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I. RADIATING SYSTEMS AND MULTIPOLE FIELDS

A. Radiation of a localized oscillating source

In this chapter we study the electromagnetic radiation
generated from oscillating charge and current. In Chap
16, we have learned that under the Lorenz gauge, the
scalar and vector potentials satisfy

∇2φ− 1

c2
∂2φ

∂t2
= −ρ0

ε0
, (1.1)

∇2A− 1

c2
∂2A

∂t2
= −µ0J. (1.2)

Their solutions are (see the Appendix at the end)

φ(r, t) =
1

4πε0

∫
dv′

ρ(r′, tR)

|r− r′|
, (1.3)

A(r, t) =
µ0

4π

∫
dv′

J(r′, tR)

|r− r′|
, (1.4)

in which tR ≡ t − R/c is the retarded time, and R =
|r− r′| .

Suppose the source is oscillating with frequency ω,

ρ(r, t) = ρ(r)e−iωt, (1.5)

J(r, t) = J(r)e−iωt, (1.6)

then the potentials are also oscillating with the same fre-
quency,

φ(r, t) = φ(r)e−iωt, (1.7)

A(r, t) = A(r)e−iωt, (1.8)

where

φ(r) =
1

4πε0

∫
dv′ρ(r′)

eikR

R
, (1.9)

A(r) =
µ0

4π

∫
dv′J(r′)

eikR

R
. (1.10)

The electromagnetic fields can be calculated using E =
−∇φ−∂A/∂t and H = 1

µ0
∇×A. Since they all have the

same e−iωt-dependence, so we’ll only focus on the spatial
part.

In fact, you don’t need to calculate the electric field
and magnetic field separately, since one field determines
the other. In vacuum with J = 0,

∇×H(r, t) = ε0
∂

∂t
E(r, t). (1.11)

Therefore,

E(r) =
i

ε0ω
∇×H(r). (1.12)

The electric field can be determined from this equation,
without the need to know φ(r, t).

For a radiating system, there are three important
length scales: the size of the source d, the wave length λ
of the radiation, and the distance R between the source
and an observation point. For the rest of this chapter,
we only deal with the cases with

λ,R� d. (1.13)

If d is larger, then numerical calculation might be re-
quired. Furthermore, the location of observation can be
divided into 3 regimes:

near zone : R� λ, (1.14)

intermediate zone : R ' λ, (1.15)

far (or radiation) zone : R� λ. (1.16)

In the near zone with kR� 1,

eikR

R
' 1

R
. (1.17)

Thus, the potentials calculated from Eqs. (1.9), (1.10) are
simply static potentials multiplied by e−iωt (quasi-static
case).

On the other hand, in the far zone with r � r′,

R = |r− r′| ' r − r̂ · r′. (1.18)
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Thus,

eikR

R
' eikre−ikr̂·r

′

r − r̂ · r′
(1.19)

' eikr

r
e−ikr̂·r

′
+O

(
1

r2

)
(1.20)

=
eikr

r
(1− ikr̂ · r′ + · · · ) . (1.21)

The first term gives electric dipole radiation, while the
second term gives magnetic dipole radiation and electric
quadrupole radiation. In the intermediate zone, the ap-
proximations above cannot be applied and the calculation
would be more difficult.

B. Electric dipole radiation

Keep the first term of Eq. (1.21) in the far-zone expan-
sion, then

eikR

R
' eikr

r
, (1.22)

and

A(r) ' µ0

4π

eikr

r

∫
dv′J(r′). (1.23)

With a trick, we can relate the integral with electric
dipole moment. Note that

∇ · (riJ) = Ji + ri∇ · J, (1.24)

and the integral of ∇ · (riJ) is zero. Also, Eq. of conti-
nuity gives

∇ · J(r) = iωρ(r). (1.25)

Therefore, ∫
dv′J(r′) = −

∫
dv′r′(∇′ · J) (1.26)

= −iω
∫
dv′r′ρ(r′) (1.27)

= −iωp, (1.28)

where p is the electric dipole moment. Thus,

A(r) = −µ0

4π

eikr

r
iωp. (1.29)

It follows that,

H(r) =
1

µ0
∇×A (1.30)

= − iω
4π
∇×

(
eikr

r
p

)
︸ ︷︷ ︸

=∇
(
eikr

r

)
×p

(1.31)

=
ck2

4π
r̂× p

eikr

r
+O

(
1

r2

)
. (1.32)

(a) (b)

FIG. 1 The patterns of electric dipole radiation (a) and elec-
tric quadrupole radiation (b).

