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I. SCATTERING OF EM WAVE

An EM wave would be scattered by an obstacle, large
or small. In general three length scales are involved in
this process: wavelength λ, size d of the obstacle, and
distance of detection R. If we assume R� d, λ and just
compare d with λ, then we have:
1. d� λ, which is called Rayleigh scattering
2. d ' λ, which called Mie scattering
3. d� λ, which is the scattering of optical rays
We’ll investigate case 1 in this chapter.

A. Single scatterer

Let’s start with the scattering of a single scatterer.
Consider the Rayleigh scattering with d� λ (or kd�
1). The process of scattering follows three steps:

FIG. 1 Incident wave and scattered wave

1. There is an incoming plane wave with the electric field,

Ei(r, t) = E0e
i(k0·r−ωt) ≡ Ei(r)e−iωt, (1.1)

where Ei(r) = E0ε̂0e
ik0·r. (1.2)

The magnetic field of the EM wave is

Hi(r, t) = Hi(r)e−iωt, (1.3)

where Hi(r) =
1

Z0
k̂0 ×Ei(r). (1.4)

2. The oscillating fields interact with the scatterer and
induce dipole moments p, m.
3. The oscillating dipoles re-radiate EM waves in all di-
rections (Fig. 1)

In Chap 20, we have studied the EM radiation due to
oscillating dipoles. Quoting the results there, the elec-
tromagnetic field from a scattered EM wave would be,

Es(r, t) = Es(r)e−iωt, (1.5)

where Es(r) =
k2

4πε0

eikr

r

[
−k̂× (k̂× p)− k̂× m

c

]
,

and

Hs(r, t) = Hs(r)e−iωt, (1.6)

where Hs(r) =
1

Z0
k̂×Es(r). (1.7)

What’s left to be determined is that, given a scatterer,
how do the induced dipoles relate to incoming fields? We
will come back to this later.

In general, the total electric field can be written in the
following form,

E(r) = Ei(r) + Es(r) (1.8)

= E0

(
ε̂0e

ik0·r + f(k)
eikr

r

)
, (1.9)

where f(k) is called scattering amplitude. For exam-
ple, for the scattered field in Eq. (1.5),

f(k) = − k2

4πε0E0

[
k̂× (k̂× p) + k̂× m

c

]
. (1.10)

Suppose the power (or energy flux) of the radiation
scattered through solid angle dΩ is dP , then

dP = S · k̂ r2dΩ, (1.11)
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where S is the Poynting vector. Evidently, it is pro-
portional to the power (or energy flux) of the incident
EM wave. The energy flux of an incident wave passing
through an area A perpendicular to k0 is,

Pi = Si · k̂0A. (1.12)

Thus, the angular distribution of the scattered radiation
can be characterized by the ratio,

dσ =
energy flux scattered through dΩ

incident energy flux/area
(1.13)

=
dP (within dΩ)

Pi/A
=

S · k̂ r2dΩ

Si · k̂0

. (1.14)

It has the dimension of an area. Thus, define the differ-
ential cross-section as,

dσ

dΩ
=

S · k̂
Si · k̂0

r2, (1.15)

For a time-harmonic EM wave with e−iωt-dependence,
after averaging over time (see Chap 16),

S · k̂ =
1

2
Re
[
E(r)×H∗(r) · k̂

]
=

1

2Z0
|E(r)|2. (1.16)

For brevity, the bracket 〈 〉T has been dropped. The
differential cross-section is,

dσ

dΩ
=
|Es(r)|2

|Ei(r)|2
r2 = |f(k)|2 (1.17)

=
k4

(4πε0E0)2

∣∣∣k̂× (k̂× p) + k̂× m

c

∣∣∣2 . (1.18)

If the scattered EM wave is a mixture with different
polarizations, and we are only interested in the power
with certain polarization ε̂, then

S · k̂ =
1

2Z0
|ε̂∗ ·E(r)|2. (1.19)

The complex conjugate ε̂∗ is needed for circular polar-
ization. The differential cross-section for polarization ε̂
is,

dσε̂
dΩ

=
|ε̂∗ ·Es(r)|2

|ε̂0 ·Ei(r)|2
r2 = |ε̂∗ · f(k)|2 (1.20)

=
k4

(4πε0E0)2

∣∣∣ε̂∗ · (p− k̂× m

c

)∣∣∣2 . (1.21)

Note that the scattered power is proportional to k4, or
λ−4. That is, an EM wave with a shorter wavelength is
scattered more. This is Rayleigh k4 (or ω4)-law.

Rayleigh first obtained this k4-law with the following
dimensional analysis (Bohren and Fraser, 1985):
First, the strength of scattered electric field should be
proportional to the incident field, Es ∝ E0.
Second, energy of the scattered wave is conserved during

FIG. 2 Polarizations of incident wave along n̂0 and scattered
wave along n̂.

propagation. So its intensity should be proportional to
1/r2. Thus, Es ∝ 1/r.
Third, if the size of a particle scatterer (composed of
many molecules) is much smaller than wavelength, then
the response of these molecules are coherent. Thus, the
strength of the scattered field should be proportional to
the volume v of the particle.
From these three points, we have

Es ∝ E0
v

r
. (1.22)

This is not dimensionally balanced yet. In addition to
v1/3 and r, there is one more length scale in this problem:
wavelength λ of the EM wave. To balance the dimension,
write

Es ∼ αE0
v

r

1

λ2
, (1.23)

where α is dimensionless. Therefore, the intensity of scat-
tered radiation should be proportional to 1/λ4, or k4.

