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I. ELECTROMAGNETIC WAVES IN SIMPLE MATTER

A. Wave equation

The interaction of electromagnetic wave with matter
is a huge subject, with lots of fascinating physics and
important applications. EM wave with a wide range of
frequency is an essential probe of material properties,
widely used in laboratories around the globe. In this
chapter we start with the basics.

Recall that the Maxwell equations in matter are,

∇ ·D = ρf , (1.1)

∇ ·B = 0, (1.2)

∇×E = −∂B

∂t
, (1.3)

∇×H = Jf +
∂D

∂t
. (1.4)

The so called constitutive relations between fields are,

D = ε0E + P = εE, (1.5)

H =
1

µ0
B−M =

1

µ
B. (1.6)

For monochromatic EM plane wave, we have

E(r, t) = E(k, ω)ei(k·r−ωt), (1.7)

B(r, t) = B(k, ω)ei(k·r−ωt), (1.8)

similarly for D,H. The constitutive relations become

D(k, ω) = ε(k, ω)E(k, ω), (1.9)

H(k, ω) =
B(k, ω)

µ(k, ω)
. (1.10)

Suppose we are exploring a small range of frequency so
that ε and µ are nearly constant, independent of (k, ω),
then the Maxwell equations are very similar to those in
vacuum. One only needs to replace ε0, µ0 with ε, µ, and
most of the earlier results remain valid. We call this type
of material simple matter.

Note: 1. Even if we treat all of the material parameters
in the Mawxell equations, ε, µ, and σ, as constants. The
conductivity may lead to an effective εeff that depends
on ω. This variation can be neglected if we focus only on
low frequency (see next Chap).
2. The constants, ε, µ can be complex numbers (in the
complex notation) due to energy dissipation, and some
of the physics in vacuum could change qualitatively (see
I.A.3).
3. Out of the four fields E,D,B,H, we can choose two
of them as primary (one from E,D, one from B,H), and
the other two as derived. There are four possible choices.
In the following, we will choose E,H as primary fields.

1. Plane wave

Consider a monochromatic plane wave,

E(r, t) = E0e
i(k·r−ωt), (1.11)

H(r, t) = H0e
i(k·r−ωt). (1.12)

Suppose ρ = 0 and J = 0, then we have

k ·E0 = 0, (1.13)

k ·H0 = 0, (1.14)

k×E0 = ωµH0, (1.15)

k×H0 = −ωεE0. (1.16)

From the third and the fourth equations, one has

k× (k×E0) = −ω2εµE0. (1.17)

With the BAC-CAB rule, a× (b× c)=b(a · c)− c(a ·b),
and the fact that E0 is perpendicular to the direction of
propagation k, we get

k2 = ω2εµ, or ω(k) =
k
√
εµ
. (1.18)

The phase velocity of light in matter is,

cn =
ω

k
, (ω = cnk) (1.19)

=
1
√
εµ

=
c

n
, (1.20)
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where c is the velocity of light in vacuum, and n is the
index of refraction,

n =
√
εrµr ≡

√
ε

ε0

µ

µ0
. (1.21)

2. Equation of continuity for energy

Let’s analyze the Eq. of continuity for energy again,
but now for EM fields in matter. The derivation is very
similar to the one for the case in vacuum. The rate of
work done by EM fields on charged particle is,

dWmech

dt
=

∫
dvJf ·E. (1.22)

From Jf = ∇×H− ∂D/∂t, one has

dWmech

dt
= −

∫
dvE · ∂D

∂t
+

∫
dv∇×H ·E. (1.23)

The second integral is equal to∫
dv [−∇ · (E×H) + H · ∇ ×E] . (1.24)

With Faraday’s law, ∇×E can be replaced by −∂B/∂t.
It follows that∫

dv

(
E · ∂D

∂t
+ H · ∂B

∂t

)
+

∫
dv∇·(E×H) = −

∫
dvJf ·E.

(1.25)
The is the Eq of continuity for energy in integral form.

