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I. ELECTROMAGNETIC WAVES IN DISPERSIVE
MATTER

A. Dispersion relation

If the phase velocity of a wave in a material medium
depends on its frequency (or wave length), then we call
the medium a dispersive matter. For an EM wave,

vp =
ω

k
=

c

n(k)
, (1.1)

where c is the velocity of light in vacuum, and n is the
index of refraction. Thus, if n depends on frequency (or
wave vector), then the medium is dispersive.

The group velocity of a wavepacket centered at k0 is,

vg =
∂ω

∂k0
(1.2)

=
dω

dk0
k̂ if ω(k) = ω(k). (1.3)

Hence, in an isotropic medium (ω(k) = ω(k)), vp and vg

are both along the k direction.
The relation between ω and k is called dispersion

relation. If ω = αk is linear in k (α is a constant), then
the medium is not dispersive, and vp = α. Also,

vg =
dω

dk
= α (= vp). (1.4)

There is no difference between vp and vg.
If ω(k) is nonlinear, then the medium is dispersive, and

vg is in general different from vp. For ω(k) =
c

n(k)k,

vg =
dω

dk
=

c

n
− ck

n2

dn

dk
. (1.5)

(a)

(b)

FIG. 1 Variation of refraction index (a) and velocities of wave
propagation (b). The Fig. is from Jackson, 1998

One can rewrite dn/dk = vgdn/dω, and get

vg =
c

n(ω) + ω dn
dω

. (1.6)

Therefore (see Fig. 1),

if
dn

dω
> 0, then vg < vp; (1.7)

if
dn

dω
< 0, then vg > vp. (1.8)

The former case is called normal dispersion; the latter
anomalous dispersion. Note that if ωdn/dω is neg-
ative and large in magnitude, the group velocity could
even be negative.
The discussions and terminologies above apply to other

types of wave, such as sound wave, electron wave, and
spin wave.

B. Frequency dispersion

For simplicity, suppose the material under considera-
tion is homogeneous so that the conductivity does not
depend on r. When the electric field varies with time, we
have the following Ohm’s law,

J(r, t) =

∫ t

−∞
dt′σ(t− t′)E(r, t′). (1.9)
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The current is driven by the field, and an effect follows
its cause, so the current density J(r, t) only depends on
the field at an earlier time (t′ < t). If we demand

σ(t− t′) = 0 for t′ > t, (1.10)

then we can write

J(r, t) =

∫ ∞

−∞
dt′σ(t− t′)E(r, t′). (1.11)

The Ohm’s law would look simpler in the frequency
domain. Consider the following Fourier transforma-
tion,

σ(t) =

∫ ∞

−∞

dω

2π
σ(ω)e−iωt, (1.12)

which has the inverse Fourier transformation,

σ(ω) =

∫ ∞

−∞
dtσ(t)eiωt. (1.13)

Similarly,

J(t) =

∫ ∞

−∞

dω

2π
J(ω)e−iωt, (1.14)

E(t) =

∫ ∞

−∞

dω

2π
E(ω)e−iωt. (1.15)

Then, in the frequency domain, according to the convo-
lution theorem, we have

J(r, ω) = σ(ω)E(r, ω). (1.16)

Since σ∗(t) = σ(t), it follows that

σ∗(ω) = σ(−ω). (1.17)

If σ(ω) = σ′(ω) + iσ′′(ω), then

σ′(−ω) = σ′(ω), (1.18)

σ′′(−ω) = −σ′′(ω). (1.19)

In the equations above, I have assumed that the cur-
rent density at r depends only on the electric field at r.
In general, their relation can be non-local,

J(r, t) =

∫
dv′

∫ ∞

−∞
dt′σ(r− r′, t− t′)E(r′, t′). (1.20)

If so, then Eq. (1.16) is replaced by

J(k, ω) = σ(k, ω)E(k, ω). (1.21)

The conductivity σ is just one of the so-called response
functions, which links response with external distur-
bance. Other examples of response function are χe and
χm in