1. Calculation of induced dipole

We now study the electric dipole of a scatterer induced
by the incident field Ei. Since the magnetic dipole ra-
diation is weaker than the electric dipole radiation by a
factor of d/λ (see Chap 20), so the magnetic dipole will
be ignored when d� λ. Suppose the scatterer is a small
dielectric sphere with radius a. Near the scatterer,

Ei(r) = E0ε̂0e
ik0·r (1.24)

' E0ε̂0 (kd� 1). (1.25)

Thus the field is nearly uniform. Since the quasi-
electrostatic approximation is valid in the near zone
(Chap 15), we can rely on the result of electrostatics.
If the the relative permittivity of the sphere is εr, then
the induced dipole p(t) = pe−iωt, with (see Chap 6)

p = 4πε0

(
εr − 1

εr + 2

)
a3E0. (1.26)
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FIG. 3 Differential cross-section (solid line) and degree of
polarization (dashed line).

Therefore,

dσε̂
dΩ

= k4a6

(
εr − 1

εr + 2

)2

|ε̂∗ · ε̂0|2. (1.27)

Suppose the incident wave is not polarized (like natural
light). We are interested in the differential cross-section
〈dσε̂/dΩ〉ε̂0 of certain ε̂ (averaged over initial polariza-
tions ε̂0). The polarizations of incident wave and scat-
tered wave are shown in Fig. 2. Assume k0 ‖ ẑ, k lies on
the x− z plane, and

ε̂0 = cosφx̂ + sinφŷ, (1.28)

ε̂1 = cos θx̂− sin θẑ, (1.29)

ε̂2 = ŷ. (1.30)

Both ε̂1 and ε̂2 are perpendicular to k, and ε̂1 ⊥ ε̂2. They
are two special directions of the polarization of scattered
wave: ε̂1 lies on the k0-k plane, and ε̂2 is perpendicular
to the k0-k plane.
Case 1: Es ‖ k0-k plane
The polarization factor |ε̂∗ · ε̂0|2 = |ε̂1 · ε̂0|2. Thus, after
averaging over initial polarizations,

〈|ε̂1 · ε̂0|2〉φ ≡
1

2π

∫ 2π

0

|ε̂1 · ε̂0|2dφ (1.31)

=
1

2
cos2 θ. (1.32)

Case 2: Es ⊥ k0-k plane
After averaging over initial polarizations,

〈|ε̂2 · ε̂0|2〉φ ≡
1

2π

∫ 2π

0

|ε̂2 · ε̂0|2dφ (1.33)

=
1

2
. (1.34)

It follows that,

dσ‖

dΩ
=

a2

2
k4a4

(
εr − 1

εr + 2

)2

cos2 θ, (1.35)

dσ⊥
dΩ

=
a2

2
k4a4

(
εr − 1

εr + 2

)2

· 1, (1.36)

(a)

(b)

FIG. 4 (a) When viewed along a plane (containing the scat-
terer) perpendicular to the incident light, the direction of the
polarization of scattered wave is the same as the direction of
dipole oscillation. (b) Sunlight is most polarized in the plane
(passing through the observer) perpendicular to the line of
sun-observer. Fig. (b) from Smith, 2007.

and the total differential cross-section is,

dσ

dΩ
=
dσ‖

dΩ
+
dσ⊥
dΩ

. (1.37)

The degree of polarization of scattered wave can be
quantified with

Π ≡
dσ⊥
dΩ −

dσ‖
dΩ

dσ⊥
dΩ +

dσ‖
dΩ

(1.38)

=
sin2 θ

1 + cos2 θ
∈ [0, 1]. (1.39)

Its angular dependence is shown in Fig. 3. It is maximum
at θ = π/2, when k is perpendicular to k0 (Fig. 4(a)).

Sunlight would be scattered by molecules in the air.
As a result, the scattered sunlight is polarized. If you
face the sun directly (Fig. 4(b)), and swivel your head
around looking at the sky, then you will find out that
the blue sky is most strongly polarized in a plane (you
are in) perpendicular to the line connecting you and the
sun.

2. Scattering from charged particle

Suppose a monochromatic plane wave passes through
a point charge at the origin, the charge would oscillate
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and re-radiate an EM wave. This is called Thomson
scattering. The equation of motion for the charge is,

mr̈ = qE0ε̂0e
i(k0·r−ωt), (1.40)

and r̈ = −ω2r. The dipole moment associated with the
charge is p = qr = er̈/ω2 (q = −e). According to
Eq. (1.18), the differential cross-section for the Thom-
son scattering is,

dσ

dΩ
=

k4

(4πε0E0)2

∣∣∣k̂× (k̂× p)
∣∣∣2 (1.41)

=
e4k4

(4πε0mω2)2
|k× (k̂× ε̂0)|2 (1.42)

= r2
e |k̂× ε̂0|2, (1.43)

in which re is the classical electron radius,

re =
e2

4πε0mc2
' 2.8 fm. (1.44)

After integration over Ω, we have the total cross-section,

σTh =
8π

3
r2
e . (1.45)

B. Collection of scatterers

Consider a collection of particles (molecules or other
dipole scatterers) that maybe orderly or randomly
spaced. The position of the detector is far away so that
the far-zone approximation remains valid. Let’s again
focus only on the induced electric dipole radiation. A
single scatterer at the origin generates (see Eq. (1.5))

Es(r) = − k2

4πε0

eikr

r
k̂× (k̂× p). (1.46)