If ε, µ are independent of field strength (called linear
medium), then the integrand of the first term on the LHS
can be written as the derivative, ∂uEM/∂t, of the energy
density,

uEM =
1

2
E ·D +

1

2
H ·B. (1.26)

After the integration, it is the derivative, dUEM/dt, of
total field energy. Identify the Poynting vector as,

S = E×H, (1.27)

then Eq. (1.25) can be written as

d

dt
UEM +

∫
S

da · S = −
∫
V

dvJf ·E. (1.28)

3. Energy dissipation

Consider an EM wave passing through matter in the
absence of Jf . Then Eq. (1.25) becomes,∫

dv

(
E · ∂D

∂t
+ H · ∂B

∂t

)
+

∫
da · (E×H) = 0. (1.29)

Suppose the material is not magnetic, µ = µ0, then B =
µ0H. Allow the dielectric constant to be complex,

ε = ε′ + iε′′. (1.30)

We will show that the imaginary part ε′′ is related to
energy dissipation.

Consider uniform fields,

E(t) = E0 cosωt = Re
(
E0e

−iωt) , (1.31)

D(t) = Re
(
εE0e

−iωt) (1.32)

= ε′E0 cosωt+ ε′′E0 sinωt. (1.33)

Thus,

E · ∂D

∂t
= E0 cosωt · (−ε′ωE0 sinωt+ ε′′ωE0 cosωt)

=
d

dt

(
ε′

2
|E(t)|2

)
+ ε′′ω|E(t)|2. (1.34)

The first term is the usual electric field energy in uEM .
Move the second term to the RHS of the Eq. of continu-
ity, we have

d

dt
UEM +

∫
S

da · S = −
∫
V

dvε′′ω|E(t)|2. (1.35)

The term on the RHS is a source or sink of energy, de-
pending on the sign of ε′′. That is, a positive ε′′ is an
effective material parameter for energy dissipation. This
integral gives the EM energy absorbed by the medium
per unit time (i.e., power loss).

Like the damped oscillator in classical mechanics, we
can define a Q-factor for the damping (of a monochro-
matic plane wave). For a homogeneous material,

Q ≡ ω × 〈energy stored〉T
〈power loss〉T

(1.36)

= ω
ε′〈|E|2〉T
ε′′ω〈|E|2〉T

(1.37)

=
ε′

ε′′
. (1.38)

The Q-factor has no dimension. It is large (i.e. little
damping) if ε′′ is small.

B. Reflection and refraction

We now consider the reflection and refraction of an
EM wave at the interface of different media. But before
doing that, we need to have the boundary condition of
electromagnetic fields.

1. Boundary condition

In Chap 3 and Chap 10, we have studied the boundary
condition (BC) of electrostatic field and magnetostatic
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field. Now we will investigate the BC for general dynamic
EM fields. Let’s start from the Maxwell equations,∮

S

D · da =

∫
V

ρ dv, (1.39)∮
S

B · da = 0, (1.40)∮
C

E · dr = −
∫
S

∂B

∂t
· da, (1.41)∮

C

H · dr =

∫
S

(
J +

∂D

∂t

)
· da. (1.42)

These are the integral forms of Eqs. (1.1), (1.2) (1.3),
(1.4).

Let’s apply the first equation to a closed surface S near
the interface of two media, as shown in Fig. 1. S is the
surface of a tiny box with area ∆a and thickness ∆w.
The thickness would eventually shrink to zero. The left-
hand side (LHS) of Eq. (1.39) gives∮

S

D · da = (D2 −D1) · n̂∆a. (1.43)

The flux through the side surface can be ignored since
the thinkness ∆w of the box approaches zero. On the
other hand, the right-hand side (RHS) gives∫

V

ρ dv = σ∆a, (1.44)

where σ is the surface charge density. Equating LHS with
RHS, one then has

(D2 −D1) · n̂ = σ. (1.45)

The same method can be applied to Eq. (1.40) to get

(B2 −B1) · n̂ = 0. (1.46)

If there is no surface charge, then the normal compo-
nents of both D and B need to be continuous across the
interface.

