
n!

2πi

∮
C

f(z)

(z − z0)n+1
dz. (1.95)

Since there is no singularity along the path of integra-
tion, all of these derivatives exist. That is, if f(z0) is
differentiable, then it is differentiable to all orders of the
derivatives.
Ex 3: Evaluate

I =

∮
C

sin2 z

(z − a)4
dz, (1.96)

where C encircles the point a.
Sol’n First,

I0 =

∮
C

sin2 z

z − a
dz = 2πi sin2 a. (1.97)

Thus,

I =
1

3!

d3

da3
I0 = −8πi

3
sin a cos a. (1.98)

FIG. 6 A circle C in a simply-connected region.

2. Application

Lemma: Suppose f(z) =
∑

n=0 anz
n, |f(z)| ≤ M

along a circle C with radius r around the origin, then

|an| ≤
M

rn
, for n = 0, 1, 2, · · · (1.99)

Pf: Differentiate both sides of the equation to get

an =
f (n)(0)

n!
. (1.100)

Because of Eq. (1.95), one has

|an| =
1

2π

∣∣∣∣∮
C

f(z)

zn+1
dz

∣∣∣∣ (1.101)

≤ 1

2π

∮
C

∣∣∣∣ f(z)zn+1

∣∣∣∣ |dz| (1.102)

≤ 1

2π

M

rn+1
2πr (1.103)

=
M

rn
. QED. (1.104)

This property leads to Liouville theorem: If f(z) is
analytic and bounded over the entire complex plane, then
f(z) must be a constant.
Pf: In next section, we will know that if f(z) is analytic,
then it can be expanded as a Taylor series. Furthermore,
if f(z) is bounded over the complex plane, then |f(z)| ≤
M, ∀z. With the lemma above, let r ≫ 1, then

|an| ≤
M

rn
→ 0, ∀ n > 0. (1.105)

Therefore, f(z) = a0. QED.
Conversely, any slight deviation of a bounded analytic

f(z) from constant implies that it has at least one singu-
larity somewhere.
From Liouville theorem, one can prove the fundamen-

tal theorem of algebra:A polynomial with degree n
must have n roots. See p. 490 of Arfken if you’re inter-
ested in the proof.
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E. Series expansion

In this section, we will learn about Taylor series and
Laurent series.

1. Taylor series

We’d like to expand an analytic function f(z) with
respect to z = z0. Suppose z = z1 is the nearest singular
point of f(z), then inside a circle Cr centered at z0 with
radius r = |z1− z0|, f(z) is analytic. It can be expanded
as

f(z) =

∞∑
n=0

f (n)(z0)

n!
(z − z0)

n, (1.106)

where f (n)(z0) =
n!

2πi

∮
C

f(z)

(z − z0)n+1
dz. (1.107)

This is a Taylor series expansion of f(z) with respect
to z0.
Pf: Consider a circle C within the analytic region
bounded by Cr (Fig. 6). That is, the radius of C <
|z1 − z0|. Now,

f(z) =
1

2πi

∮
C

f(z′)

z′ − z
dz′ (1.108)

=
1

2πi

∮
C

f(z′)

(z′ − z0)
(
1− z−z0

z′−z0

)dz′ (1.109)
For a point z inside C, |z − z0|/|z′ − z0| < 1 since z is
closer to z0 compared to a point z′ located on C.

It is known from the binomial expansion that if
|w| < 1, then

1

1− w
= 1 + w + w2 + · · · . (1.110)

Therefore,

f(z) =
1

2πi

∮
C

dz
f(z′)

z′ − z0

∞∑
n=0

(
z − z0
z′ − z0

)n

(1.111)

=

∞∑
n=0

f (n)(z0)

n!
(z − z0)

n. QED. (1.112)

Finally, because of Cauchy’s integral theorem, the circle
C of integration can be continuously deformed to any
other closed loop, as long as it does not cross some sin-
gular point during the process.

2. Laurent series

We’d like to expand an analytic function f(z) with
respect to z = z0. Suppose there are two singular points
z1, z2 nearby, then inside an annular region M bounded

(a) (b)
C

x xz1 z2

FIG. 7 (a) A loop C in a multiply-connected region. (b) The
loop C is continuously deformed to another loop C′ in the
annular region without crossing itself and any singular point.

by two circles, Cr and CR, f(z) is analytic (see Fig. 7).
Given a point z ∈M , f(z) can be expanded as

f(z) =

∞∑
n=−∞

an(z − z0)
n, (1.113)

where an =
1

2πi

∮
C

f(z)

(z − z0)n+1
dz, C ∈M.