It gives the differential cross-section (see Eq. (1.21)),

dσε̂
dΩ

=
k4

(4πε0E0)2
|ε̂∗ · p|2 . (1.47)

When there are many particles at locations rj , just su-
perpose the scattered fields to get

Es(r) = − k2

4πε0

∑
j

eikRj

Rj
k̂× (k̂× pj), (1.48)

where Rj = |r− rj | ' r − r̂ · rj . Thus,

eikRj

Rj
' eikr

r
e−ik·rj . (1.49)

It follows that,

dσε̂
dΩ

=
k4

(4πε0E0)2

∣∣∣∣∣∣
∑
j

ε̂∗ · pje−ik·rj

∣∣∣∣∣∣
2

. (1.50)

The induced dipole is proportional to the incoming
field,

pj = ε0γmEi(rj), (1.51)

where Ei(rj) = E0ε̂0e
ik0·rj , (1.52)

and γm is the molecular polarizability (for a molecular
scatterer). Therefore,

dσε̂
dΩ

=
k4

(4π)2
γ2
m|ε̂∗ · ε̂0|2

∣∣∣∣∣∣
∑
j

e−iq·rj

∣∣∣∣∣∣
2

, q ≡ k− k0.

(1.53)
The summation over j is called the form factor of the

scatterers,

F(q) ≡

∣∣∣∣∣∣
N∑
j=1

e−iq·rj

∣∣∣∣∣∣
2

. (1.54)

For a random distribution of particles,

|F(q)|2 =
∑
j=`

1 +
∑

j,`(j 6=`)

eiq·(r`−rj) ' N. (1.55)

The second summation is nearly zero due to the random
distribution of phases. Therefore,

dσε̂
dΩ

=
k4

(4π)2
γ2
m|ε̂∗ · ε̂0|2N. (1.56)

Averaging over incident polarizations with Eqs. (1.32),
(1.34), we get〈

dσε̂
dΩ

〉
φ

=
k4

(4π)2
Nγ2

m

1

2

(
1 + cos2 θ

)
. (1.57)

The total scattering cross-section is,

σT =

∫
dΩ

〈
dσε̂
dΩ

〉
=

k4

(4π)2
Nγ2

m

8π

3
. (1.58)

On the other hand, consider a periodic array of parti-
cles (like the atoms in a crystal) at locations,

rn = n1a1 + n2a2 + n3a3, (1.59)

where a1,a2,a3 are primitive lattice vectors, and
n1,2,3 = 0, · · · , N1,2,3 − 1. It is left as an exercise to
show that,

|F(q)|2 =
sin2 1

2N1(a1 · q)

sin2 1
2 (a1 · q)

sin2 1
2N2(a2 · q)

sin2 1
2 (a2 · q)

sin2 1
2N3(a3 · q)

sin2 1
2 (a3 · q)

.

It is known that

lim
N→∞

1

2π

sin
(
N x

2

)
sin x

2

=

∞∑
m=−∞

δ(x− 2πm). (1.60)
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Therefore, given a crystal, its form factor is non-zero
when

a1 · q = 2πm, (1.61)

a2 · q = 2πn, (1.62)

a3 · q = 2π`, (1.63)

where m,n, ` are any integers. This is called the Laue
condition of diffraction. Solving it for possible q’s,
then one can find diffraction spots along directions k =
k0 + q (Kittel, 2004).

If the wavelength is much longer than the distance be-
tween neighboring atoms, or k0ai � 1, then the Laue
diffraction condition can be satisfied only with m = n =
` = 0 in 3D. Thus, q = 0 and the scattered radiation is
confined only to the forward direction. A crystal would
be transparent if there is no other scattering or absorp-
tion involved.

1. Scattering cross-section and refraction index

The scattering cross-section σT is related to the molec-
ular polarizability γm in Eq. (1.58). On the other hand,
γm is related to electric polarization P, which in turn
relates to relative permittivity εr and index of refraction
n. Thus, we are able to link the macroscopic n with the
microscopic γm, as shown below.

First, for a given molecule.

p = ε0γmEi. (1.64)

For a homogeneous material with nd moleculars per unit
volume, the electric polarization

P = ndp. (1.65)

Thus,

D = ε0Ei + P (1.66)

= ε0(1 + ndγm)Ei. (1.67)

→ εr = 1 + ndγm. (1.68)

The scattering cross-section per molecule is (Eq. (1.58)),

σ =
σT
N

=
k4

6πn2
d

(εr − 1)2 (1.69)

=
2k4

3πn2
d

(n− 1)2. (1.70)

We have approximated εr − 1 ' 2(n− 1), assuming that
εr is close to 1.

Now, suppose an EM wave is passing through a thin
slab of material, then its intensity I changes according
to

dI

I
= −ndσdx. (1.71)

The coefficient ndσ is called extinction coefficient.
Hence,

I(x) = I0e
−ndσx = I0e

−x/Λ. (1.72)

The attenuation length is defined as,

Λ =
1

ndσ
=

3πnd
2k4

1

(n− 1)2
. (1.73)

For example, for the air around you under standard
condition (20 oC and 1 atm), nd ' 2.69× 1019/cm3, and
n = 1.00028. We have, for visible light,

red : λ = 6500 Å → Λ = 188 km,

green : λ = 5200 Å → Λ = 77 km,

violet : λ = 4100 Å → Λ = 30 km.