P(k, ω) = ε0χe(k, ω)E(k, ω), (1.22)

M(k, ω) = χm(k, ω)H(k, ω). (1.23)

Recall that

D = ε0E+P = εE, (1.24)

B = µ0(H+M) = µH, (1.25)

thus

ε = ε0(1 + χe), (1.26)

µ = µ0(1 + χm). (1.27)

In Chap 15, we show that the Ampere-Maxwell equa-
tion in matter involves effective currents related to po-
larization and magnetization,

∇×B = µ0

(
Jf +

∂P

∂t
+∇×M

)
+

1

c2
∂E

∂t
, (1.28)

or, equivalently,

∇×H = Jf +
∂D

∂t
. (1.29)

The physics of various terms on the RHS of Eq. (1.28) is
clear if the fields vary slowly: Jf is a free current, while
JP and JM are bound currents. However, if the fields
oscillate rapidly, then their distinction is blurred: all of
the currents now oscillate back and forth locally. It is an
intriguing fact that 1). We can dispense with Jf using
an effective dielectric function. 2), We can employ P
alone, or M alone, to describe both JP and JM . This is
explained below.
1). To simplify the discussion, suppose the non-

local correlation mentioned in Eq. (1.20) can be ignored.
Then, with D = εE and Jf = σE , we have

∇×H(r, t) = σE(r, t) +
∂

∂t
[εE(r, t)]. (1.30)

Consider a single Fourier component of the field,
E(r, t)=E(k, ω)ei(k·r−ωt), such that

∇ → ik,
∂

∂t
→ −iω. (1.31)

It follows that,

k×H(k, ω) =
1

i
σE(k, ω)− εωE(k, ω). (1.32)

Also, from

∇×E(r, t) = − ∂

∂t
B(r, t), (1.33)

we have

k×E(k, ω) = ωB(k, ω). (1.34)

Multiply both sides of Eq. (1.32) from the left with k×,
and suppose the EM wave is transverse, we get

k2 = µ(εω2 + iσω) (1.35)

= µεeffω
2, (1.36)
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where

εeff = ε+ i
σ

ω
. (1.37)

Thus, with this effective dielectric function, the Jf term
can be dropped from the Ampere-Maxwell equation.

2). We now demonstrate that ∇×M can be included
as part of ∂P/∂t. Recall that the Ampere-Maxwell law
without Jf is,

∇×H =
∂D

∂t
, (1.38)

which has included the effective current,

Jeff =
∂P

∂t
+∇×M. (1.39)

First, M can be written in terms of H,

∇×M = χm∇×H. (1.40)

Again the nonlocal correlation is not considered. Second,
H can be written in terms of P,

∇×H =
∂P

∂t
+ ε0

∂E

∂t
(1.41)

=
∂

∂t

(
1 +

1

χe

)
P. (1.42)

Thus, using Eq. (1.40), one has

∇×M = χm

(
1 +

1

χe

)
∂P

∂t
. (1.43)

Finally, we have

Jeff =

(
1 + χm +

χm

χe

)
∂P

∂t
. (1.44)

Similarly, one can also write ∂P/∂t in terms of ∇×M.
For details, see Sec. 18.2 of Zangwill, 2013.

C. Transverse wave and longitudinal wave

EM wave is a transverse wave in vacuum. However, it
can have a longitudinal component in matter. For exam-
ple, the plasma wave associated with charge oscillation
in metals is a longitudinal EM wave (see next section).
Let’s go back to the fundamentals:

∇×E = −∂B

∂t
, (1.45)

∇×H =
∂D

∂t
. (1.46)

The Jf term is not listed, as its effect has been included
in the effective εeff in Eq. (1.37) (now simply written as

ε). For a single Fourier component with (k, ω) variables,
we have

k×E = ωµH, (1.47)

k×H = −ωεE. (1.48)

Here E and H are shorthand notation for E(k, ω) and
H(k, ω). Combine them to get

k× (k×E) = k(k ·E)− k2E (1.49)

= −ω2εµE. (1.50)