This is a Laurent series expansion of f(z) with respect
to z0. Note that it is similar to the Taylor expansion,
except that now the power n can be negative.
Pf: In Fig. 7, the inner and outer radii of the annular
region M are r = |z1 − z0|+ and R = |z2 − z0|−. For a
point z in M ,

f(z) =
1

2πi

∮
C

f(z′)

z′ − z
dz′, C ∈M. (1.114)

Inflate the loop C in Fig. 7(a) to occupy the annular
region M , so that it becomes C ′ = C1+← +(−C2)+→
in Fig. 7(b). Now,∮

C

=

∮
C′

=

∫
C1

+

∫
←

+

∫
−C2

+

∫
→

(1.115)

=

∮
C1

−
∮
C2

. (1.116)

Therefore,

f(z) =
1

2πi

∮
C1

f(z′)dz′

z′ − z
− 1

2πi

∮
C2

f(z′)dz′

z′ − z
. (1.117)

For the first term, rewrite

1

z′ − z
=

1

z′ − z0 − (z − z0)
=

1

(z′ − z0)
(
1− z−z0

z′−z0

) .
Compared to z′ ∈ C1, z is closer to z0, thus the ratio
|w| = |(z − z0)/(z

′ − z0)| < 1 and the fraction 1/(1− w)
can be expanded with the binomial expansion. Similarly,
for the second term, rewrite

1

z′ − z
=

1

z′ − z0 − (z − z0)
=

−1

(z − z0)
(
1− z′−z0

z−z0

) .
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Compared to z′ ∈ C2, z is farther away from z0, thus
the ratio |w| = |(z′ − z0)/(z − z0)| < 1 and the fraction
1/(1−w) can be expanded with the binomial expansion.
It follows that

f(z) =
1

2πi

∞∑
n=0

(z − z0)
n

∮
C1

f(z′)dz′

(z′ − z0)n+1
(1.118)

+
1

2πi

∞∑
n=0

1

(z − z0)n+1

∮
C2

f(z′)(z′ − z0)
ndz′︸ ︷︷ ︸

replace n by n−1 and
∑∞

0 →
∑∞

1

=

∞∑
n=−∞

an(z − z0)
n, (1.119)

where an =
1

2πi

∮
C

f(z)

(z − z0)n+1
dz. QED.

In the last step, we have deformed C ′ back to the contour
C that is inside M .

Ex: Expand f(z) = 1/z(z − 1) with respect to z0 = 0,
where 0 < |z| < 1.
Sol’n: (1) Direct expansion gives

f(z) = − 1

1− z
− 1

z
(1.120)

= −1

z
− 1− z − z2 − · · · (1.121)

= −
∞∑

n=−1
zn. (1.122)

(2) Alternatively, we can use the formula in Eq. (1.113),

an =
1

2πi

∮
C

f(z)

zn+1
dz (z0 = 0) (1.123)

= − 1

2πi

∮
C

dz

zn+2(1− z)
,

1

1− z
=

∞∑
m=0

zm

= − 1

2πi

∞∑
m=0

∮
C

dzzm−n−2︸ ︷︷ ︸
=2πiδm,n+1

(1.124)

= −
∞∑

m=0

δm,n+1 (1.125)

=

{
0 n < −1,
−1 n ≥ −1. (1.126)

This then gives the series in Eq. (1.122).

F. Singularities

A singularity is a point at which a complex function
is not differentiable. There are two types of singularities
for a complex function: pole and branch point. This is
explained below.

1. Pole

Suppose f(z) is not analytic at z = z0, but is analytic
at neighboring points, then z0 is called an isolated sin-
gularity. We can then expand f(z) with respect to z0
with the Laurent expansion,

f(z) =
∑
n

an(z − z0)
n. (1.127)

Some terminologies:
(1) If the series terminate at n = −1, without more
negative-power terms, then z0 is a simple pole.
(2) If the negative-power terms terminate at n < −1,
then z0 is a pole of order n.
(3) If there are infinite negative-power terms, then z0 is
an essential singularity.
For a pole of order n at z = z0,

lim
z→z0

(z − z0)
nf(z) is finite. (1.128)

This can be easily seen if f(z) is expanded with a Laurent
series.

In complex analysis, the behavior of f(z) at z → ∞
can be identified with that of f(1/w) at w → 0. So the
behavior of f(z) = z at infinity can be identified with the
behavior of f(w) = 1/w at w = 0. Therefore, f(z) = z
has a singularity at infinity.

One example of essential singularity is

e1/z =

∞∑
n=0

1

n!

1

zn
. (1.129)

Clearly z = 0 is an essential singularity. Another example
of essential singularity appears in sin z when z → ∞.
As we have just mentioned, the behavior of f(z) when
z → ∞ can be identified the behavior of f(1/w) when
w → 0. Therefore

sin
1

w
=

1

w
− 1

3!