Also,

E(r) =
i

ε0ω
∇×H(r) (1.33)

= − k2

4πε0
r̂× (r̂× p)

eikr

r
+O

(
1

r2

)
(1.34)

=

√
µ0

ε0︸ ︷︷ ︸
=Z0

H(r)× r̂, (1.35)

where Z0 ' 376.7 ohm is the wave impedance of vac-
uum.

Furthermore, we can calculate the power of radiating
field. Recall that the Poynting vector is the energy cur-
rent density (energy/time·area). Using the complex no-
tation, after time-average,

〈S〉T =
1

2
Re (E(r)×H∗(r)) . (1.36)

The time-averaged power radiated toward solid angle dΩ
is,

dP = 〈S〉T · r̂ r2dΩ. (1.37)

The angular distribution of radiated power is (Fig. 1(a)),

dP

dΩ
=

r2

2
Re (E×H∗ · r̂) (1.38)

=
r2

2
Z0|H× r̂|2 (1.39)

=
c

2ε0

(
k2

4π

)2

|r̂× (r̂× p)|2︸ ︷︷ ︸
=|p−r̂(r̂·p)|2

(1.40)

=
Z0

2

(
k2

4π

)2

c2p2 sin2 θ. (1.41)

It can be integrated to get the total power,

P =

∫
dΩ

(
dP

dΩ

)
(1.42)

=
Z0

12π
c2p2k4 ∝ k4. (1.43)
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C. Magnetic dipole radiation and electric quadrupole
radiation

We now consider the second term of Eq. (1.21) in the
far-zone expansion,

A(r) ' µ0

4π

eikr

r

∫
dv′J(r′)(−ikr̂ · r′). (1.44)

The following equation can be used to separate magnetic
dipole radiation from electric quadrupole radiation,

(r̂ · r′)J =
1

2
[(r̂ · r′)J + (r̂ · J)r′] → EQ

− 1

2
r̂× (r′ × J) → MD. (1.45)

To check its validity, just apply the BAC-CAB rule to
the second term.

1. Magnetic dipole field

Let’s focus on the second term of Eq. (1.45). Recall
that the magnetic moment is

m =
1

2

∫
dv′r′ × J. (1.46)

Thus, the magnetic dipole part of the vector potential in
Eq. (1.44) gives,

AMD(r) =
µ0

4π

eikr

r

ik

2

∫
dv′r̂× (r′ × J) (1.47)

=
µ0

4π

eikr

r
ik(r̂×m). (1.48)

It follows that,

H(r) =
1

µ0
∇×A(r) (1.49)

= − k
2

4π
r̂× (r̂×m)

eikr

r
+O

(
1

r2

)
. (1.50)

This is the same as the E/Z0 of electric dipole radiation,
except that p is replaced by m/c. Also,

E(r) =
i

ε0ω
∇×H(r) (1.51)

= − i

ε0ω

k2

4π
∇
(
eikr

r

)
× [r̂× (r̂×m)] (1.52)

= −Z0
k2

4π
(r̂×m)

eikr

r
+O

(
1

r2

)
. (1.53)

Thus,

H =
1

Z0
r̂×E or E = Z0H× r̂. (1.54)

The E(r) in Eq. (1.53) is the same as the−Z0H of electric
dipole radiation, except that cp is replaced by m (Fig. 2).

(a) (b)

FIG. 2 A comparison between electric dipole radiation (a)
and magnetic dipole radiation (b).