(1.74)

Take into account the fact that the density of air dimin-
ishes exponentially with height. Assume the intensity of
light on top of the atmosphere is 1, then on the surface
of earth, we have (Jackson, 2002)

color zenith sunrise− sunset

red 0.96 0.21

blue 0.90 0.024

violet 0.76 0.000065 (1.75)

The sunlight is dimmer in sunrise-sunset because the at-
mospheric path is longer (Fig. 5(a)). Also, because of
their shorter wavelengths, there is little blue/violet light
reaching earth’s surface during sunrise-sunset. That’s
why the sky is red during sunrise-sunset (Fig. 5(b)).

At other hours, a clear sky is blue. The reason is
that when you look away from the direction of the sun,
the deflected sun light undergoes more scatterings with
molecules. Since a red light is less scattered compared
to a blue/violet light, only the latter can survive large-
angle deflection and reach your eyes (Fig. 5(a)). This is
also the reason why the smoke of a cigarette is bluish
(Fig. 5(c)). Around 1500 AC, Da Vinci had already sur-
mised that the sky being blue could be the result of the
sunlight scattered by small particles, based on the em-
pirical fact that the smoke from dry wood appears blue
(Kerker, 1969).

Note: Fog or smog are composed of liquid droplets,
dust, smoke, or other pollutant particles roughly the size
of 1 µm or less. Many of them are better described by
the Mie scattering, instead of the Rayleigh scattering.

Furthermore, in Eq. (1.73), we see that Λ ∝ nd.
Therefore, if the medium is continuous without atoms
(nd → ∞), then Λ is infinite. Based on this result,
Maxwell suggested that one can estimate nd, hence the
Avogadro constant by measuring the attenuation length
(Jackson, 2002).

A remark: the average distance between neighboring
molecules in the air is about 3 nm, which is much shorter
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(b)

(c)(a)

FIG. 5 (a) The paths of sunlight at high noon and near
dawn/dusk. (b) The sky during sunrise. (c) A smoke looks
bluish.

than the wavelength of visible light (λ ∼ 500 nm). Thus,
for the molecules within the range of λ, the responses
could be coherent, instead of random. This shortcoming
of the analysis that is based on incoherent scatterers can
be remedied in the next subsection.

2. Scattering from density fluctuation

Instead of the molecular point of view, we can also
study the scattering of EM wave by density fluctuation.
Due to density fluctuation,

D(r) = [ε0 + δε(r)]E(r) = ε0E(r) + δP(r), (1.76)

B(r) = [µ0 + δµ(r)]H(r) = µ0H(r) + µ0δM(r),(1.77)

where

δP(r) = δεE(r) ' δεEi(r), δε� ε0 (1.78)

δM(r) =
δµ

µ0
H(r) ' δµ

µ0
Hi(r), δµ� µ0. (1.79)

In order to take advantage of earlier analysis, let’s dis-
cretize the space with cells. Each cell has volume dV ,
and dipole moments,

pj = δP(rj)dV, mj = δM(rj)dV. (1.80)

According to Eq. (1.50) (now with magnetic dipoles
added),

dσε̂
dΩ

=
k4

(4πε0E0)2

∣∣∣∣∣∣
∑
j

ε̂∗ ·
(
pj − k̂× mj

c

)
e−ik·rj

∣∣∣∣∣∣
2

,

(1.81)

in which

pj = δεEi(rj) = δεE0e
ik0·rjdV, (1.82)

mj =
δµ

µ0
Hi(rj) =

δµ

µ0
H0e

ik0·rjdV, (1.83)

with

E0 = E0ε̂0, H0 =
1

Z0
k̂0 ×E0. (1.84)

Thus,

dσε̂
dΩ

=
k4

(4π)2

∣∣∣∣∣∣
∑
j

dV

[
δε(rj)

ε0
ε̂∗ · ε̂0 (1.85)

+
δµ(rj)

µ0
(k̂× ε̂∗) · (k̂0 × ε̂0)

]
e−iq·rj

∣∣∣∣2 ,
Suppose cell-j with volume dV has N̄j particles, then

N̄j = n̄jdV, (1.86)

where n̄j is the density of particles. Write the fluctuation
of particle density as ∆n̄j , then

δεj
ε0

=
∂εr
∂n̄

∆n̄j . (1.87)

Recall that pj = ε0γmEi(rj) (Eq. (1.51)). The
Clausius-Mossotti relation (Chap 6) gives,

εr − 1

εr + 2
= γm

n̄

3ε0
, (1.88)

where n̄ is the average particle density. This leads to

∂εr
∂n̄

=
(εr − 1)(εr + 2)

3n̄
. (1.89)

Hence,

δεj
ε0

=
(εr − 1)(εr + 2)

3n̄
∆n̄j . (1.90)

According to Eq. (1.85) (now without mj), one has

dσε̂
dΩ

=
k4

(4π)2

∣∣∣∣∣∣
∑
j

dV
δε(rj)

ε0
ε̂∗ · ε̂0e

−iq·rj

∣∣∣∣∣∣
2

(1.91)

=
k4

(4π)2

[
(εr − 1)(εr + 2)

3n̄

]2

|ε̂∗ · ε̂0|2F(q),

with the form factor,

F(q) =

∣∣∣∣∣∣
∑
j

∆N̄je
−iq·rj

∣∣∣∣∣∣
2

. (1.92)
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If the correlation length between cells is small compared
with λ, then the oscillating terms in the form factor can
be ignored. Define the fluctuation of particle number as,

∆N̄ =
√
〈N̄2〉 − 〈N̄〉2, (1.93)

then

F(q) =
∑
j,k

∆N̄j∆N̄k = ∆N̄2. (1.94)

As a result, integration over solid angle involves only
the angular part |ε̂∗ · ε̂0|2, which leads to a factor of 8π/3
(see Eq. (1.56) and below). Thus, the total cross-section
is,