Next, let’s apply the Eq. (1.41) to a closed loop C
near the interface of two media, as shown in Fig. 1. C
is a tiny rectangular loop with length ∆` and width ∆w.
The latter would eventually shrink to zero. The LHS of
Eq. (1.41) gives∮

C

E · dr = (E2 −E1) · ˆ̀∆`. (1.47)

The contribution from two short sides can be ignored
since the width ∆w of the loop is nearly zero. On the
other hand, since the area of the rectangle approaches
zero, the RHS gives

−
∫
S

∂B

∂t
· da = 0. (1.48)

Equating LHS with RHS, and noting that ˆ̀ = t̂ × n̂,
one then has

t̂× n̂ · (E2 −E1) = t̂ · n̂× (E2 −E1) = 0. (1.49)

a∆
w∆

w∆

ˆ∆ℓ ℓ

FIG. 1 An interface between two media. Fig. from Jackson,
1998

This is valid for any tangent vector t̂ (which is perpen-
dicular to the surface of the rectangle). Thus

n̂× (E2 −E1) = 0. (1.50)

The same method can be applied to Eq. (1.42). It is left
as an exercise to show that

n̂× (H2 −H1) = K, (1.51)

where K is the surface current density. If there is no
surface current, then the tangential components of both
E and H have to be continuous across the interface.

2. Reflection and refraction

In Fig. 1, there is a monochromatic plane wave incident
from below the interface. The incident wave vector ki lies
on the x−z plane. The reflected wave and refracted wave
propagate along kr and kt. The associated electric fields
are (in the complex notation),

Ei(r, t) = Eiei(ki·r−ωt), (1.52)

Er(r, t) = Erei(kr·r−ωt), (1.53)

Et(r, t) = Etei(kt·r−ωt). (1.54)

Each of these fields is perpendicular to the direction of
propagation.

From Eq. (1.3), one has

k×E = ωB. (1.55)

Recall that ω/k = c/n = 1/
√
εµ, hence

c

n
B = k̂×E. (1.56)

Thus,

H =
1

µ
B =

√
ε

µ
k̂×E. (1.57)
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FIG. 2 An EM wave enters the interface from medium 1 be-
low. Part of it is reflected and the rest is transmitted to
medium 2.

Define the wave impedance as follows,

Z ≡ E

H
=

√
µ

ε
, (1.58)

then

ZH = k̂×E. (1.59)

Thus, we have

Z1Hi = k̂i ×Ei, Z1Hr = k̂r ×Er, (1.60)

Z2Ht = k̂t ×Et. (1.61)

According to the BC given in Eqs. (1.45), (1.46) (1.75),
(1.76), the following components need to be continuous
across the boundary (that has no surface charge and sur-
face current):

Normal components Dn, Bn (or εEn, µHn), and
Tangential components E‖, H‖.

We emphasize that these apply to any location r on the
boundary and at any instant of time t.

The boundary conditions dictate the relations between
the fields on two sides of the interface. First, the fre-
quencies ω of the three fields need to be the same in
order for the temporal phase e−iωt from different fields
to be congruent. For example, the frequency of a beam
of green-light laser entering water would not change.

Furthermore, in what follows, we will show that
1). By matching the spatial phases of fields, one can get
(a) the law of reflection, and (b) the law of refraction
(Snell’s law).
2). By matching the amplitudes of fields, one obtains the
Fresnel equations.
1). Match the spatial phases

To match the spatial phases of electric field, one needs
to have the following relations at any point r on the
boundary,

ki · r = kr · r = kt · r. (1.62)

First, choose r ⊥ ki and lies on the surface (ki · r = 0),
as the r1 in Fig. 1. Then kr,kt are also perpendicular
to r. Thus, ki,kr,kt are lying on the same plane (this
defines the incident plane).

x

z

θi θr
ki

θt

kt

kr

Ei

Hi

Er

Hr

Et

Ht

x

z

θi θr
ki

θt

kt

kr

Hi

Ei

Hr

Er

Ht

Et(a) (b)

P-wave S-wave

FIG. 3 (a) The p-wave has its Ei lying on the incident plane.
(b) The s-wave has its Ei perpendicular to the incident plane.

Second, choose r ‖ x̂ and lies on the surface, as the r2
in Fig. 1. Then one has

kix = krx = ktx, (1.63)

or ki sin θi = kr sin θr = kt sin θt, (1.64)

where θi, θr, θt are the incident angle, the reflection angle,
and the refraction angle shown in Fig. 1. Since ki = kr,
the first equality gives the law of reflection,

θi = θr. (1.65)

Since k = nω/c, the second equality gives the Snell’s
law,

n1 sin θi = n2 sin θt. (1.66)

Note that the Maxwell equations have not been explicitly
used so far. So similar relations could also apply to other
types of wave.