1

w3
+ · · · , (1.130)

and w = 0 (or z →∞) is an essential singularity.
Some more terminologies:
A function is holomorphic in a region M if its Lau-

rent series has no negative powers. That is, f(z) has no
pole in region M , and f(z) can be expanded as a Taylor
series.
A function is meromorphic in a region M if its Lau-

rent series has negative-power terms at isolated points.
That is, it is a holomorphic function with isolated singu-
larities.
As we mentioned before, a function is analytic in a

region M if it is differentiable and single-valued in M .
However, we know that if f(z) is differentiable, then it
can be differentiated infinite times. Furthermore, f(z)
can be expanded as a Taylor series in M . Therefore, for
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(a) (b)

FIG. 8 (a) The variables relating a point P to the branch
points. (b) Path around the branch cut in the Example.

complex functions, being holomorphic is exactly the same
as being analytic.

Finally, a function that is analytic for any finite z is
called an entire function (it can have singularities at
infinity). A typical example of the entire function is a
polynomial. If an entire function is bounded, then it is a
constant (according to the Liouville theorem).

2. Branch point

Draw a closed path C around a point z0, if the value
of a function f(z) changes after moving around C and
coming back to the starting point, then z0 is branch
point of f(z). For example z0 = 0 is the branch point of
f(z) = z1/2. As explained in I.A, to prevent the function
from having multiple values, one can draw a line ema-
nating from z0 = 0. As long as this line is not crossed,
f(z) would remain single-valued. Such a line attached to
z0 is called a branch cut of f(z).
Alternatively, if a Riemann surface is employed to deal

with a multi-valued function, then a branch cut joins dif-
ferent sheets (or branches) of the Riemann surface (see
Sec. I.A). The function f(z) enters a different branch
when a branch cut is crossed. Note that since f(z)
is single-valued at z0, but multi-valued for the points
nearby, thus f(z) cannot be differentiable at z0.
The location of a branch cut is arbitrary, as long as it

can prevent f(z) from being multi-valued. As long as a
contour C avoids the branch cut, then Cauchy’s integral
theorem would remain valid.

Ex: Find out the branch points of f(z) = (z2 − 1)1/2,
and draw out its branch cuts.
Sol’n: Since

f(z) = (z + 1)1/2(z − 1)1/2, (1.131)

so there are branch points at z = −1 and +1. As shown
in Fig. 8, let

z + 1 = reiθ, (1.132)

z − 1 = ρeiϕ, (1.133)

then

f(z) =
√
r
√
ρei(θ+ϕ)/2. (1.134)

We can choose its branch cut to be the one in Fig. 8(b).
Follow the contour in the figure, one would have the fol-
lowing arguments of f(z):

θ ϕ (θ + ϕ)/2

a 0 0 0

b 0 π π/2

c 0 π π/2

d π π π

e 2π π 3π/2

f 2π π 3π/2

a 2π 2π 2π

When one comes back to a, the function is also back to
its initial value.
It is possible to draw the branch cuts to be on the

outside of the two branch points, instead of the one above
on the inside. You may check that the function would
remain single-valued as long as you walk along a contour
that avoids the branch cuts.

G. Analytic continuation

Recall that if f(z) is analytic within a circle of con-
vergence C centered at z0, then it can be expanded as a
Taylor series,

f(z) =

∞∑
n=0

f (n)

n!
(z − z0)

n (1.135)

We now prove an interesting property.
Lemma 1: If f(z) is analytic in a region M , and f(z) = 0
along an arc PQ in M , then f(z) = 0 throughout M .
Pf: Expand f(z) with respect to z0 (both z and z0 are
on PQ), then

f(z) = f(z0) + f ′(z0)(z − z0) +
f ′′(z0)

2!
(z − z0)

2 + · · ·

= 0. (1.136)

This implies that

f(z0) = f ′(z0) = f ′′(z0) = · · · = 0. (1.137)

Since the same set of coefficients applies to the Taylor ex-
pansion of other points z in M , hence f(z) = 0 through-
out M . QED.
Lemma 2: If both f(z) and g(z) are analytic in M ,

and f(z) = g(z) along an arc PQ in M , then f(z) = g(z)
throughout M .
Pf: To prove it, just let F (z) = f(z) − g(z), which is
zero along PQ, and apply Lemma 1 to the function F (z).
QED.
Now, suppose f(z) =

∑
n an(z−z0)

n within a circle of
convergence C1. We may expand f(z) with respect to a
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FIG. 9 Analytic continuation from one circle of convergence
to another one.

FIG. 10 Two circles of convergence in Example 1.

different point z1 inside C1, such that

f̃(z) =

∞∑
n=0

bn(z − z1)
n (1.138)

within another circle of convergence C2 (Fig. 9). Since
f̃(z) = f(z) within C1, they are the same function ac-
cording to Lemma 2 above. The function f̃(z) is called
an analytic continuation of f(z) since its domain ex-
tends beyond the region confined by C1. Note that such
an extension is unique.

Ex 1: Consider the following two series expansions,

f(z) =

∞∑
n=0

(−1)n(z − 1)n, converges if |z − 1| < 1,

g(z) =

∞∑
n=0

in−1(z − i)n, converges if |z − i| < 1.