σT =
k4

(4π)2

[
(εr − 1)(εr + 2)

3n̄

]2
8π

3
∆N̄2. (1.95)

From it we get the extinction coefficient,

α = n̄σT =
k4

(4π)2

[
(εr − 1)(εr + 2)

3

]2
8π

3n̄
∆N̄2. (1.96)

The fluctuation of particles can be related to isothermal
compressibility βT (Kubo, 1965),

∆N̄2 = n̄kBTβT , βT ≡ −
1

V

(
∂V

∂P

)
T

. (1.97)

Thus,

α ' k4

6π

[
(εr − 1)(εr + 2)

3

]2

kBTβT . (1.98)

This is called the Einstein-Smoluchowski relation.
For a dilute gas, εr ' 1 and n̄kBTβT ' 1, thus

α =
2k4

3πn̄
(n− 1)2 (1.99)

This is the same as the result in Eq. (1.73). Note that the
Einstein-Smoluchowski relation deals with density fluc-
tuation. It does not require the fluid to be composed of
particles.

When a gas or liquid undergoes a phase transition,
then near the critical point, the fluctuation of particle
number becomes very large. In principle, βT → ∞ at
the critical point. Thus, an EM wave would be strongly
scattered and the fluid would become opaque. This is
called critical opalescence. Note that near critical-
ity, the coherence length of density fluctuation becomes
longer than the wavelength and the treatment here is no
longer accurate. See Sec. 10.2 of Jackson, 1998 for more
details.
Problems:
1. Starting from Eq. (1.43), show that the total cross-
section of the Thomson scattering is

σTh =
8π

3
r2
e .

2. The atoms in a lattice are located at

rn = n1a1 + n2a2 + n3a3,

where a1,a2,a3 are primitive lattice vectors, and
n1,2,3 = 0, · · · , N1,2,3 − 1. Show that the form factor
squared of the lattice is

|F(q)|2 =
sin2 1

2N1(a1 · q)

sin2 1
2 (a1 · q)

sin2 1
2N2(a2 · q)

sin2 1
2 (a2 · q)

sin2 1
2N3(a3 · q)

sin2 1
2 (a3 · q)

.

II. DIFFRACTION OF EM WAVE

Diffraction can be considered as a type of scattering,
when the size of an obstacle is much larger than the wave-
length. The distinction between scattering and diffrac-
tion is not always clear. Some would say that “scatter-
ing” occurs from an object with smooth boundary, while
“diffraction” is from an object with sharp edge (Zang-
will, 2013). No matter what, for diffraction the boundary
condition for fields is relatively more important, and this
makes its study difficult. We will start with the diffrac-
tion of scalar wave, then investigate the diffraction of
vector wave later.

A. Diffraction of scalar wave

Recall that the electromagnetic fields in free space fol-
low the wave equations,

∇2E− 1

c2
∂2E

∂t2
= 0, (2.1)

∇2B− 1

c2
∂2B

∂t2
= 0. (2.2)

In the discussion below, we assume everything oscil-
lates with the factor e−iωt (time-harmonic fields), e.g.,
E(r, t) = E(r)e−iωt. Therefore, the wave equation be-
comes the Helmholtz equation,(

∇2 + k2
)
E(r) = 0, k = ω/c. (2.3)

We first focus on the equation for scalar wave,(
∇2 + k2

)
ψ(r) = 0, k = ω/c. (2.4)

It can be solved with the method of Green function. The
Green function is the solution for a point source. For
the Helmholtz equation,(

∇2 + k2
)
G(r, r′) = −δ(r− r′), (2.5)

the solution is,

G(r, r′) =
1

4π

eik|r−r
′|

|r− r′|
. (2.6)

This means that, for a general Helmholtz equation,(
∇2 + k2

)
ψ(r) = −ρ(r)

ε0
, (2.7)
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FIG. 6 The region of interest (II) is abounded by surfaces S1

and S2.

the solution is,

ψ(r) =

∫
dv′G(r, r′)

ρ(r′)

ε0
(2.8)

=
1

4πε0

∫
dv′

eik|r−r
′|

|r− r′|
ρ(r′). (2.9)

The discussion above is for a system without physical
boundary. If there are boundaries, then we need Green’s
identity below:∫

V

dv(φ∇2ψ − ψ∇2φ) =

∫
S

da · (φ∇ψ − ψ∇φ), (2.10)

in which volume V is bounded by surface S, da = dan̂,
and n̂ points out of V .
Pf: First,

∇ · (φ∇ψ) = ∇φ · ∇ψ + φ∇2ψ, (2.11)

∇ · (ψ∇φ) = ∇ψ · ∇φ+ ψ∇2φ. (2.12)

Subtract the second equation from the first, one gets

∇ · (φ∇ψ − ψ∇φ) = φ∇2ψ − ψ∇2φ. (2.13)

Integration over space and use the divergence theorem
to write the RHS as a surface integral, then we get
Eq. (2.10). QED.

Suppose ψ(r) and φ(r) satisfy the Helmholtz equation,(
∇2 + k2

)
ψ(r) = − ρ

ε0
, (2.14)(

∇2 + k2
)
φr′(r) = −δ(r− r′), (2.15)

in which φr′(r) is obviously the Green function G(r, r′).
According to Green’s identity,

ψ(r) =

∫
V

dv′G(r, r′)
ρ(r′)

ε0
(2.16)

+

∫
S

da′ · [G(r, r′)∇′ψ(r′)− ψ(r′)∇′G(r, r′)] .