Compare electric dipole radiation with magnetic dipole
radiation, we find that if p→m/c, then

HMD =
1

Z0
EED, or BMD =

1

c
EED, (1.55)

EMD = −Z0HED, or EMD = −cBED, (1.56)

thus

〈S〉MD
T =

1

2
Re (EMD ×H∗MD) (1.57)

=
1

2
Re (EED ×H∗ED) = 〈S〉EDT . (1.58)

The patterns of the two radiations are the same. For the
magnetic dipole radiation, one has

dP

dΩ
=
Z0

2

(
k2

4π

)2

m2 sin2 θ. (1.59)

The total power of radiation is,

P =
Z0

12π
m2k4 ∝ k4. (1.60)

Comparing the powers of radiation, we have

PMD

PED
∼
(
m

cp

)2

∼
(
J

cρ

)2

∼
(v
c

)2

. (1.61)

Or, if d is the size of the system, then since

J

d
∼ ωρ, (1.62)

we have

PMD

PED
∼
(
J

cρ

)2

∼
(
d

λ

)2

. (1.63)

Thus, PMD � PED when v � c or d� λ.

2. Duality symmetry

The relations above are the result of a symmetry of
Maxwell equations. In the absence of source, the Maxwell
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equations are,

∇ ·E = 0, (1.64)

∇ ·B = 0 (1.65)

∇×E = −∂B

∂t
, (1.66)

∇×B =
1

c2
∂E

∂t
. (1.67)

It is not difficult to see that the equations are invariant
under the following replacement,

(E, cB)↔ ±(cB,−E). (1.68)

That is, if (E, cB) is a solution of the Maxwell equa-
tions, then (E′, cB′) = ±α(cB,−E) is also a solution (α
is a constant). This is called the duality symmetry of
Maxwell equations, and is the reason why we have the
relations in Eqs. (1.55) and (1.56). In the presence of
source, the duality symmetry is broken since there are
electric charges but no magnetic charges. The symmetry
could be restored if magnetic monopoles do exist.

3. Electric quadrupole field

We now focus on the first term in Eq. (1.45). It is left
as an exercise for you to show that,

1

2

∫
dv′ [(r̂ · r′)J + (r̂ · J)r′] = − iω

2

∫
dv′r′(r′ · r̂)ρ(r′).

(1.69)
Therefore, the electric quadrupole part of the vector po-
tential is,

A(r) =
µ0

4π

eikr

r

(
−kω

2

)∫
dv′r′(r′ · r̂)ρ(r′). (1.70)

The integral is related to the electric quadrupole moment,∫
dv′r′r′ · r̂ρ(r′) =

∫
dv′
(

r′r′ · r̂− r′2

3
r̂

)
ρ(r′)

+

∫
dv′

r′2

3
r̂ρ(r′) (1.71)

=
1

3
Q · r̂ +

r̂

3

∫
dv′r′2ρ(r′), (1.72)

in which Q is the electric quadrupole moment,

Qij ≡
∫
dv′
(
3r′ir

′
j − r′2δij

)
ρ(r′). (1.73)

One can also write Q · r̂ = Q(r̂), which is a vector Q that
depends on r̂. Thus,

AEQ(r) = −µ0ck
2

8π

eikr

r

[
1

3
Q(r̂) +

r̂

3

∫
dv′r′2ρ

]
. (1.74)

It follows that,

H(r) =
1

µ0
∇×A(r) (1.75)

= −ck
2

8π

eikr

r
ikr̂× 1

3
Q(r̂) +O

(
1

r2

)
(1.76)

= −i ck
3

24π

eikr

r
r̂×Q(r̂) +O

(
1

r2

)
, (1.77)

and

E(r) = Z0H(r)× r̂. (1.78)

Thus, the angular distribution of radiated power is,

dP

dΩ
=

r2

2
Re (E×H∗ · r̂) (1.79)

=
r2

2
Z0|H× r̂|2 (1.80)

=
Z0

2

(
ck3

24π

)2

|r̂× [r̂×Q(r̂)]|2. (1.81)

For a diagonal electric quadrupole matrix with

Q11 = Q22 = −Q0

2
, Q33 = Q0, (1.82)

we have (Fig. 1(b))

dP

dΩ
= Z0

(
ck3

24π

)2

Q2
0 sin2 θ cos2 θ︸ ︷︷ ︸

= 1
4 sin2 2θ

. (1.83)