You may check that f(z) = g(z) along the diagonal line
in Fig. 10, so they are the same function in the over-
lapped region. However, one series is convergent within
C1, while the other is convergent within C2.
In fact, they are expansions of h(z) = 1/z with respect

to z0 = 1 and z0 = i respectively,

1

z
=

1

1 + (z − 1)
=

1

i+ (z − i)
. (1.139)

However, h(z) is analytic everywhere on the complex
plane except z = 0. So the same function can appear
in different forms, with different domains of convergence.

Ex 2: The series

f(z) = z − z2 + z3 − · · · (1.140)

x

Γ(x)

FIG. 11 The Gamma function.

is analytic and convergent within |z| < 1. Find an ana-
lytic continuation of f(z) beyond |z| = 1.
Sol’n: The function

g(z) =
z

1 + z
(1.141)

is equal to f(z) when |z| < 1 and is analytic everywhere
except at z = −1, so (z) can be an analytic continuation
of f(z).
Note: if one uses the series expansion of f(z) outside

its circle of convergence, e.g. z = 2, then one gets

2− 22 + 23 − · · · ” = ”
2

3
. (1.142)

Similar ridiculous expression is used by some physicists
for its shock value. The most famous example is related
to the following Riemann zeta function,

ζ(z) ≡ 1 +
1

2z
+

1

3z
+ · · · . (1.143)

This series diverges when Re z ≤ 1. It has an analytic
continuation beyond this range with a different form that
converges. Its value is −1/12 when z = −1, for example.
However, if the series above is applied to z = −1, then
one has

1 + 2 + 3 + · · · ” = ”− 1

12
. (1.144)

Ex 3: The Gamma function is defined as,

Γ(x) =

∫ ∞
0

tx−1e−tdt, x ∈ R, (1.145)

which is convergent if x > 0. One can show that

Γ(x+ 1) = xΓ(x). (1.146)

Pf:

Γ(x+ 1) =

∫ ∞
0

txe−tdt (1.147)

= − txe−t
∣∣∞
0

+

∫ ∞
0

xtx−1e−tdt

= xΓ(x). (1.148)
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Starting from Γ(1) = 1, one gets Γ(n + 1) = n! for a
positive integer n. Thus the Gamma function is also
known as the factorial function. When x is not an
integer, one has, for example,

Γ

(
1

2

)
=
√
π, (1.149)

Γ

(
3

2

)
=

1

2
· Γ
(
1

2

)
=

√
π

2
. (1.150)

We now extend x to a complex number z,

Γ(z) =

∫ ∞
0

tz−1e−tdt, z ∈ C. (1.151)

Since

tz = tx+iy = txeiy ln t, and |eiy ln t| = 1, (1.152)

the integral is convergent if Re z = x > 0. Similar to the
derivation above, one can also show that

Γ(z) =

∫ ∞
0

tz−1e−tdt (1.153)

= −1

z
tze−t

∣∣∞
0

+

∫ ∞
0

1

z
tze−tdt (1.154)

=
Γ(z + 1)

z
, (1.155)

which is convergent if x > −1. As a result, we can extend
the domain of the Gamma function from x > 0 to x > −1
(Fig. 11). Also, it is not difficult to see that Γ(z) has a
simple pole at z = 0.

Further iteration leads to

Γ(z) =
Γ(z + 1)

z
=

Γ(z + 2)

z(z + 1)
= · · · (1.156)

In this way, stripe by stripe, we can extend the domain
of the Gamma function to the whole complex plane.
Also, one can see that Γ(z) has simple poles at z =
0,−1,−2, · · · . For more discussion of the Gamma func-
tion, you may watch Prof. Balakrishnan’s lecture ”Ana-
lytic continuation and the gamma function” on youtube.
In fact, all of his lectures on various subjects are good
and worth watching.

H. Calculus of residues

Recall that
∮
C
(z − z0)

ndz ̸= 0 only if n = −1. From
the Laurent expansion,

f(z) =

∞∑
−∞

an(z − z0)
n, (1.157)

we know that z0 is a singularity if n < 0 terms exist.
Integrates both sides along a closed contour surrounding
C, from the equation above, one has∮

C

f(z)dz = 2πia−1. (1.158)

x

y

C
1

C
2

C

z
1

z
2

FIG. 12 A closed contour that avoids isolated singularities.

All of the terms in the series vanish except the term with
n = −1. The coefficient a−1 is called the residue of f(z)
at z = z0.
Residue theorem:

Suppose f(z) has singularities at z1, z2, · · · , and C en-
closes these singularities, then∮

C

f(z)dz = 2πi(a−1,1 + a−1,2 + · · · ), (1.159)

in which a−1,i are the residues of f(z) at zi.
Pf: Choose a contour C that’s similar to C but avoids en-
closing these singularities, as shown in Fig. 12 According
to the Cauchy integral theorem,∮

C
=

∮
C

+

∮
−C1

+

∮
−C2

+ · · · = 0. (1.160)

Thus,∮
C

f(z)dz =

∮
C1

f(z)dz +

∮
C2

f(z)dz + · · · (1.161)

= 2πi(a−1,1 + a−1,2 + · · · ) QED.