Suppose we allow the possibility of a longitudinal com-
ponent and write

E = E∥ +E⊥, (1.51)

then since k(k ·E) = k2E∥, Eq. (1.50) gives

k2E∥ − k2(E∥ +E⊥) = −ω2εµ(E∥ +E⊥). (1.52)

The transverse part E⊥ gives a familiar result,

k2 = ω2εµ, (1.53)

→ k = ω
n

c
, n =

√
εrµr. (1.54)

The longitudinal part E∥ gives

ε(k, ω)µ(k, ω)E∥ = 0. (1.55)

As long as εµ ̸= 0, then E∥ = 0 and the EM wave is trans-
verse, which is usually the case. However, if ε(ω)µ(ω) = 0
(or ε(ω) = 0 for non-magnetic material), then there can
be a longitudinal component E∥. This is discussed in the
next section.

D. Classical model for frequency dispersion

The electromagnetic properties of matter are all en-
capsulated in material parameters ε(k, ω), µ(k, ω), and
σ(k, ω). In principle, they could be calculated theoret-
ically using quantum manybody theory. Most of these
calculations rely on the theory of linear response. Here
we study these parameters using the much simpler clas-
sical mechanics, which nonetheless is able to capture the
main physics in several cases.

1. Lorentz model of dielectric matter

Suppose the electrons in a matter are not interacting
with each other, so that we can consider one electron at a
time. The electrons are bound to atoms with elastic force
F = −kr = −mω2

0r. Assume the material subjects to an
oscillating electric field E(r, t) = E0e

−iωt. Let’s focus on
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(a)

(b)

FIG. 2 Real part and imaginary part of (a) the dielectric
function and (b) the index of refraction near resonance fre-
quency.

one of the electron bound to an atom. The equation of
motion for that electron with charge q = −e is,

m
d2r

dt2
= −mω2

0r︸ ︷︷ ︸
elastic

−γm
dr

dt︸ ︷︷ ︸
damping

−eE0e
−iωt︸ ︷︷ ︸

driving

. (1.56)

We have added a damping force to mitigate the resonance
from the driving force when ω ≃ ω0.

In steady state, the electron would also oscillate at the
driving frequency ω, thus (with the complex notation)

r(t) = r0e
−iωt. (1.57)

A possible phase lag can be included in the so-far un-
known amplitude r0. Substitute this into Eq. (1.56), it
is straightforward to get

r0 =
−e/m

ω2
0 − ω2 − iγω

E0. (1.58)

Since the electron is displaced from its equilibrium po-
sition due to the external field, the material is electrically
polarized. Its polarization P(t) = P0e

−iωt is the electric
dipole moments {pi(t) = pi0e

−iωt} per unit volume V0,

P0 =

∑
i pi0

V0
= np0 (1.59)

= n(−e)r0 (1.60)

=
ne2/m

ω2
0 − ω2 − iγω

E0 = ε0χeE0,

in which n is the number of electrons per unit volume.
It follows that

ε(ω)

ε0
= 1 + χe (1.61)

= 1 +
ω2
p

ω2
0 − ω2 − iγω

, (1.62)

FIG. 3 Decay of a plane wave due to absorption.

where

ω2
p ≡ ne2

ε0m
(1.63)

is called plasma frequency.

Note that because of the damping, ε(ω) is a complex
function,

ε

ε0
= ε′r + iε′′r (1.64)

= 1 +
ω2
p(ω

2
0 − ω2)

(ω2
0 − ω2)2 + γ2ω2

+ i
ω2
pγω

(ω2
0 − ω2)2 + γ2ω2

.

Plots of its real part and imaginary part can be seen in
Fig. 2.