To calculate the total power P =
∫
dΩdP

dΩ , first write
(r̂→ n̂)

|n̂× [n̂×Q(n̂)]|2

= Q∗ ·Q− |n̂ ·Q|2 (1.84)

=
∑
ijk

Q∗ijQiknjnk −
∑
ijkl

Q∗ijQklninjnknl. (1.85)

Two identities are required to calculate the integral over
solid angle:∫

dΩ njnk =
4π

3
δjk, (1.86)∫

dΩ ninjnknl =
4π

15
(δijδkl + δikδjl + δilδjk). (1.87)

Pf: First, ∫
dΩ njnk = 0, if j 6= k. (1.88)

Also, ∫
dΩ n2

x =

∫
dΩ n2

y =

∫
dΩ n2

z (1.89)

=
1

3

∫
dΩ |n̂|2 =

4π

3
. (1.90)
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FIG. 3 A center-fed linear antenna. Fig. from Jackson, 1998.

Thus we have Eq. (1.86)
Second, for the integral with 4 n’s, at least two of the

subscripts must be the same. If the other two n’s have
different subscripts, then the integral is zero, similar to
Eq. (1.88) above. So the subscript must form two pairs
for the integral to be non-zero,∫

dΩ ninjnknl = C(δijδkl + δikδjl + δilδjk), (1.91)

where C is a constant. The constant C = 4π/15 can be
determined by choosing, e.g., i = j = k = l = z. Q.E.D.

It follows that,∫
dΩ |n̂× [n̂×Q(n̂)]|2 (1.92)

=
4π

3

∑
ij

|Qij |2 −
4π

15

∑
i

Q∗ii
∑
k

Qkk + 2
∑
ij

|Qij |2


=
4π

5

∑
ij

|Qij |2. (1.93)

The second term above is zero because the electric
quadrupole matrix is traceless. Finally,

P =

∫
dΩ

dP

dΩ

=
Z0

60 · 24π
c2k6

∑
ij

|Qij |2 ∝ k6. (1.94)

D. Center-fed linear antenna

Consider an antenna made of a thin, straight wire with
length d (Fig. 3). Suppose the current distribution in
such a center-fed antenna is sinusoidal in space. The
current density is,

J(r, t) = J(r)e−iωt, (1.95)

J(r) = I0 sin

[
k

(
d

2
− |z|

)]
δ(x)δ(y)ẑ. (1.96)

The current distribution is symmetric with respect to
the origin and vanishes at two ends. In the far zone, the
vector potential in Eq. (1.10) can be calculated with the
approximation in Eq. (1.20),

A(r) =
µ0

4π

eikr

r

∫
dv′J(r′)e−ikr̂·r

′
(1.97)

=
µ0

4π

eikr

r
I0

∫ d/2

−d/2
dz sin

(
kd

2
− k|z|

)
e−ikz cos θ

︸ ︷︷ ︸
= 2
k {cos[(kd/2) sin θ]−cos(kd/2)}/ sin2 θ

ẑ.

The magnetic field is,

H(r) =
1

µ0
ikr̂×A(r) +O

(
1

r2

)
. (1.98)

Also,

dP

dΩ
=

r2

2
Re (E×H∗ · r̂) (1.99)

=
r2

2
Z0|H× r̂|2 (1.100)

=
Z0

2

(
I0
2π

)2
∣∣∣∣∣cos

(
kd
2 sin θ

)
− cos kd2

sin θ

∣∣∣∣∣
2

.(1.101)

For a half-wave antenna with kd = π, and a full-wave
antenna with kd = 2π, one has

dP

dΩ
=
Z0

2

(
I0
2π

)2


cos2(π2 cos θ)
sin2 θ

, kd = π
4 cos4(π2 cos θ)

sin2 θ
, kd = 2π

(1.102)

Their patterns of radiation are shown in Fig. 4.
If the length of the antenna is much shorter than the

wavelength (kd� 1), then

dP

dΩ
' Z0

8

(
I0
2π

)2(
kd

2

)4

sin2 θ, (1.103)

and

P = Z0
I2
0

12π

(
kd

2

)4

. (1.104)

The input current Iin = I(z = 0) ∼ I0kd/2 for a short
linear antenna (Garg, 2012). If we define the radiation
resistance from