If f(z) has a simple pole at z0, then

f(z) =
a−1

z − z0
+ a0 + a1(z − z0) + · · · (1.162)

Hence

a−1 = lim
z→z0

(z − z0)f(z). (1.163)

If f(z) has a pole of order n > 1 at z0, then

f(z) =
a−n

(z − z0)n
+ · · ·+ a−1

z − z0
+ a0 + · · · . (1.164)

It follows that

a−1 =
1

(n− 1)!
lim
z→z0

dn−1

dzn−1
[(z − z0)

nf(z)] . (1.165)

However, it is often easier to find a−1 with the Laurent
expansion.
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FIG. 13 Taking the Cauchy principal value of the integral of
1/x.

Examples:

1. Residue of
1

4z + 1
at z = −1

4
: a−1 =

1

4
.

2. Residue of
1

sin z
at z = 0 : a−1 = 1.

3. Residue of
ln z

z2 + 4
at z = ±2i : a−1 =

π

8
− i

ln 2

4
.

4. Residue of
z

sin2 z
at z = π : a−1 = 1.

Write z = π + w and expand the function w.r.t. w.

5. Residue of
cotπz

z(z + 2)
at z = 0 : a−1 = − 1

4π
.

6. Residue of e−1/z at z = 0 : a−1 = −1.

When the functions above are integrated along a con-
tour C, the integrals would pick up the residues inside
C, according to the residue theorem.

1. The argument theorem

Suppose f(z) has P poles and N zeros in a region M .
Near a pole or a zero at z0, write

f(z) = (z − z0)
µg(z), (1.166)

where µ is the order of the pole or the multiplicity of the
zero, and g(z) is finite and nonzero at z0. Thus,

f(z → z0) ≃ (z − z0)
µ. (1.167)

Near z0,

f ′(z)

f(z)
=

µ

z − z0
+

g′(z)

g(z)
. (1.168)

That is, f ′(z)/f(z) has a simple pole at z = z0 with a
residue µ.

x

y

Z1 Z2

FIG. 14 The singularities and the contour C in Example 1.

If C encloses P poles and N zeros, then∮
C

f ′(z)

f(z)
dz =

∮
C

d

dz
ln f dz (1.169)

= 2πi(N − P ). (1.170)

The second integral evaluates the change of the argument
of f(z) around C. Note that this theorem might be diffi-
cult to use. For example, f(z) = z3−2z+11 has 3 zeros,
but it’s not easy to integrate f ′(z)/f(z).

I. Evaluation of integrals

Some real integrals can be evaluated with the help of
complex integrals. We will study the following types of
real integrals:

I1 =

∫ 2π

0

f(sin θ, cos θ)dθ, (1.171)

I2 =

∫ ∞
−∞

f(x)dx, (1.172)

I3 =

∫ ∞
−∞

f(x)eiaxdx. (1.173)

Before doing this, let’s introduce a terminology: Sup-
pose a function f(x) has a singularity at x = x0. When
it is integrated over an interval [b, a] that includes x0, one
can take

P

∫ a

b

f(x)dx = lim
δ→0

(∫ x0−δ

b

f(x)dx+

∫ a

x0+δ

f(x)dx

)
.

(1.174)
That is, the point x0 is approached from two sides with
the same rate (Fig. 13). This is called the Cauchy prin-
ciple value of the integral.
For example,

P

∫ 1

−1

dx

x
= lim

δ→0

(∫ −δ
−1

dx

x
+

∫ 1

δ

dx

x

)
= 0. (1.175)

Note that if the singularity is approached from two sides
with different rates, then the result could be different,

lim
δ→0

(∫ −2δ
−1

dx

x
+

∫ 1

δ

dx

x

)
= ln 2. (1.176)
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x

y

R

CR

FIG. 15 A contour C closed by a large semicircle CR in the
upper half-plane.

I1 =

∫ 2π

0

f(sin θ, cos θ)dθ, (1.177)

in which f is a rational function of sin θ and cos θ.

Recipe: Introduce

z = eiθ, dz = idθeiθ, (1.178)

and substitute dθ = dz/iz, as well as

sin θ =
z − z−1

2i
, cos θ =

z + z−1

2
. (1.179)

The integral above would become an integral of f(z). We
can then use the residue theorem to evaluate it.