For non-magnetic material (µr = 1), the (complex)
index of refraction

N (ω) =
√

εr(ω) ≡ n+ iκ, (1.65)

where

n =
1√
2

√
|εr|+ ε′r, |εr| =

√
ε′2r + ε′′2r (1.66)

κ =
1√
2

√
|εr| − ε′r ≃ ε′′r

2
√
ε′r

(if ε′′r ≪ ε′r). (1.67)

Or, when the index of refraction becomes a complex func-
tion, a plane wave decays (Fig. 3),

eik·r = eiN
ω
c k̂·r (1.68)

= ein
ω
c k̂·re−κω

c k̂·r. (1.69)

When the imaginary part ε′′r is non-zero, the EM field is
attenuated. This happens near resonance when ω ≃ ω0

(Fig. 2). That is, the attenuation is caused by resonant
absorption.

If n(ω) increases with the frequency ω, then we have
normal dispersion, and vp > vg. If it decreases with ω,
then we have anomalous dispersion, and vg > vp. The
latter occurs near resonance, and is always accompanied
by a strong absorption (see Fig. 2(b)).
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FIG. 4 EM wave with frequency ω < ωp (ω > ωp) cannot
(can) propagate in a plasma. The figure is from Kittel, 2004

2. Frequency dispersion in metal

In a metal, the valence electrons are not bound to the
ions. This can be considered as a special case of the
Lorentz model: set the elastic constant k = mω2

0 as zero.
From Eq. (1.62), one has

ε(ω)

ε0
= 1−

ω2
p

ω2 + iγω
(1.70)

γ =
1

τ
→ = 1− (ωpτ)

2

(ωτ)2 + iωτ
, (1.71)

where we have linked the damping coefficient γ with re-
laxation rate 1/τ , which is the inverse of the relaxation
time τ . Microscopically, the relaxation of electrons is
due to their scatterings with disorders in the solid. The
dielectric function can also be written in the form of
Eq. (1.37),

εeff = ε+ i
σ(ω)

ω
, (1.72)

with the AC conductivity,

σ(ω) =
σ0

1− iωτ
, σ0 =

ne2

m
τ. (1.73)

For example, copper has n = 8.5× 1028 atoms/m3. If
a sample has DC conductivity σ0 = 5.9× 107/Ωm, then
τ ≃ 2.5× 10−14 sec. In the low-frequency limit, ωτ ≪ 1,

ε(ω)

ε0
≃ 1− (ωpτ)

2 + i
σ0

ε0ω
. (1.74)

On the other hand, if ωτ ≫ 1, then

ε(ω)

ε0
≃ 1−

ω2
p

ω2
. (1.75)

At low frequency ω < ωp, εr(ω) < 0 and the field could
not propagate through (see Fig. 4). At high frequency

+

+

+

+

+

+

−

−

−

−

−

−

d

F=qE

FIG. 5 Displace the electron gas from a rigid background of
positive ions results in oscillations of the electron gas.

ω > ωp, εr(ω) > 0, and the EM wave can propagate as
usual.
What happens if ω = ωp? Since ε(ωp) = 0, according

to the analysis below Eq. (1.55), there can be longitudi-
nal oscillation of the electric field. This is called plasma
oscillation. The simplest explanation of this oscillation
is shown in Fig. 5: Suppose the electrons and ions in
a metal are both uniform gases. If the electron gas as
a whole is displaced form fixed positive ions with a dis-
placement d, then it undergoes a strong restoring force
F = −qE, where q = (−e)nAd is the displaced charges
on an end surface (n is the electron density, and A is the
area of an end surface). The electric field E = σs/ε0,
where σs = (−e)nd is the surface charge density. The
mass of electrons inside a layer of thickness d should be
M = mnAd, thus

F = Md̈ = −(−e)ndA
σs

ε0
, (1.76)

→ d̈ = − ne2

ε0m
d. (1.77)

This is like the differential equation for a simple harmonic
oscillator with oscillating frequency ω2

p = ne2/ε0m.
Therefore, the charges would oscillate with the frequency
ωp. It is the resonant frequency for charge disturbance.
The analysis here is based on non-interacting electrons.