Note that kiz = −krz, and

ktz =
√
k2t − k2tx (1.67)

=
ω

c

√
n22 − n21 sin2 θi. (1.68)

This is a real number if n2 > n1. However, it can be an
imaginary number if n2 < n1 and sin θi > n2/n1, so that

ktz =
ω

c
i

√
n21 sin2 θi − n22 ≡ iκ. (1.69)

When this happens, for the refracted wave

ei(kt·r−ωt) = ei(ktxx−ωt)eiktzz (1.70)

= ei(ktxx−ωt)e−κz. (1.71)

The first exponential is a plane wave moving along x
direction. The second exponential decays along z, hence
the wave cannot propagate along that direction, Thus,
the field energy would be reflected back to medium 1.
This is the total internal reflection.
2). Match the amplitudes

As we have mentioned, εEn(r, t), µHn(r, t), E‖(r, t),
and H‖(r, t) need to be continuous across the boundary.
Since the phase factors that depend on r, t have been
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taken cared of, what’s left to match is the amplitudes of
field,

εEn, µHn,E‖,H‖. (1.72)

It follows that,

ε1(Eiz + Erz) = ε2Etz, (1.73)

µ1(Hiz +Hrz) = µ2Htz, (1.74)

Ei‖ + Er‖ = Et‖, (1.75)

Hi‖ + Hr‖ = Ht‖. (1.76)

Once E is known, then H can be determined. Thus only
two equations are required. Here we choose to solve the
last two equations.

Let’s focus on two special cases: Ei is parallel to or
perpendicular to the incident plane. The field Ei pointing
to other direction can be considered as a superposition
of this two special cases.
• Ei ‖ x− z plane

Such an incident wave is called p-polarized wave (p
for parallel), or TM -polarized wave, since the magnetic
field is transverse to the incident plane. According to the
geometry in Fig. 2(a), Eqs. (1.75) and (1.76) give

cos θi(Ei − Er) = cos θtEt, (1.77)

Hi +Hr = Ht, (1.78)

ZH = E → Ei + Er
Z1

=
Et
Z2
. (1.79)

This can be solved to give

rp ≡
Er
Ei

=
Z1 cos θi − Z2 cos θt
Z1 cos θi + Z2 cos θt

, (1.80)

tp ≡
Et
Ei

=
2Z2 cos θi

Z1 cos θi + Z2 cos θt
. (1.81)

These are the Fresnel equations for the p-wave.
• Ei ⊥ x− z plane

This incident wave is called s-polarized wave (s for
senkrecht in German), or TE-polarized wave, since the
electric field is transverse to the incident plane. Accord-
ing to the geometry in Fig. 2(b), Eqs. (1.75) and (1.76)
give

Ei + Er = Et, (1.82)

cos θi(Hi −Hr) = cos θtHt, (1.83)

ZH = E → Z2 cos θi(Ei − Er) = Z1 cos θtEt.(1.84)

This can be solved to give

rs =
Er
Ei

=
Z2 cos θi − Z1 cos θt
Z2 cos θi + Z1 cos θt

, (1.85)

ts =
Et
Ei

=
2Z2 cos θi

Z2 cos θi + Z1 cos θt
. (1.86)

These are the Fresnel equations for the s-wave.

x

z

θiki

θt

kt

kr

w
i

w
t

FIG. 4 The widths of the incident beam and the refracted
beam are wi and wt respectively.