P =
1

2
I2
inRrad, (1.105)

then

Rrad = Z0
π

6

(
d

λ

)2

. (1.106)

For example, for a short linear antenna with d = λ/10,
Rrad ' 2 Ω. To produce EM wave with 1 KW power,
one needs I0 ' 30 A.
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(a)

(b)

FIG. 4 Comparison of the radiations from (a) half-wave an-
tenna and (b) full-wave antenna. The latter has narrower an-
gular distribution. Solid lines are the results calculated with-
out making any approximation. Dashed lines and dotted line
are the results from two-term spherical multipole expansion
and dipole approximation respectively. Figs from Jackson,
1998.

An antenna can be used to transmit or to receive sig-
nals. An antenna reciprocity theorem tells us that
the radiation pattern of transmitting antenna a, which
transmits to the receiving antenna b is equal to the ra-
diation pattern of antenna b, if it transmits and antenna
a receives the signal. See, for example, Prob. 20.14 of
Zangwill, 2013, or McDonald, 2010 for more information.

E. Revisiting electric dipole radiation

We now study the radiation generated from a dipole
with general time-dependence (not necessarily e−iωt).
Start from

φ(r, t) =
1

4πε0

∫
dv′

ρ(r′, tR)

|r− r′|
, (1.107)

A(r, t) =
µ0

4π

∫
dv′

J(r′, tR)

|r− r′|
, (1.108)

where tR ≡ t − R/c and R = |r − r′|. Focus on the far
zone with r � r′, such that

tR ' t−
1

c
(r − r̂ · r′) = tr +

1

c
r̂ · r′, (1.109)

where tr ≡ t− r

c
. (1.110)

Taylor-expand the retarded charge density and current
density to the first order (dipole approximation) to get,

ρ

(
r′, t− R

c

)
' ρ (r′, tr) +

r̂ · r′

c

dρ

dt
|t=tr , (1.111)

J

(
r′, t− R

c

)
' J (r′, tr) +

r̂ · r′

c

dJ

dt
|t=tr . (1.112)

The second term is much smaller than the first term (and
higher order terms can be ignored) if ωr′/c� 1, or r′ �
λ, where ω is the characteristic frequency of the radiating
source.

In the far zone, we have

φ(r, t) ' 1

4πε0

1

r

[∫
dv′ρ(r′, tr) +

r̂

c
· d
dt

∫
dv′r′ρ(r′, tr)

]
=

1

4πε0

1

r

[
Q+

r̂

c
· d
dt

p(tr)

]
+O

(
1

r2

)
. (1.113)

The monopole term will be dropped, since Q is a constant
and does not generate radiation.

One can do the same to the vector potential. Before
doing that, it helps to know that∫

dv J =
dp

dt
. (1.114)

This is a generalization of the relation in Eq. (1.28). It
can be proved by using

∇ · (riJ) = Ji + ri∇ · J (1.115)

= Ji − ri
∂ρ

∂t
(1.116)

= Ji −
∂

∂t
(riρ), ri is fixed. (1.117)

We have relied the equation of continuity to get the sec-
ond equality. Eq. (1.114) follows after the equation above
is integrated over space. As a result,

A(r, t) =
µ0

4π

1

r

∫
dv′J(r′, tr) +O

(
1

r2

)
, (1.118)

' µ0

4π

1

r

d

dt
p(tr). (1.119)

With the scalar potential and vector potential at hand,
we can calculate the electromagnetic field. First,

∇φ =
1

4πε0

r̂ · p̈(tr)

cr
∇tr +O

(
1

r2

)
, (1.120)

in which

∇tr = −1

c
∇r = −1

c
r̂. (1.121)

Also,

∂A

∂t
=

µ0

4π

p̈(tr)

r
, (1.122)

∇×A =
µ0

4πr
∇tr × p̈(tr) +O

(
1

r2

)
. (1.123)

This gives

E(r, t) = −∇φ− ∂A

∂t
(1.124)

=
µ0

4πr
[r̂(r̂ · p̈)− p̈] =

µ0

4πr
r̂× (r̂× p̈),
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and

B(r, t) = ∇×A = − µ0

4πr

1

c
r̂× p̈. (1.125)

