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I. ELECTROMAGNETIC WAVES IN VACUUM

A. Wave equation

In this chapter, we consider EM field in vacuum with
ρ = 0,J = 0, so that

∇ ·E = 0, (1.1)

∇ ·B = 0, (1.2)

∇×E = −∂B
∂t
, (1.3)

∇×B =
1

c2
∂E

∂t
. (1.4)

This leads to

∇×∇×E = − 1

c2
∂2E

∂t2
, (1.5)

∇×∇×B = − 1

c2
∂2B

∂t2
. (1.6)

Using ∇×∇× v = ∇∇ · v −∇2v, we have

∇2E− 1

c2
∂2E

∂t2
= 0, (1.7)

∇2B− 1

c2
∂2B

∂t2
= 0. (1.8)

Differential equation of this form is called wave equa-
tion. To solve it, we need to have the initial condition.
Also, the Maxwell equations are still required to link E
with B.

B. Plane waves

Consider the following wave equation,

∇2w − 1

c2
∂2w

∂t2
= 0. (1.9)

Let’s narrow down the scope of the problem and assume
that the field is uniform along x, y directions. That is,
w(r, t) = w(z, t) depends only on z and t, so that ∇2w =
∂2w/∂z2. The wave equation can be written as,(

∂

∂z
+

1

c

∂

∂t

)(
∂

∂z
− 1

c

∂

∂t

)
w = 0. (1.10)

Its solution must be of the following form,

w(z, t) = f(z + ct) + g(z − ct), ∀ f ,g. (1.11)

These two wave forms f ,g move down and up along z-
axis with velocity c.

To prove it, define new variables,

ξ ≡ z + ct, (1.12)

η ≡ z − ct. (1.13)

Or,

z =
1

2
(ξ + η), (1.14)

ct =
1

2
(ξ − η). (1.15)

Then,

∂

∂ξ
=

1

2

(
∂

∂t
+

1

c

∂

∂t

)
, (1.16)

∂

∂η
=

1

2

(
∂

∂t
− 1

c

∂

∂t

)
. (1.17)

Thus, Eq. (1.10) becomes

∂2w

∂ξ∂η
= 0. (1.18)

It has two independent solutions, w(ξ) and w(η), or
f(z + ct) and g(z − ct). A general solution is just a su-
perposition of the two.

Now, w can be E or B in Eqs. (1.7),(1.8). but they still
need to be restricted by the Maxwell equations. These
restrictions will tell us that
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FIG. 1 (a) The vectors E,B,k are perpendicular to each
other. (b) The wavefront at time t moves along k to a new
location at t + ∆t.

1. Ez = Bz = 0. That is, there is no longitudinal com-
ponent of the EM field.
2. cB = ẑ×E. That is, E,B, ẑ are perpendicular to each
other.
For a proof, see Sec. 16.3 of Zangwill, 2013.

Since the amplitude of the wave depends only on z (for
a fixed t), thus its wavefront consist of planes moving
along z-axis. This is called plane wave, with wavevec-
tor k = kẑ, k = 2π/λ (see Fig. 1(a)).

If a plane wave is propagating along a general direction

k̂, then just replace

z ± ct → k̂ · r± ct, (1.19)

k(z ± ct) → k · r± ωt, ω = ck. (1.20)

Thus,

E⊥(r, t) = E⊥(k · r± ωt), (1.21)

B⊥(r, t) = B⊥(k · r± ωt), cB⊥ = k̂×E⊥.(1.22)

We have added a subscript to emphasize that the fields

are transverse to k̂.
At an instant t, the wavefront with phase φ0 consists

of points r satisfying

k · r− ωt = φ0. (1.23)

At the next instant t+∆t, this wavefront moves to r+∆r
(see Fig. 1(b)), and

k · (r + ∆r)− ω(t+ ∆t) = φ0. (1.24)

Hence, the wavefront moves with velocity

vp =
∆r · k̂

∆t
=
ω

k
. (1.25)

This is the phase velocity.