For non-magnetic materials (or for µ1 = µ2), one can

replace the wave impedance (Z =
√
µ/ε) with the index

of refraction (n =
√
εµc),

Z1

Z2
→ n2

n1
. (1.87)

The Fresnel equations then become

rp ≡
Er
Ei

=
n2 cos θi − n1 cos θt
n2 cos θi + n1 cos θt

, (1.88)

tp ≡
Et
Ei

=
2n1 cos θi

n2 cos θi + n1 cos θt
; (1.89)

rs =
Er
Ei

=
n1 cos θi − n2 cos θt
n1 cos θi + n2 cos θt

, (1.90)

ts =
Et
Ei

=
2n1 cos θi

n1 cos θi + n2 cos θt
. (1.91)

For normal incidence (θi = 0), both sets of the Fresnel
equations give similar results,

rs/p = ±Z2 − Z1

Z2 + Z1
= ±n1 − n2

n1 + n2
, (1.92)

ts/p =
2Z2

Z2 + Z1
=

2n1
n1 + n2

. (1.93)

The second equality is valid only when the replacement
in Eq. (1.87) applies. Even though rs and rp have op-
posite signs, these two actually give the same physical
prediction for reflection: If n1 > n2, then the reflected
field does no suffer a flip of phase; whereas for n1 < n2,
there is a phase flip. This is similar to the phase flip (or
not) for a pulse propagating through the joint connecting
two ropes with different densities.

3. Transport of energy

Using the complex notation,

E(r, t) = Re
[
Eei(k·r−ωt)

]
(1.94)

=
1

2

[
Eei(k·r−ωt) + E∗e−i(k·r−ωt)

]
, (1.95)

H(r, t) = Re
[
Hei(k·r−ωt)

]
(1.96)

=
1

2

[
Hei(k·r−ωt) + H∗e−i(k·r−ωt)

]
,(1.97)
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(a)

(b)

FIG. 5 (a) Reflection and refraction coefficients for p-wave
and s-wave that propagate from air to glass. Rp = 0 at the
Brewster angle. (b) Reflection and refraction coefficients for
p-wave and s-wave that propagate from glass to air. Rs/p = 1
beyond the critical angle. Figs from Wikipedia.

the Poynting vector is,

S = ReE×ReH (1.98)

=
1

4
(E ×H∗ + E∗ ×H) + oscillating part.(1.99)

After taking a temporal average over periods, the oscil-
lating part vanishes, hence

〈S〉T =
1

2
Re (E ×H∗) , ZH = k̂× E (1.100)

=
1

2Z
|E|2k̂. (1.101)

Apply this to the reflection of wave. Define the reflec-
tion coefficient as follows (the normal vector n̂ points

up),

R ≡
∣∣∣∣ 〈Sr〉T · n̂〈Si〉T · n̂

∣∣∣∣ (1.102)

=
|Er|2

|Ei|2
= r2, r2 ≡ |Er|

2

|Ei|2
. (1.103)

This is the ratio of the energy flows perpendicular to the
boundary surface. Similarly, the transmission coeffi-
cient is defined as,

T ≡
∣∣∣∣ 〈St〉T · n̂〈Si〉T · n̂

∣∣∣∣ (1.104)

=
Z1|k̂t · n̂|
Z2|k̂i · n̂|

|Et|2

|Ei|2
(1.105)

=
Z1 cos θt
Z2 cos θi

t2, t2 ≡ |Et|
2

|Ei|2
. (1.106)

Since the energy of the incident wave either goes through
the surface or reflects back, so one should have

R+ T = 1. (1.107)

Note that if µ1 = µ2, and the width of the wave is finite
in extent, then T can also be written as,

T =
n2wt
n1wi

|Et|2

|Ei|2
, (1.108)

where wi, wt are the widths of the beams (Fig. 3).
The angular dependence of R and T are shown in

Fig. (for µ1 = µ2). Let’s consider two special cases.
1. For normal incidence (θi = 0),

R =

(
n1 − n2
n1 + n2

)2

. (1.109)

The usual glass-air boundary has n2/n1 = 1.5, and R '
4 %.

2. In Fig. 4(a), if θi → 90 degrees, then R → 1, and
most of the wave is reflected back. This is called grazing
reflection. That is why a piece of acrylic plate works
as a mirror when your eyesight is nearly parallel to the
plate. Also, you are probably familiar with the fact that
the surface of a serene lake could reflect the mountain far
away like a mirror.