Ex 1:

I =

∫ 2π

0

dθ

1 + a cos θ
, |a| < 1 (1.180)

=
2

ia

∮
C

dz

z2 + 2
az + 1

, C is a unit circle (1.181)

=
2

ia

∮
C

dz

(z − z1)(z − z2)︸ ︷︷ ︸
=2πi 1

z2−z1

, z1/2 = −1±
√
1− a2

a

=
2π√
1− a2

. (1.182)

Note that only z2 is inside C (Fig. 14).
Ex 2:

I =

∫ 2π

0

cos 2θ

5− 4 cos θ
dθ (1.183)

=
i

4

∮
C

z4 + 1

z2
(
z − 1

2

)
(z − 2)

dz. (1.184)

The integrand has a simple pole at z = 1/2 and a double
pole at z = 0 within C. Its residue at z = 1/2 is −17/6;
while the residue at z=0 is 5/2. Therefore,

I =
i

4
2πi

(
5

2
− 17

6

)
=

π

6
. (1.185)

I2 =

∫ ∞
−∞

f(x)dx (1.186)

FIG. 16 (a) y = 2θ/π. (b) y = sin θ.

With the assumptions,
1. f(z) is analytic in the upper-half (or lower-half) com-
plex plane, except a finite number of poles.
2. f(z)z → 0 as z →∞.

Recipe: Consider a contour integral along the infinite
closed loop C = x-axis+CR shown in Fig. 15, CR is a
semi-circle with radius R→∞. Then∮

C

f(z)dz =

∫ ∞
−∞

f(x)dx+

∫
CR

f(z)dz

= 2πi
∑

[Res of f(z)]. (1.187)

Because of Assumption 2, the second integral∣∣∣∣∫
CR

f(z)dz

∣∣∣∣ ≤ (max of |f(z)| on CR)× 2πR→ 0.

(1.188)
Therefore,

I =

∫ ∞
−∞

f(x)dx =

∮
C

f(z)dz. (1.189)

Ex 3:

I =

∫ ∞
0

dx

1 + x2
(1.190)

=
1

2

∫ ∞
−∞

dx

1 + x2
(1.191)

=
1

2

∮
C

dz

1 + z2
(1.192)

=
1

2
2πi

1

x+ i

∣∣∣∣
x=i

=
π

2
. (1.193)

Note:
1. This integral can also be calculated by conventional
method, and

I = tan−1 x
∣∣∞
0

=
π

2
. (1.194)

2. One can also take a semi-circle around the lower-half
complex plane. The result will be the same.

I3 =

∫ ∞
−∞

f(x)eiaxdx, a > 0. (1.195)
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x

y

CR

Cr

FIG. 17 A contour C that avoids the singularity at the origin.

With the assumptions,
1. f(z) is analytic in the upper-half (or lower-half) com-
plex plane, except a finite number of poles.
2. f(z)→ 0 as |z| → ∞.

Consider a contour integral along the infinite closed
loop C shown in Fig. 15, then∮

C

f(z)eiazdz =

∫ ∞
−∞

f(x)eiaxdx+

∫
CR

f(z)eiazdz

= 2πi
∑

[Res of f(z)eiaz]. (1.196)

Because of Assumption 2, the second integral is zero.
This is known as Jordan’s lemma,

IR ≡
∣∣∣∣∫

CR

f(z)eiazdz

∣∣∣∣→ 0, as R→∞. (1.197)

Pf: Along the semi-circle CR, z = Reiθ, hence

IR =

∫
CR

f(z)eiaR cos θe−aR sin θidθReiθ. (1.198)

Suppose |f | < f0 along CR, then

|IR| ≤
∫ π

0

|f(z)|
∣∣eiaR cos θe−aR sin θidθReiθ

∣∣ (1.199)
≤ f0R

∫ π

0

e−aR sin θdθ (1.200)

= 2f0R

∫ π/2

0

e−aR sin θdθ. (1.201)

Within θ ∈ [0, π/2] (see Fig. 16), 2
π θ ≤ sin θ, hence

|IR| ≤ 2f0R

∫ π/2

0

e−2aRθ/πdθ (1.202)

= 2f0R
π

2aR

(
1− e−aR

)
(1.203)

≤ π

a
f0, f0 → 0 as R→∞. (1.204)

From Eq. (1.196), we then have∫ ∞
−∞

f(x)eiaxdx = 2πi
∑[

Res of f(z)eiaz
]
. (1.205)

x

y

x0

CR

Cr

FIG. 18 A contour C that avoids the singularity at x0.