If the region of interest V is not bounded by any surface,
then the surface integral vanishes and we are back to
Eq. (2.8).

In Fig. 6, there are two possible scenarios: In the first,
The space is divided by a surface S1 into two parts. The

region of interest V is bounded by S1 and another one S2

at infinity. In the second, V is external to a source and
is bounded by an inner surface S1 and an outer surface
S2 at infinity. The surface integral above is over S =
S1 +S2, but the integral over S2 at infinity usually makes
no contribution and can be ignored.

There are two major types of boundary condition
(BC), either the value of ψ on S is given (Dirichlet BC),
or the normal derivative, n̂ ·∇ψ = ∂ψ/∂n, on S is known
(Neumann BC). In addition, there can be mixed BC:
ψ is known in part of S, while ∂ψ/∂n is known for the
rest of S.

For simplification, suppose there is no source ρ inside
V and the first term of Eq. (2.16) can be dropped. For
the Dirichlet BC, we can choose

GD(r, r′) = 0 for r′ on S, (2.17)

so that

ψ(r) = −
∫
S

da′ψ(r′)
∂GD
∂n′

(r, r′). (2.18)

On the other hand, for the Neumann BC, we can choose

∂GN
∂n′

(r, r′) = 0 for r′ on S, (2.19)

so that

ψ(r) =

∫
S

da′GN (r, r′)
∂ψ(r′)

∂n′
. (2.20)

For example, if S is the x− y plane and V is the semi-
infinite space above the plane, then

GD(r, r′) =
1

4π

(
eikR

R
− eikR̄

R̄

)
, (2.21)

GN (r, r′) =
1

4π

(
eikR

R
+
eikR̄

R̄

)
, (2.22)

where R = |r − r′|, R̄ = |r − r̄′|, r̄′ is the image point
of r′ with respect to the plane. Note that n̂ = −ẑ, so
that ∂G0/∂n

′ = −∂G0/∂z
′. For the Dirichlet BC, on the

surface with z = 0,

∂GD
∂z′

∣∣∣∣
z′=0

= 2
∂

∂z′
eikR

R

∣∣∣∣
z′=0

, (2.23)

and

ψ(r) =
1

2π

∫
S

da′ψ(r′)
∂

∂z′
eik|r−r

′|

|r− r′|
. (2.24)

Except for an infinite plane or a sphere ... etc, it’s difficult
to find the GD or GN that could vanish on S.

Since we are dealing with a dynamic field interacting
with an obstacle, it’s difficult to know the precise value
of field on S. There are several ways to move ahead from
Eq. (2.24). For a plane with an aperture, we can make
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FIG. 7 Left: Intensity of an EM wave diffracted by a circular
aperture with radius a. F = a2/λz, where z is the distance be-
tween aperture and screen. The theoretical results are based
on Eq. (2.24) with the Kirchhoff approximation. Figs from
Zangwill, 2013

the Kirchhoff approximation:
1. The amplitude of wave ψ is zero on S, except at the
aperture.
2. At the aperture, the value of ψ is close to the value of
the incident wave ψi. This can be valid only if the size
of the aperture d is much larger than wavelength λ.

In Fig. 7, we see that the scalar diffraction theory with
the Kirchhoff approximation can produce satisfactory re-
sult (see the explanation below Eq. (2.34)). The diffrac-
tion from a circular aperture will be studied in details
later using vector diffraction theory.

In the far-field regime,

k|r− r′| ' kr − kr̂ · r′︸ ︷︷ ︸
∼ kd

+
k

2r

[
r′2 − (r̂ · r′)2

]
︸ ︷︷ ︸

∼ kd2/r

. (2.25)

If r � kd2, then the quadratic terms can be neglected,
and

∂

∂z′
eik|r−r

′|

|r− r′|
' −ikz

eikr

r
e−ik·r

′
+O

(
1

r2

)
. (2.26)

In terms of the Fresnel number F ≡ d2/λz, the regions
of observation can be divided into (see Fig. 8(a))
1. F < 1/2 (and r � d), called Fraunhofer diffrac-
tion.
2. F ' 1 (and r � d), called Fresnel diffraction.

FIG. 8 (a) The diffraction of scalar wave from an aperture
with size 2a. Dashed lines show the width of the diffraction
beam. It is larger than the geometric shadow when F = 1/2.
(b) The evolution of the diffraction patterns as z increases.
Figs from unknown source.

3. F � 1, called near-field diffraction.
The difference between their diffraction patterns can be
seen in Fig. 8(b). For example, for green light with
λ = 0.5 µm. If d = 1 mm (or 0.1 mm), then to be
in the Fraunhofer regime, one needs z > 2d2/λ = 4 m
(or 4 cm).

For the Fraunhofer diffraction,

ψ(r) ' − ikz
2π

∫
ap

da′ψi(r
′)
eikr

r
e−ik·r

′
(2.27)

= − ikz
2π

eikr

r

∫
ap

da′ψi(r
′)e−ik·r

′
(2.28)

The first equation is consistent with the Huygens prin-
ciple: Every area element of the aperture is a source of
a spherical wave with amplitude ψ(r′) and phase e−ik·r

′
.

In the second equation, the integral is a 2D Fourier trans-
form of the aperture field ψ(x, y, 0). That is, the far field
is proportional to the Fourier transform of the aperture
field. Note: This does not apply to the diffraction from
the edge of a plane, which has an infinite “aperture”.