4. Brewster angle

In Fig. 4, for p-wave (but not for s-wave), there is a
special angle θB with no reflection (R = 0). This is the
Brewster angle. According to Eq. (1.88), it happens
when

n2 cos θi = n1 cos θt. (1.110)

Together with Snell’s law,

n1 sin θi = n2 sin θt, (1.111)
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θBEi

Et

P-wave

θBEi

Et

unpolarized

(a) (b)

partially 

polarized

polarized

FIG. 6 (a) A p-wave has no reflection at the Brewster angle,
when the reflected wave and the refracted wave are perpen-
dicular to each other. (b) An unpolarized EM wave becomes
polarized after reflection.

FIG. 7 The angular dependence of the degree of polarization
after reflection. Note that the degree of polarization is over
70 % around an interval of 30 degrees.

we have

cos2 θi + sin2 θi = cos2 θt + sin2 θt (1.112)

=

(
n2
n1

)2

cos2 θi +

(
n1
n2

)2

sin2 θi.

Thus,[(
n2
n1

)2

− 1

]
cos2 θi +

[(
n1
n2

)2

− 1

]
sin2 θi = 0.

(1.113)
It follows that (write θi as θB)

tan θB =
n2
n1
. (1.114)

If n2/n1 = 1.5, then θB ' 56.3 degrees.
As an exercise, show that you can also write

rs = − sin(θi − θt)
sin(θi + θt)

, (1.115)

rp = +
tan(θi − θt)
tan(θi + θt)

. (1.116)

Thus, rp = 0 when θi + θt = π/2 (see Fig. 5(a)).
• Polarization by reflection

Suppose an incident wave is an equal mixture of p wave
and s wave. If it propagates along the Brewster angle,
then the reflected wave would consist only of s-wave,
since the p-wave does not reflect. Thus, a non-polarized

FIG. 8 A sunglass with polarizers. One of the lens can effec-
tively block out reflected light from the ground.

incident wave becomes fully polarized upon reflection at
the Brewster angle (Fig. 5(b)). If θi is close to θB , even
though the effect is not as perfect, we still get partial
polarization, and most of the reflection is s-wave. One
can quantify the degree of polarization with

Π ≡
∣∣∣∣Rs −RpRs +Rp

∣∣∣∣ . (1.117)

See Fig. 6 for its angular dependence.
Since the reflection is mostly s-wave, especially near

θB , one can use a polarizer to filter out some of the re-
flected light. For example, when you’re at a seashore in
a sunny day, a sunglass made of polarizers that block s-
wave (with an electrical field parallel to the ground) can
filter out the glaring reflection of sunshine on the sur-
face of water. If you are to choose the orientation of the
polarizer, then which one in Fig. 7 should you choose?

5. Total internal reflection

If an EM wave passes from a dense medium to a dilute
medium (n1 > n2) with a large incident angle θi, then
there could be total internal reflection. Snell’s law
tells us that

n1 sin θi = n2 sin θt. (1.118)

If n1 > n2, then when θi approaches a θc given by

n1 sin θc = n2, (1.119)

the refraction angle θt approaches π/2. Beyond angle θc,
there is no real-valued solution for θt. What happens
is that the wave is totally reflected when θi > θc. If
n2/n1 = 1/1.5, then θc ' 41.8 degrees.

In the following, we will investigate this phenomenon
in more details.
• Penetration depth

Consider the refracted wave,

Et(r, t) = Etei(ktxx+ktzz−ωt). (1.120)

Recall that

ktx = kix, (1.121)

ktz =
√
k2t − k2tx, kt =

n2
c
ω (1.122)

=
ω

c

√
n22 − n21 sin2 θi (1.123)

θi > θc → =
ω

c
i

√
n21 sin2 θi − n22 ≡ iκ. (1.124)
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FIG. 9 An incident wave with (a) the usual reflec-
tion/refraction and (b) total internal reflection. The latter
has the evanescent wave. Figs from Wikipedia.