1. Energy and momentum

The energy density of the EM field at r, t is

uEM (r, t) =
ε0
2

[
E2(r, t) + c2B2(r, t)

]
. (1.26)

For a transverse wave, E,B,k are perpendicular to each
other, thus

c2B2 = (k̂×E) · (k̂×E) = E2. (1.27)

That is, the energy densities from E field and B field are
the same. Hence,

uEM (r, t) = ε0E
2(r, t). (1.28)

The Poynting vector is given by,

S(r, t) =
1

µ0
E×B (1.29)

=
1

µ0c
|E|2k̂ = uEMck̂, (1.30)

which is equal to energy density × velocity. The momen-
tum density of field is,

g(r, t) =
S(r, t)

c2
=
uEM (r, t)

c
k̂. (1.31)

2. Monochromatic plane wave

We now focus on the plane wave that is monochro-
matic. That is, it only has a single frequency, such as

E(r, t) = E0 cos(k · r− ωt), (1.32)

where E0 is a constant vector.
It is convenient to introduce the complex notation

and write

E(r, t) = Re
[
Eei(k·r−ωt)

]
, (1.33)

B(r, t) = Re
[
Bei(k·r−ωt)

]
, cB = k̂× E (1.34)

in which E,B are constant complex vectors. If E is real,
then we are back to Eq. (1.32). If not, then the imaginary
parts would contribute to phase shifts, since

E = |E1|eiφ1 ê1 + |E2|eiφ2 ê2., (1.35)

in which ê1,2 are unit vectors perpendicular to k.
If a calculation involves only linear equations of fields

from start to finish, then the prefix Re can be dropped
during the calculation. One only needs to take the real
part of the end result to get the solution. However, if
quadratic fields (e.g., energy density) are involved, then
it is safer to keep the prefix Re explicit during the calcu-
lation to avoid mistakes. For example,

(Re e−iωt)× (Re e−iωt)) = cos2 ωt, (1.36)

but Re (e−iωt × e−iωt) = cos 2ωt, (1.37)

which are obviously different.
That is, the energy density should be written as

uEM =
ε0
2

(
|ReE|2 + c2|ReB|2

)
. (1.38)
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FIG. 2 The trajectory of the electric field for (a) Linear po-
larization, (b) Left circular polarization, (c) Right circular
polarization, and (d) Elliptic polarization. The vector k is
perpendicular to the ê1 − ê2 plane.

Since

ReE =
1

2
(E + E∗) , (1.39)

ReB =
1

2
(B + B∗) , (1.40)

we have for monochromatic plane wave,

uEM =
ε0
4

(
E · E∗ + c2B ·B∗

)
(1.41)

+
ε0
4
Re
[(
E · E + c2B ·B

)
e2i(k·r−ωt)

]
.

The first part is static, while the second part oscillates in
space and time. When one takes the time average of uEM
over one period (or many periods), then the second part
vanishes. Recall that the electric field and the magnetic
field contribute equally to the field energy, therefore,

〈uEM 〉T (r) =
ε0
2
|E|2, (1.42)

〈S〉T (r) = 〈uEM 〉T ck̂, (1.43)

〈g〉T (r) =
〈uEM 〉T

c
k̂. (1.44)

Note that the first expression differs from uEM =
ε0E

2(r, t) obtained earlier in Eq. (1.28) by a factor of
two.
Example

A radio station transmits 10-kW EM wave with a fre-
quency of 100 MHz. One kilometer away, the Poynting
vector is

〈S〉T =
10000

4π10002
=

10−2

4π

W

m2
. (1.45)

FIG. 3 A snapshot of the EM wave E+(r, 0) at t = 0 with
left circular polarization. Fig. from Zangwill, 2013.

From

〈S〉T =
ε0
2
E2

0c, (1.46)

one gets E0 = 0.775 V/m. You may check that the
magnetic field B0 = 2.58 × 10−9 T. Remember that S
is energy current density (energy/area·time). Therefore,
the energy incident normally on a square plate with area
A = 1 m2 in one minute is

〈S〉TA∆t = 0.48 J. (1.47)

C. Polarization

1. Linear polarization

Let’s continue with the monochromatic plane wave. By
definition, its direction of polarization is the direction of
its E. The wave in Eq. (1.32) has linear polarization.
Using complex notation,

E(r, t) = E0 cos(k · r− ωt) (1.48)

= Re
[
Eei(k·r−ωt)

]
, (1.49)

E = E0 = E01ê1 + E02ê2, (1.50)

in which E0 is real, and (ê1, ê2) is an orthogonal basis
perpendicular to k (Fig. 2(a)).

2. Circular polarization

For an EM wave with circular polarization, the tip of
the E vector draws out a circle. For example,

E(r, t) = E0ê1 cos(k·r−ωt)∓E0ê2 sin(k·r−ωt). (1.51)

At a fixed location r = 0,

E±(0, t) = E0ê1 cos(ωt)± E0ê2 sin(ωt). (1.52)

The vector E+(0, t) (or E−(0, t)) rotates counter-
clockwise (or clockwise). We say that it has left (or right)
circular polarization (Fig. 2(b), (c)). Note that here the
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handedness is defined from the perspective of the source,
rather than the receiver (Fig. 3). That is, your thumb
points to −k, rather than +k. However, not everyone
likes this convention, and you may find an opposite defi-
nition in some literatures.