For example, for a single slit with width d on a plane,
the aperture field is proportional to the function

f(x) =

{
1 |x| < d/2
0 |x| > d/2

. (2.29)

Its Fourier transform is,

F (k) =
sin[(kd/2) sin θ]

(kd/2) sin θ
, sin θ =

x

z
. (2.30)

Thus, away from the central peak, the diffraction pattern
has the first minimum at sin θ1 = λ/d.
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B. Diffraction of vector wave

For the diffraction of vectorial EM wave, one cannot
simply apply Eq. (2.24) to the x, y, z components sepa-
rately. A nice analysis of the diffraction of EM wave can
be found in Sec. 21.8.2 of Zangwill, 2013. We will skip
the derivation here and get to the result directly. The
vector version of Eq. (2.24), valid for an infinite plane,
should be,

E(r) = −2

∫
z′=0

da′ [ẑ×E(r′)]×∇G0(r, r′), (2.31)

where

G0 =
1

4π

eik|r−r
′|

|r− r′|
. (2.32)

Similarly,

B(r) = −2

∫
z′=0

da′ [ẑ×B(r′)]×∇G0(r, r′). (2.33)

These are referred to as Smythe’s formulas (Smythe,
1989). Using the BAC-CAB rule for the cross product,
one has

E(r) = −2

∫
z′=0

da′E ẑ · ∇G0 + 2ẑ

∫
z′=0

da′E · ∇G0.

(2.34)
It is not difficult to see that for Ex(r) and Ey(r), the
equation agrees with Eq. (2.24) with the replacement
ψ(r) → Ex,y(r). However, the equation for Ez compo-
nent is different.

If the Ez component can be neglected, which is so when
the incident direction is nearly normal and the obser-
vation point is close to the symmetry axis, then scalar
diffraction theory gives good result. This explains the
accuracy of the scalar diffraction in Fig. 7.

The Kirchhoff approximation for vector wave is,
1. ẑ×E ' 0 on the screen.
2. ẑ×E ' ẑ×Ei in the aperture.
For reference, for an infinite, thin, perfectly conducting
plane, the boundary condition should be,
1. ẑ×E = 0 on the screen.
2. ẑ×B = ẑ×Bi in the aperture.
Hence, the first Kirchhoff approximation is exact for a
perfectly conducting plane.

Adopting the Kirchhoff approximation, one has

E(r) = 2

∫
ap

da′∇G0(r, r′)× [ẑ×Ei(r
′)] . (2.35)

In the far zone,

∇G0 ' ikr̂
eikr

4πr
e−ikr̂·r

′
, (2.36)

thus,

E(r) =
eikr

2πr
ik×

∫
ap

da′e−ik·r
′
ẑ×Ei(r

′) +O

(
1

r2

)
.

(2.37)

FIG. 9 The coordinates and variables related to a circular
aperture.

The relation between E and B is simple in the far zone,

cB(r) = k̂×E(r). (2.38)

1. Diffraction from circular aperture

We now study the diffraction due to a circular aperture
in a conducting plane, under the assumption that r � d
and r � d2/λ. As shown in Fig. 9, the incident wave
vector k0 makes an angle α with the z-axis. Rotate the
coordinate around z so that k0 and Ei lie on the x − z
plane. Hence,

k0 = x̂ sinα+ ẑ cosα, (2.39)

Ei(r
′) = E0 (x̂ cosα− ẑ sinα) eik0·r′ . (2.40)

Also,

ẑ×Ei(r
′) = E0ŷ cosα eik0·r′ , (2.41)

eik0·r′ = eikx
′ sinα, (2.42)

e−ik·r
′

= e−ik(x′ sin θ cosφ+y′ sin θ sinφ). (2.43)

Using the polar coordinate,

r′ = (ρ cosβ, ρ sinβ, 0), (2.44)

then,

E(r) =
eikr

2πr
i(k× ŷ)E0 cosα

∫ a

0

ρdρ

∫ 2π

0

dβ (2.45)

× eikρ(sinα cos β−sin θ cosφ cos β−sin θ sinφ sin β).

The integrand can be written as,

eikρ(··· ) = eikρξ cos(β+η), (2.46)

where η is some angle, and

ξ =
(
sin2 α+ sin2 θ − 2 sinα sin θ cosφ

)1/2
. (2.47)
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Then, with the help of

1

2π

∫ 2π

0

dβeikρξ cos β = J0(kρξ), (2.48)

and (x2Jn)′ = xnJn−1, we have∫ a

0

ρdρ

∫ 2π

0

dβ · · · = 2πa2 J1(kaξ)

kaξ
. (2.49)

Thus,

E(r) =
eikr

r
ik× ŷE0a

2 cosα
J1(kaξ)

kaξ
. (2.50)

To calculate the power of diffracted EM wave, use

dP

dΩ
=

1

2
Re (E×H∗ · r̂) r2 =

1

2Z0
|E|2r2. (2.51)

Then,

dP

dΩ
= Pin cosα|k̂× ŷ|2 (ka)2

π

∣∣∣∣J1(kaξ)

kaξ

∣∣∣∣2 , (2.52)

in which

Pin =
E2

0

2Z0
πa2 cosα, (2.53)

and |k̂× ŷ|2 = sin2 θ cos2 φ+ cos2 θ. (2.54)

For normal incidence, α = 0, ξ = sin θ, and

dP

dΩ
= Pin

(
sin2 θ cos2 φ+ cos2 θ

) (ka)2

π

[
J1(ka sin θ)

ka sin θ

]2

.