Thus,

E = cB× r̂. (1.126)

It follows that,

S =
1

µ0
E×B (1.127)

=
µ0

16π2c

1

r2
|r̂× (r̂× p̈)|2 r̂ (1.128)

=
µ0

16π2c

1

r2
|p̈⊥(tr)|2 r̂, (1.129)

Note that given a vector u, one has

|r̂× (r̂× u)| = |u− r̂(r̂ · u)| (1.130)

= |u⊥|, (1.131)

in which u⊥ is the component of u perpendicular to r̂.
The angular distribution of radiated power is,

dP

dΩ
= S · r̂r2 (1.132)

=
µ0

16π2c
sin2 θ |p̈(tr)|2 , (1.133)

where θ is the angle between r and p̈. This gives the
total power of radiation,

P (t) =

∫
dΩ

dP

dΩ
=

µ0

6πc
|p̈(tr)|2 . (1.134)

Note that this is not time-averaged.
Because of the duality symmetry, to get the angular

distribution for magnetic dipole radiation, just replace
the p in Eq. (1.133) with m/c,

dP

dΩ
=

µ0

16π2c3
sin2 θ |m̈(tr)|2 . (1.135)

Similarly, the total power of radiation is,

P (t) =
µ0

6πc3
|m̈(tr)|2 . (1.136)

1. Radiation from accelerated charge

We will study the radiation from a point charge in a
later chapter. Here we use the formula of dipole radiation
as a short-cut to get the result. A point charge located
at r(t) near the origin (with an extent d � λ) can be
considered as a dipole with,

p(t) = qr(t), (1.137)

→ p̈(t) = qa(t), a ≡ r̈. (1.138)

FIG. 5 The pattern of radiation from a point charge with
linear acceleration a.

According to Eq. (1.129), one has

dP

dΩ
=

µ0

16π2c
q2 |a⊥(tr)|2 . (1.139)

A moving charge can radiate only if it is accelerating. For
linear motion along a, the radiation is strongest when r
is perpendicular to a. There is no radiation along the
direction of a. For example, the pattern of radiation for
a uniformly accelerated charge is shown in Fig. 5. It is
similar to the pattern of an oscillating dipole radiation.

The total power of radiation is,

P (t) =
µ0q

2

6πc
|a(tr)|2 ∝ a2. (1.140)

This is the Larmor formula (for v � c). We will discuss
the general case for arbitrary velocity v in Chap 22.
Note: With this short-cut approach, one can’t rule out
more radiations beyond the dipole one, but in fact there
is no more.

2. The birth of dipole radiation

Consider the case when p(t) = p(t)ẑ. Then,

A(r, t) =
µ0

4π

1

r
ṗ(tr)ẑ. (1.141)

Hence,

∂E

∂t
= c2∇×B = c2∇(∇ ·A)− c2∇2A (1.142)

=
1

4πε

[
∇ ∂

∂z

(
ṗ

r

)
− ẑ∇2

(
ṗ

r

)]
tr

.

Integrate over t, and use the cylindrical coordinate to get,

E(r, t) =
1

4πε0

[
ρ̂
∂

∂ρ

∂

∂z

(p
r

)
− ẑ

1

ρ

∂

∂ρ

(
ρ
∂

∂ρ

p

r

)]
tr

,

(1.143)

where r =
√
ρ2 + z2. If we define

W (r, t) = −ρ ∂
∂ρ

p(tr)

r
, (1.144)
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(a)

(b)

FIG. 6 (a) Field lines from an oscillating electric dipole. A
field line would reconnet to form a closed loop and expand
outward. Note: The space-time coordinate of the connection
point is not necessarily at (0, T/4). (b) The distribution of
magnetic field is shown with blue dots and blue crosses.

then

E(r, t) =
1

4πε0

1

ρ

(
−∂W
∂z

ρ̂ +
∂W

∂ρ
ẑ

)
. (1.145)

On the other hand,

∇W =
∂W

∂ρ
ρ̂ +

∂W

∂z
ẑ. (1.146)

Thus,

E · ∇W = 0. (1.147)

That is, E is perpendicular to the gradient of W , or is
parallel to the tangent of the contour lines of W . Hence,
the contours of W are electric field lines.