However, even if the electrons are interacting (as in real
metals), the plasma frequency is not changed. A simple
rule of thumb gives,

fp =
ωp

2π
≃ 9.0

√
n Hz, (1.78)

where n is in units of 1/m3. For a piece of copper with
n ≃ 8.5× 1028/m3,

fp ≃ 2.6× 1015 Hz, or λp ≃ 0.12 µm. (1.79)

This is slightly higher than the ultraviolet frequency. Ac-
cording to the study above, an EM wave with lower
frequency would not propagate through, and the cop-
per appears opaque. However, an ultraviolet light could
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FIG. 6 Dielectric functions for circularly polarized waves.
The figures are from Jackson, 1998.

propagate through it, and the copper appears transpar-
ent (Note: the frequency of violet light is up to 790 THz).

The ionosphere in the atmosphere has ionized electrons
with density n ≃ 1010 ∼ 1012/m3. Thus, fp ≃ 106 ∼ 107

Hz. So the radio wave with lower frequency would be
reflected back to earth, while that with higher frequency
could propagate through. For comparison, the frequency
of FM radio ranges from 88 MHz to 108 MHz.

3. Appleton model of magnetized plasma

We now consider a plasma in a magnetic field. For ex-
ample, the ionosphere mentioned above is in a geomag-
netic field. At high altitude, B0 ≃ 0.3 G. An electron in
this field executes cyclotron motion with frequency,

ωc =
eB0

m
≃ 5.3× 106 rad/s, (1.80)

which is close to the plasma frequency ωp and thus is not
negligible.

Adding the Lorentz force, and neglecting the damping
force, the equation of motion (Eq. (1.56)) for an electron
becomes

m
d2r

dt2
= −eE0e

−iωt − e
dr

dt
×B0. (1.81)

Assume B0 = B0ẑ, and consider steady-state solution
r(t) = r0e

−iωt, then one can get −mω2 −ieωB0 0
ieωB0 −mω2 0

0 0 −mω2

 x0

y0
z0

 = −e

 E0x

E0y

E0z

 .

(1.82)
The solution is,

r0 =
e

m(ω2 − ω2
c )

 1 −iωc

ω 0
+iωc

ω 1 0

0 0 1−
(
ωc

ω

)2
E0.

(1.83)

FIG. 7 Dispersion curves for EM waves in a magnetized
plasma (ωp = 2ωc). The branch of helicon wave is indicated
by L′.The figure is from Zangwill, 2013

The polarization

P(t) = (−e)nr(t) = P0e
−iωt, (1.84)

and

P0 = ε0χeE0. (1.85)

Thus,

ε(ω)

ε0
= 1−

ω2
p

ω2 − ω2
c

 1 −iωc

ω 0
+iωc

ω 1 0

0 0 1−
(
ωc

ω

)2
 .

(1.86)
The dielectric matrix is of the form

ε =

 ε1 iε2 0
−iε2 ϵ1 0
0 0 ε3

 . (1.87)

It has the following eigenvalues

ε1 ± ε2, ε3. (1.88)

The corresponding eigenvectors are,

1√
2

 1
−i
0

 ,
1√
2

 1
+i
0

 ,

 0
0
1

 (1.89)

These are also the eigenvectors of the matrix in
Eq. (1.83).
These first two eigenvectors tell us that, if

E0 = E0(x̂∓ iŷ), R/L (1.90)

which represent right circular polarization (RCP) wave
and left circular polarization (LCP) wave propagating
along B0 direction, then (see Eq. (1.83))

r0 = r0(x̂∓ iŷ), (1.91)
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FIG. 8 Faraday rotation of a linearly polarized wavepassing
through a magnetized plasma. The Fig. is from Wikipedia.

and r ∥ E. The dielectric functions of this two eigen-
modes are (Fig. 6)

ε±(ω) = ε0

[
1−

ω2
p

ω2
(
1± ωc

ω

)] , R/L. (1.92)

That is, the velocities of RCP wave and LCP wave are
different. The plasma is not only anisotropic, but is also
birefringent.