Ex 4:

I =

∫ ∞
0

cosx

x2 + 1
dx (1.206)

=
1

2

∫ ∞
0

eix

x2 + 1
dx+

1

2

∫ ∞
0

e−ix

x2 + 1
dx (1.207)

=
1

2

∫ ∞
−∞

eix

x2 + 1
dx (1.208)

=
1

2

∮
C

eiz

z2 + 1
dz (1.209)

=
1

2
2πi

eiz

z + i

∣∣∣∣
z=i

=
π

2e
. (1.210)

Ex 5:

I =

∫ ∞
0

sinx

x
dx (1.211)

=
1

2

∫ ∞
−∞

sinx

x
dx (1.212)

=
1

2i
P

∫ ∞
−∞

eix

x
dx. (1.213)

There is a simple pole at x = 0. Choose an infinite closed
loop to avoid the pole at z = 0, as shown in Fig. 17, then

0 =

∮
C

eiz

z
dz = P

∫ ∞
−∞

eix

x
dx (1.214)

+

∫
Cr

eiz

z
dz +

∫
CR

eiz

z
dz, (1.215)

in which Cr is clockwise. The last integral would vanish
as R → ∞. For the second integral along Cr, z = reiθ

(r ≪ 1), and

∫
Cr

eiz

z
dz =

∫ 0

π

idθreiθ

reiθ
= −πi. (1.216)

Thus, finally I = π
2 . You will get the same result if Cr

goes under the origin, that is if the contour C encloses
the singularity.
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J. Some applications

1. Plemelj formula

Suppose f(x) has no singularity, and we’d like to eval-
uate the following integral,

P

∫ ∞
−∞

f(x)

x− x0
dx. (1.217)

Consider the infinite closed loop C shown in Fig. 18, then∮
C

= P

∫ ∞
−∞

+

∫
Cr

+

∫
CR

, (1.218)

in which Cr is clockwise. If f(z)→ 0 as z →∞, then for
z0 = x0 outside C,

0 =

∮
C

f(z)

z − x0
dz (1.219)

= P

∫ ∞
−∞

f(x)

x− x0
dx− iπf(x0) + 0. (1.220)

Therefore,

P

∫ ∞
−∞

f(x)

x− x0
dx = iπf(x0). (1.221)

The same result can be obtained if the small semi-
circle Cr goes under x0. You may apply this result to
Eq. (1.213) to get the same result above.

Instead of detouring around x0, we can displace the
singularity slightly off the x-axis, z0 = x0− iε. It follows
that

0 =

∮
C

f(z)

z − x0 + iε
dz (1.222)

=

∫ ∞
−∞

f(x)

x− x0 + iε
dx. (1.223)

This should agree with the result in Eq. (1.220), hence∫ ∞
−∞

f(x)

x− x0 + iε
dx = P

∫ ∞
−∞

f(x)

x− x0
dx− iπf(x0).

(1.224)
Alternatively, we can let z0 = x0 + iε and get∫ ∞

−∞

f(x)

x− x0 − iε
dx = P

∫ ∞
−∞

f(x)

x− x0
dx+ iπf(x0).

(1.225)
Eqs. (1.224) and (1.225) are valid for any analytic f(x),
therefore we can simply write

lim
ε→0

1

x− x0 ± iε
= P

1

x− x0
∓ iπδ(x− x0). (1.226)

This is called the Plemelj formula.
One can also use

1

x− x0 ± iε
=

x− x0

(x− x0)2 + ε2
∓ i

ε

(x− x0)2 + ε2
.

(1.227)

It is known that

lim
ε→0

1

π

ε

(x− x0)2 + ε2
= δ(x− x0), (1.228)

and then we can also reach Eq. (1.226).

2. Kramers-Kronig relations

Recall that in electromagnetism,

D(ω) = ε(ω)E(ω) = ε0[1 + χ(ω)]E(ω). (1.229)

The electric susceptibility χ(z) is analytic in the upper-
half plane (including the x-axis), and χ(z) → 0 as z →
∞. See Jackson for a detailed explanation. Note that for
a conductor, its χ(ω) can have a simple pole at ω = 0.
Such a case is excluded in the discussion below.
With an infinite semi-circle C, one has

χ(z) =
1

2πi

∮
C

χ(ω′)

ω′ − z
dω′ (1.230)

=
1

2πi

∫ ∞
−∞

χ(ω′)

ω′ − z
dω′, (1.231)

in which z is within the upper-half plane. Choose z =
ω + iϵ (ω ∈ R), and use the Plemelj formula above, then

χ(ω) =
1

2πi

∫ ∞
−∞

χ(ω′)

ω′ − ω − iϵ
dω′ (1.232)

=
1

2πi
P

∫ ∞
−∞

χ(ω′)

ω′ − ω
dω′ +

1

2
χ(ω),

→ χ(ω) =
1

πi
P

∫ ∞
−∞

χ(ω′)

ω′ − ω
dω′. (1.233)

We have used χ(ω + iϵ) = ω(ω) as ϵ → 0, since it is
analytic at ω.
Decompose χ into real part and imaginary part,

χ = χ1 + iχ2, (1.234)

then

χ1(ω) = +
1

π
P

∫ ∞
−∞

χ2(ω
′)

ω′ − ω
dω′, (1.235)

χ2(ω) = − 1

π
P

∫ ∞
−∞

χ1(ω
′)

ω′ − ω
dω′. (1.236)

They are known as Kramers-Kronig relations.
Let n be the index of refraction. We know that

n2 =
ε

ε0
= 1 + χ, (1.237)

thus χ = n2 − 1. Using the Kramers-Kronig (KK) rela-
tions, we can have relations connecting the real part and
the imaginary part of n = n1 + in2.
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n

t
t

e
−

tn

FIG. 19 The integrand of the Gamma-function integral is
composed of e−t and tn.