For example, given

p(tr) = p0 cos(ωtr + φ) = p0 cos(kr − ωt− φ), (1.148)

one should be able to produce plots similar to the se-
quence in Fig. 6.

3. Stability of atom

In the Rutherfold model of hydrogen atom. The elec-
tron is circulating around the nucleus. Thus, the atom
can be seen as a rotating electric dipole:

r(t) = r0(cosωtx̂ + sinωtŷ), (1.149)

FIG. 7 A circulating electron emits radiation and loses en-
ergy.

and p(t) = qr(t), q = −e. According to the Larmor
formula (Eq. (1.140)),

P =
µ0

6πc
q2a2. (1.150)

If the radius of the electron orbit is r, then its energy is

E =
1

2
mv2 − q2

4πε0

1

r
(1.151)

= − q2

8πε0

1

r
. (1.152)

When the electron radiates and loses energy, the radius
shrinks (Fig. 7), the change of energy is,

dE =
q2

8πε0

1

r2
dr, (dr < 0) (1.153)

Thus,

Pdt = |dE| (1.154)

→ µ0

6πc
q2a2dt = − q2

8πε0

1

r2
dr, (1.155)

Since

a = ω2r =
v2

r
=
µ0q

2c2

4πmr2
, (1.156)

this leads to,

dt = − 3c3

4a2

dr

r2
= −γr2dr, where γ =

3

4c

1

r2
e

, (1.157)

in which re is the classical electron radius that satis-
fies

mc2 =
q2

4πε0

1

re
. (1.158)

It is related to the Bohr radius a0 via re = α2a0, where
α ' 1/137 is the fine-structure constant. The time
for the radius of the electron to shrink from a0 to zero is,

τ = −γ
∫ 0

a0

r2dr =
a0

4c

1

α8
. (1.159)
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You can plug in numbers to get τ ' 1.31 × 10−11 s.
That is, according to classical theory, the Rutherford
atom should collapse immediately because of the radi-
ation energy loss. The stability of the atom used to be a
mystery before the discovery of quantum mechanics.
Problems:
1. Show that

1

2

∫
dv′ [(r̂ · r′)J + (r̂ · J)r′] = − iω

2

∫
dv′r′(r′ · r̂)ρ(r′).

Appendix: Green’s function for wave equation
The wave equation,

∇2φ− 1

c2
∂2φ

∂t2
= −ρ0

ε0
, (1.160)

is of the following form,

L(r, t)φ(r, t) = h(r, t), (1.161)

L(r, t) ≡ ∇2 − 1

c2
∂2

∂t2
. (1.162)

Note that L is a linear differential operator. To solve it,
one can first solve the potential from a point source (in
space-time),

L(r, t)G(r, t; r′, t′) = δ(r− r′)δ(t− t′), (1.163)

then add up the potentials from a collection of point
sources to get φ.

Before doing that, let’s introduce the following 4-
vector notation,

x = (r, t), (1.164)

k = (k, ω), (1.165)

k · x = k · r− ωt, (1.166)

and

δ(x− x′) = δ(r− r′)δ(t− t′), (1.167)

d4x = d3vdt, (1.168)

d4k = d3kdω. (1.169)

With this new notation, the equations above become,

L(x)φ(x) = h(x), (1.170)

L(x)G(x, x′) = δ(x− x′). (1.171)

The general solution of Eq. (1.170) can be written as,

φ(x) = φ0(x) +

∫
d4x′G(x, x′)h(x′), (1.172)

where φ0 is a solution of Lφ = 0. This can be checked as
follows,

Lφ(x) = Lφ0 +

∫
d4x′ L(x)G(x, x′)︸ ︷︷ ︸

=δ(x−x′)

h(x′)(1.173)

= h(x). (1.174)

Reω

C
R

C

ck

Imω

−ck

FIG. 8 A closed path C consists of x-axis and a semi-circle
CR.