For ε+(ω), there is only one curve; but for ε− there are
two. The dielectric function ε±(ω) = 0 when

ω± = ∓
(ωc

2

)
+

√(ωc

2

)2

+ ω2
p. (1.93)

The wave cannot propagate when ε± < 0.
Furthermore, from ω = kc/n and n =

√
ε/ε0, one can

plot the dispersion curves ω±(k) for propagating waves
in Fig. 7.
• Faraday rotation

Following the discussion above, suppose the magnetic
field is weak, and that

ω > ωp ≫ ωc, (1.94)

then

ε±
ε0

= 1−
ω2
p

ω2
± ωc

ω

ω2
p

ω2
+O

(
ω2
c

ω2

)
. (1.95)

From this we have the index of refraction,

n± =
√
ε±/ε0 ≃ n0 ±

f

2n0
B0, (1.96)

where

n0 =

√
1−

ω2
p

ω2
, f(ω) =

e

mω

ω2
p

ω2
. (1.97)

That is, the velocities of two opposite circular-polarized
wave differ by an amount proportional to B0.

A linear-polarized wave can be considered as an equal
superposition of two opposite circular-polarized waves,
we’ll show below that such a difference in velocities would
rotate the plane of linear polarization. First, recall that
a vector can be expanded with two types of bases,

v = v1ê1 + v2ê2 (1.98)

= v−ê+ + v+ê−, (1.99)

where

v± =
1√
2
(v1 ± iv2), (1.100)

ê± =
1√
2
(ê1 ± iê2). (1.101)

In a birefringent medium,

D = ε0E +P (1.102)

= (ε0E− + P−)ê+ + (ε0E+ + P+)ê− (1.103)

= ε−E−ê+ + ε+E+ê− (LCP +RCP ). (1.104)

Suppose a linearly polarized wave has the following elec-
tric field at the origin,

E(0, t) = E0e
−iωtê1 (1.105)

=
1√
2
(E0ê+ + E0ê−) e

−iωt. (1.106)

After propagating a distance L in the birefringent
medium, the electric field becomes (k± ≡ ω n±

c ),

E(L, t)

=
E0√
2

(
eik−Lê+ + eik+Lê−

)
e−iωt (1.107)

=
E0

2

[(
eik−L + eik+L

)
ê1 + i

(
eik−L − eik+L

)
ê2
]
e−iωt

= E0

(
cos

∆kL

2
ê1 + sin

∆kL

2
ê2

)
e
i
(

k++k−
2 L−ωt

)
,

in which

∆k = k+ − k− = ∆n
ω

c
, and ∆n = n+ − n−. (1.108)

Obviously, the plane of polarization has rotated by an
angle (Fig. 8)

ϕ =
∆kL

2
= ∆n

ωL

2c
(1.109)

= V B0L, (1.110)

where V = ne3

2ε0m2c
1
ω2 is the Verdet constant.

This Faraday rotation can be observed when an EM
wave propagate through, e.g., a piece of metal, the iono-
sphere, or an interstellar medium (all are in a magnetic
field).
• Helicon wave



8

Put a piece of metal in a magnetic field, e.g., sodium in
a magnetic field B = 1 T. The plasma frequency and the
cyclotron frequency are roughly ωp ≃ 9.2 × 1015 rad/s,
ωc ≃ 1.8× 1011 rad/s. At low frequency with

ω ≪ ωc, (1.111)

one has, from Eq. (1.92),

ε±
ε0

≃ 1∓
ω2
p

ωcω
. (1.112)

If ω < ω2
p/ωc, then only the part ε− allows a wave to

propagate. Such a wave is left circularly polarized. Recall
that when B = 0, no wave can propagate when ω < ωp.

If ω ≪ ω2
p/ωc, then the refraction index

n−(ω) ≃
ωp√
ωcω

(1.113)

can be very large at low frequency. Thus the velocity
of wave propagation would be very small. This type of
wave in magnetized plasma is called helicon wave (see
Sec 14.5 of Quinn and Yi, 2018). It has the dispersion
relation,

ω =
ωcc

2

ω2
p

k2. (1.114)

For the example of sodium above, ωp ≃ 1016 rad/s,
ωc ≃ 1011 rad/s, and ω ≃ 103 rad/s, we have n ≃ 109,
and

vp =
c

n
≃ 0.3 m/s. (1.115)

Its group velocity is twice of this value.
In the ionosphere, ωp ≃ 5× 106 rad/s, ωc ≃ 107 rad/s.