Thus, when θi > θc,

Et(r, t) = Ete−κzei(ktxx−ωt). (1.125)

The wave propagates along x-direction, with an ampli-
tude decaying along z- direction (Fig. 8). Such a type
of refracted wave is called evanescent wave. It has a
penetration depth,

δ ≡ 1

κ
=

n2λt/2π√
n21 sin2 θi − n22

, (1.126)

in which c/ω is replaced by n2λt/2π, and λt is the wave
length in medium 2. The penetration depth blows up if
θi → θc (when there is little refracted wave).
• Frustrated total internal reflection

For most of the θi in Eq. (1.126), the penetration depth
of the evanescent wave is of the order of wavelength
λt. Suppose before the wave decays completely, another
dense medium is placed near the boundary, then it can
continue with its journey as in Fig. 9(a). This is called
frustrated total internal reflection (FTIR). A similar phe-
nomenon appears in the quantum tunnelling of a particle
through a barrier. A smart application of the FTIR can
be found in some fingerprint scanner (Fig. 9(b)).
• Phase velocity

Because of the factor ei(ktxx−ωt) in Eq. (1.125), the
evanescent wave would move near the boundary along x
direction. It has the phase velocity,

vp =
ω

ktx
=

c

n1 sin θi
>

c

n1
≡ vp1. (1.127)

On the other hand,

vp =
c

n1 sin θi
=

c/n2
(n1/n2) sin θi

(1.128)

=
sin θc
sin θi

c

n2
<

c

n2
≡ vp2. (1.129)

The velocities vp1, vp2 are the phase velocities in medium
1 and medium 2, and

vp1 < vp < vp2. (1.130)

• Transport of energy

(a)

(b)

FIG. 10 (a) A light is reflected by a prism because of the total
internal reflection. The total internal reflection is frustrated
when two prisms are close to each other. (b) FTIR can be
used to take fingerprint. The figure is from R. Trebino’s ppt
at frog.gatech.edu/talks.html.

Repeat the calculation in Sec. I.B.3 for the evanescent
wave (Eq. (1.100)), then its not difficult to see that,

〈S〉T =
1

2
Re (Et ×H∗t ) e−2κz, µωH = k× E

=
1

2µω
Re [Et × (k∗t × E∗t )] . (1.131)

Using the BAC-CAB rule for cross product, one has,

Et × (k∗t × E∗t ) = k∗t |Et|2 − E∗t (Et · k∗t ). (1.132)

Since the electric field is transverse, Et · k∗t = 0 (see
Eq. (1.137)), the second term is zero. Therefore,

〈S〉T · ẑ =
1

2µω
Re
[
(k∗t · ẑ)|Et|2

]
e−2κz. (1.133)

Recall that

kt = ktxx̂ + iκẑ, (1.134)

thus Re(k∗t · ẑ) = Re(−iκ) = 0, and

〈S〉T · ẑ = 0. (1.135)

There is no energy flowing to the other side along the
z-direction, as expected.

On the other hand,

〈S〉T · x̂ =
ktx
2µω
|Et|2e−2κz 6= 0. (1.136)

Thus, energy flows near the boundary along the x-
direction and diminishes along the z-direction.

You might be wondering: If all of the field energy is re-
flected back, then why can there be extra energy moving
along the boundary? Be aware that our analysis applies
to plane wave with infinite width, but not to a beam of
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GH shift

(a) (b)

FIG. 11 (a) A beam with finite width is reflected due to
total internal reflection. Energy flow of the evanescent wave
is shown below (Puri and Birman, 1986). (b) Goos-Hänchen
effect.

wave with finite width. If you study the reflection of a
wave with finite extent (Fig. 10(a)), which is a more dif-
ficult problem, you’ll find out that the energy can move
along the boundary with a distance roughly the width of
the EM wave. The energy of the evanescent wave would
eventually return back to medium 1.

Because a beam of light venture a little bit to the other
side before coming back, the entry point on the boundary
and the exit point would differ slightly (Fig. 10(b)) Such
a longitudinal shift of the light beam upon total internal

reflection is called Goos-Hänchen effect. This shift is
of the order of penetration depth, and can be enhanced
when θi ' θc.
• Polarization

We can also investigate the polarization of the evanes-
cent wave. From ∇ ·E = 0, one has

kt · Et = ktxEtx + ktyEty = 0. (1.137)

Since ktz = iκ, we have

Etx
Etz

= − iκ

ki sin θi
. (1.138)

Recall that E = E01ê1 ± iE02ê2 represents elliptically
polarized wave. Thus, the evanescent wave is elliptically
polarized, with its E vector rotating within the incident
plane.
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