Physically, the frequency ω is positive, hence it helps
to rewrite the KK relations in the following way: First,
χ(ω) is the Fourier transform of χ(t),

χ(ω) =

∫ ∞
−∞

χ(t)eiωtdt. (1.238)

Since electric susceptibility χ(t) ∈ R, hence χ(−ω) =
χ∗(ω), which means

χ1(−ω) = +χ1(ω), (1.239)

χ2(−ω) = −χ2(ω). (1.240)

As a result,

χ1(ω) = +
2

π

∫ ∞
0

ω′χ2(ω
′)

ω′2 − ω2
dω′, (1.241)

χ2(ω) = −2ω

π

∫ ∞
0

χ1(ω
′)

ω′2 − ω2
dω′. (1.242)

For example, if there is a sharp absorption peak at ω0,

χ2(ω) ≃
α

ω0
δ(ω − ω0), (1.243)

then one gets from the KK relations,

χ1(ω) ≃
2α

π

1

ω2
0 − ω2

. (1.244)

K. Methods of approximation

1. Gamma function

Recall that the Gamma function,

Γ(n+ 1) = n! =

∫ ∞
0

tne−tdt (1.245)

=

∫ ∞
0

en ln t−tdt. (1.246)

The integrand is a product of an increasing function
tn and a decreasing function e−t, as shown in Fig. 19.
Therefore, the integrand, and hence its exponent f(t) =
n ln t− t has a maximum. Also

f ′(t) = 0, at t = n, and f ′′(n) = − 1

n
. (1.247)

The value of f(t) near the extrema can be approximated
as

f(t) ≃ f(n) + 0 +
1

2
f ′′(n)(t− n)2. (1.248)

Therefore,

n! ≃ en lnn−n
∫ ∞
0

e−
1
2n (t−n)2dt︸ ︷︷ ︸
≡I

. (1.249)

Since the peak of the exponential in the integrand is lo-
cated (supposedly far) away from the origin, one can ex-
tend the range of integration without affecting the inte-
gral much,

I ≃
∫ ∞
−∞

e−
1
2n (t−n)2dt =

√
2πn. (1.250)

It follows that

n! ≃ nne−n
√
2πn. (1.251)

This is known as Stirling’s formula. This approxima-
tion gets better when n gets larger. However, even if
n = 1, which gives e ≃

√
2π, the error is only about 8%.

2. Method of stationary phase

Consider the following integral,

I =

∫ a

b

f(ω)eiϕ(ω)dω. (1.252)

Suppose the phase ϕ(ω) ∈ R oscillates rapidly compared
to the variation of f(ω), but is stationary at ω0.
Near the stationary point,

ϕ(ω) ≃ ϕ(ω0) +
1

2
ϕ′′(ω0)(ω − ω0)

2, (1.253)

hence

I ≃ eiϕ(ω0)

∫ a

b

f(ω)e
i
2ϕ

′′(ω−ω0)
2

dω. (1.254)

The contribution to this integral is mainly from the re-
gion near the stationary point. Far away from ω0, the
integrand oscillates rapidly so that part contributes little
to the integral.
Since f(ω) varies slowly near ω0,

I ≃ eiϕ(ω0)f(ω0)

∫ ∞
−∞

e
i
2ϕ

′′(ω−ω0)
2

dω (1.255)

= eiϕ(ω0)f(ω0)

√
2πi

ϕ′′(ω0)
, (1.256)

in which the following equation has been used,∫ ∞
−∞

e−αx
2

dx =

√
π

α
, α ∈ C. (1.257)
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For example, the integral representation of the Bessel
function is

Jn(x) =
1

π

∫ π

0

cos(nt− x sin t)dt, (1.258)

which can be rewritten as

Jn(x) = Re
1

π

∫ π

0

einte−ix sin tdt. (1.259)

Suppose the argument |x| ≫ 1, then the second exponen-
tial oscillates rapidly with respect to t. In comparison,

the first exponent varies slowly and can be taken as the
function f in Eq. (1.252).
Within t ∈ [0, π], ϕ(t) = −x sin t is stationary at t =

π/2, and

ϕ
(π
2

)
= −x, ϕ′′

(π
2

)
= x. (1.260)

Applying Eq. (1.256), we then have

Jn(x) ≃ Re

(
e−ixein

π
2

√
2i

πx

)
(1.261)

=

√
2

πx
cos
(
x− nπ

2
− π

4

)
, as |x| ≫ 1.
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