For ω ≃ 10 ∼ 105 rad/s, we have n ≃ 100 ∼ 1. A thun-
derstorm in the atmosphere could trigger helicon waves
with a broad range of frequency. These waves would fol-
low the field lines of the geomagnetic field and reach the
north pole or the south pole. The waves with higher
(lower) frequency would propagate faster (slower). A re-
ceiver near the north pole, for example, would pick up
these radio signals. It sounds like a whistler when the fre-
quency falls within the audible range (20 Hz ∼ 20 kHz).
Thus, it is called whistler in radio signal, which falls
from high pitch to low pitch in seconds. You can find
out recordings of them from the internet.

E. Left-handed material

We conclude this chapter with a peculiar type of
medium with negative ε and µ. Recall that

N
c

=
√
εrµr. (1.116)

LHM

n n’(=n)

(b)

(c)

LHM

(a)

k

E

H

k

E

H

S

S

LHM

FIG. 9 (a) The (E,H,k) triad in right-handed material (left)
and left-handed material (right). (b) The refraction of wave in
right-handed material (left) and left-handed material (right).
(c) The perfect lens made from the left-handed material.

If ε < 0, or µ < 0, then N is an imaginary number and
a wave cannot propagate. However, what if both ε and
µ are negative, so that N is still real? Such a possibil-
ity is first raised in Veselago, 1968. Even though there
is no material with such a strange property, this is still
something that could be explored theoretically. In fact,
in the past two decades, people have begun to fabricate
devices with arrays of tiny electronic components that
could have this strange behavior. See p. 640 of Zangwill,
2013 for more details. This works only when the wave-
length is much larger than the size of each component
(which plays the role of an atom), and only for a limited
range of frequency. But this restriction might be relaxed
with more researches in the future.
Veselago found that, when ε, µ < 0 and n is real, the

wave can propagate, but with several surprising proper-
ties. For example,
1. The (E,H,k) triad becomes left-handed.
Recall that

k×E = ωµH, (1.117)

k×H = −ωεE. (1.118)

They can be written as,

n

c
k̂×E = µH, (1.119)

n

c
k̂×H = −εE, (1.120)

where the (E,H, k̂) triad is right-handed.
If ε, µ > 0, then the (E,H,k) triad is right handed.
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If ε, µ < 0, then for these equations to hold simultane-
ously, we must choose n < 0 and k = −|n|ω/ck̂. Thus,
the (E,H,k) triad becomes left handed (Fig. 9(a)). This
type of medium is called left-handed materials.
2. The energy of EM field flows backward.
The Poynting vector S = E × H is the energy current
density of EM field. In the usual material, S ∥ k̂. But

in a left-hand material, S ∥ −k̂. That is, the energy
(and momentum) flows backward. The phase velocity

given by vp = (c/|n|)k̂ is still along the k̂ direction, while
the group velocity, which is the velocity of a wavepacket
carrying field energy momentum, is along S. Thus, the
directions of vp and vg are opposite.
3. Refraction angle becomes negative.
Without giving a proof, we state that if medium 1 is the
usual material, and medium 2 is LH material, then the
Snell’s law is

n1 sin θi = −|n2| sin θt. (1.121)

Thus, the refraction angle is negative, and a refraction
wave would bend backward (Fig. 9(b)).

If n2 = −n1, then something special happens. A
divergent beam of rays would be re-focused after pass-

ing through the interface. This can serve as a perfect
lens that is free of chromatic aberration (Fig. 9(c)). See
Pendry and Smith, July, 2006 for more details.

4. Doppler effect is reversed.
In a usual medium, the light of a luminous object moving
away from you would be red-shifted. But if it is moving
away from you in a LH material, then its light would be
blue-shifted.
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