(2.55)
The Bessel function J1(x) has zeros at x = 3.83, 7.01...
(Fig. 10). Thus, the first dark ring in Fig. 10(b) is located
at

sin θ1 '
3.83

π

λ

2a
= 1.22

λ

2a
. (2.56)

By comparison, the first minimum of a single-slit diffrac-
tion occurs at sin θ1 = λ/d, where d is the width of the
slit.

Note: The result based on scalar diffraction has the
same first minimum as the one above: The diffraction
field is the Fourier transform of the circular aperture,
which is also proportional to the same Bessel function
J1(ka sin θ).

From Eq. (2.56), we have the Rayleigh criterion for
the angular resolution of a telescope (or a pupil) with
diameter d,

θ ' 1.22
λ

d
. (2.57)

For example, for yellow light,

θ ' 15

d (in cm)
arcsec (1 arcsec = 1/3600 degree).

(2.58)

(a) (b)

FIG. 10 (a) Bessel functions. (b) The pattern of diffraction
from a circular aperture (aka an Airy disk).

A full moon spans roughly 1/2 degree. Suppose the di-
ameter of a pupil is 1 cm, then it’s hard to distinguish a
feature smaller than 1/30 of the moon with naked eyes.

The Hubble telescope has a diameter of d = 240 cm,
so the resolution power is about θ = 1.74×10−5 degrees.
To distinguish two stars in the Andromeda galaxy two
million light years away, their distance has to be larger
than 0.6 light year.

An interesting review regarding the light in a tiny hole
can be found in Genet and Ebbesen, 2007.

2. The Babinet principle

Let’s start with the scalar diffraction. Suppose there
is a flat plate S with an aperture, and a complementary
flat plate S′ that can fill the aperture precisely. Given
the same incident wave ψi, the scattering wave of S is ψ,
and scattering wave of S′ is ψ′. Then, according to the
Huygens principle, the sum of scattering waves,

ψ + ψ′ = ψi, (2.59)

since the wavelets from S + S′ are the same as the
wavelets from an infinite plane without any plate (Som-
merfeld, 1954). This is called Babinet principle for
scalar diffraction. It is valid (for as far as the Huygens
principle is valid) for both Fresnel and Fraunhofer diffrac-
tions.

The intensity I for a wave is |ψ|2. Therefore,

I + I ′ + ψψ′∗ + ψ∗ψ′ = Ii. (2.60)

Suppose that a point source is imaged by an error-free
lens, so that ψi is a point on the image plane. Then,
away from the image point, ψi = 0, and

ψ = −ψ′ → I = I ′. (2.61)

That is, the two complementary plates produce the same
diffraction pattern (and with the same intensity).

Now, for vector diffraction, consider a thin, infinite,
perfectly conducting plate S with an aperture. Its com-
plementary screen is S′. Unlike the scalar case, here we
use slightly different incident plane waves for S and S′

(Fig. 11),

E′i = −cBi, (2.62)

cB′i = Ei. (2.63)
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FIG. 11 A plane wave scattered by an aperture in a conduct-
ing screen (left). A dual plane wave scattered by a comple-
mentary conducting plate (right).

They propagate along the same direction k0 that may
not be parallel to ẑ. The E′i and B′i scattered from S′

differ from the Ei and Bi scattered from S by a rotation
around k0 by 90 degrees.

Suppose E, B are the sum of incident and scattered
fields,

E = Ei + Es, (2.64)

B = Bi + Bs, (2.65)

with similar notation for the “primed” fields. Then the
Babinet principle states that, on the side of the screen
opposite to the source,

Es + cB′s = −Ei, (2.66)

−cBs + E′s = cBi. (2.67)

Alternatively speaking,

cB′s = −E, (2.68)

E′s = cB. (2.69)

This applies to both near field and far field (without the
need of Kirchhoff approximation).
Pf: To solve the original diffraction problem, we need

∇×Es = ik0(cBs), (2.70)

∇× (cBs) = −ik0Es, (2.71)

together with the BC (P for plate, and A for aperture),

I ẑ×Es = −ẑ×Ei on P, (2.72)

II ẑ× cBs = 0 on A. (2.73)

In comparison, to solve the dual diffraction problem, we
need

∇×E′ = ik0(cB′), (2.74)

∇× (cB′) = −ik0E
′, (2.75)

together with the BC (P ′ and A′ are the plate and aper-
ture for the dual problem),

I ′ ẑ×E′ = 0 on P ′ = A, (2.76)

II ′ ẑ× cB′ = ẑ× cBi on A′ = P. (2.77)

FIG. 12 Experimental realization of Babinet’s principle
(Tavassoly et al., 2009). (a), (b) The diffraction patterns and
intensity profiles of the light diffracted from a slit of 0.24 mm
width and an opaque strip with the same width as the slit. (c)
The pattern and intensity profile obtained by superimposing
the diffracted fields in (a) and (b). (d), (e) The diffraction
patterns and intensity profiles of the light diffracted from two
complementary straight edges. (f) The pattern and intensity
profile obtained by superimposing the diffraction fields in (d)
and (e).

Close inspection shows that
II ′ → I if cB′ → −Es, and
I ′ → II if E′ → cBs.
Also, the two Maxwell equations remain the same under
the dual transformation. Therefore, with the same ini-
tial condition in Eqs. (2.62) and (2.63), the solutions for
Es, cBs should be the same as those of E′,−cB′ (Born
and Wolf, 1980).

The diffraction patterns produced by an aperture and
its dual problem can be seen in Fig. 12. Discussion of
the Babinet principle from the viewpoint of sources on
the plate can be found in Booker, 1946.
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