To solve for G(x, x′), first note that it should depend
only on x−x′, that is G(x, x′) = G(x−x′). Next, perform
the Fourier transformation,

G(x− x′) =

∫
d4k

(2π)4
G̃(k)eik·(x−x

′), (1.175)

δ(x− x′) =

∫
d4k

(2π)4
eik·(x−x

′). (1.176)

Then Eq. (1.171) becomes

L(x)G(x, x′) =

∫
d4k

(2π)4
G̃(k)Leik·(x−x

′) (1.177)

=

∫
d4k

(2π)4
G̃(k)

(
−|k|2 +

ω2

c2

)
eik·(x−x

′)

=

∫
d4k

(2π)4
eik·(x−x

′). (1.178)

It follows that

G̃(k) =
1(

ω
c

)2 − |k|2 . (1.179)

Thus,

G(x, x′) =

∫
d4k

(2π)4

1(
ω
c

)2 − |k|2 eik·(x−x′). (1.180)

We will first integrate over ω,

I =

∫ ∞
−∞

dω

2π

v2

ω2 − c2|k|2
e−iω(t−t′), (1.181)

Consider the following integral,∮
C

=

∫ ∞
−∞

+

∫
CR

, (1.182)

where the path C is shown in Fig. 8, and CR is a semi-
circle with radius R→∞. Physically, one expects

G(r− r′, t− t′)
{

= 0 if t < t′,
6= 0 if t > t′.

(1.183)

Decompose the frequency to real part and imaginary
part, ω = ω′ + iω′′, then

e−iω(t−t′) = e−iω
′(t−t′)eω

′′(t−t′). (1.184)
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The integral over CR would vanish if it goes under the
lower-half complex plane (ω′′ < 0).

Along the x-axis, the integrand of I has singularities at
ω = ±vk. One can bypass the singularities from above or
from below. According to Cauchy’s residue theorem,
if it goes under, then I = 0 since there is no singularity
in C. To get a nonzero result, it has to go above the
singularities. Alternatively, we can shift the poles down
a little to ±vk − iε, as shown in Fig. (8). It follows that

I =

∮
C

dω

2π

c2

ω2 − c2|k|2
e−iω(t−t′) (1.185)

= −2πi
c2

2π

[
eic|k|(t−t

′)

−2c|k|
+
e−ic|k|(t−t

′)

+2c|k|

]
(1.186)

=
i

2

c

|k|

[
eic|k|(t−t

′) − e−ic|k|(t−t
′)
]
. (1.187)

Finally, integrate over k to get

G(x, x′)

=

∫
d3k

(2π)3

ic

2k

[
eick(t−t′) − e−ick(t−t′)

]
eik·(r−r

′)

=
2π

(2π)3

∫
k2dk

ic

2k

[
eick(t−t′) − e−ick(t−t′)

]
×
∫ 1

−1

d cos θ eik|r−r
′| cos θ (1.188)

=
1

(2π)2

c

2

1

|r− r′|

∫ ∞
0

dk
[
eick(t−t′) − e−ick(t−t′)

]
×
[
eik|r−r

′| − e−ik|r−r
′|
]
.

The product gives 4 terms. Flip the signs of k in two of
the terms, we then get the integral,∫ ∞

−∞
dk
[
eiω(t−t′)+ik|r−r′| − e−iω(t−t′)+ik|r−r′|

]
= 2πδ[c(t− t′) + |r− r′|]− 2πδ[c(t− t′)− |r− r′|].

The first delta function makes no contribution since its
argument cannot be zero. Therefore,

G(x, x′) = − 1

4π

1

|r− r′|
δ

(
t− t′ − |r− r′|

c

)
. (1.189)

We now come back to the original wave equation in
Eq. (1.160). According to Eq. (1.172),

φ(r, t) =

∫
d4x′G(x, x′)

[
−ρ(x′)

ε0

]
(1.190)

=
1

4πε0

∫
dv′dt′

ρ(r′, t′)

|r− r′|
δ

(
t− t′ − |r− r′|

c

)

=
1

4πε0

∫
dv′

ρ
(
r′, t− |r−r

′|
c

)
|r− r′|

. (1.191)

This is Eq. (1.3). The same method can be applied to
solve Eq. (1.2) and get the solution in Eq. (1.4).
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