To write this in complex notation, choose

E± = E0(ê1 ± iê2), L/R (1.53)

which is a complex vector. Then

E±(r, t) = Re
[
E±ei(k·r−ωt)

]
(1.54)

= Re
[
E0ê1e

i(k·r−ωt) ± E0iê2e
i(k·r−ωt)

]
(1.55)

= E0ê1 cos(k · r− ωt)∓ E0ê2 sin(k · r− ωt).

This is indeed the circular polarization in Eq. (1.51).
It is obvious that if the oscillations along ê1, ê2 differ in

magnitude, then we have elliptic polarization (Fig. 2(d)).
That is,

Linear pol. E = E01ê1 + E02ê2, (1.56)

Circular pol. E± = E0ê1 ± iE0ê2, (1.57)

Elliptic pol. E± = E01ê1 ± iE02ê2. (1.58)

A linearly polarized wave can be considered as an super-
position of circular-polarized waves,

E = E01ê1 + E02ê2 (1.59)

= αE0(ê1 + iê2) + β(ê1 − iê2), (1.60)

where

αE0 =
1

2
(E01 − iE02), (1.61)

βE0 =
1

2
(E01 + iE02). (1.62)

We can define an alternative basis for circular polariza-
tion,

ê+ ≡
1√
2

(ê1 + iê2), (1.63)

ê− ≡
1√
2

(ê1 − iê2). (1.64)

Then,

E = E01ê1 + E02ê2 (1.65)

= E−ê+ + E+ê−, (1.66)

where

E± ≡
1√
2

(E01 ± iE02). (1.67)

Since |E+| = |E−|, a linear polarization wave is an equal
superposition of a LCP wave and a RCP wave.

r k

(a) (b)

r0 k0

|E(r,t)| |E(k)|

FIG. 4 A wavepacket (a) and its Fourier components (b) that
are centered at k0.

D. General plane wave

For a plane wave that is not monochromatic, it can be
decomposed as a superposition of monochromatic waves
(Fig. 4),

E(r, t) =

∫
d3k

(2π)3
E(k)ei(k·r−ωt). (1.68)

We have used the complex notation but dropped the pre-
fix Re. Also,

cB(r, t) =

∫
d3k

(2π)3
k̂× E(k)ei(k·r−ωt) (1.69)

= k̂×E(r, t). (1.70)

1. Energy density

We now analyze the energy density of a general plane
wave. Since

c2|ReB(r, t)|2 = |k̂×ReE(r, t)|2 = |ReE|2, (1.71)

one has

uEM (r, t) =
ε0
2

(
|ReE(r, t)|2 + c2|ReB(r, t)|2

)
= ε0|ReE(r, t)|2. (1.72)

Now,

|ReE|2 =

∣∣∣∣12(E + E∗)

∣∣∣∣2 (1.73)

=
1

2
|E|2 +

1

4
(E ·E + E∗ ·E∗) . (1.74)

In the first term, we have

E∗·E =

∫
d3k′

(2π)3

∫
d3k

(2π)3
E∗(k′)·E(k)ei[(k−k

′)·r−(ω−ω′)t],

(1.75)
which shows complicated interference between
monochromatic waves. This can be simplified after
integration over r. Using∫

dvei(k−k
′)·r = (2π)3δ(k− k′), (1.76)

and ω = ck, one has∫
dv|E|2 =

∫
d3k

(2π)3
|E(k)|2. (1.77)
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FIG. 5 When ω(k) is smoother than A(k) near k0, it can be
approximated by the dotted straight line, which is the Taylor
expansion of ω(k) to the first order.

Similarly,∫
dvE ·E =

∫
d3k

(2π)3
E(k) · E(−k)e−2iωt. (1.78)

For practical cases, this term (and its complex conjugate)
is oscillating rapidly and can be neglected after time av-
erage.

Finally, the total field energy is

UEM (t) =

∫
dvuEM (r, t). (1.79)

After time average, we have

〈UEM 〉T =
ε0
2

∫
d3k

(2π)3
|E(k)|2. (1.80)

Similarly,

〈PEM 〉T =
ε0
2c

∫
d3k

(2π)3
k̂|E(k)|2. (1.81)

2. Group velocity of wavepacket

A wavepacket has a localized waveform, which is a su-
perposition of plane waves. For simplicity, we study the
velocity of a scalar wavepacket u(r, t). The same analysis
applies not only to EM wave, but also to acoustic wave,
electron wave ... etc.

Suppose at t = 0, we have a smooth bump u(r, 0),
then how does it evolve to u(r, t)? To solve this, first
decompose the initial wavepacket into a superposition of
plane waves,

u(r, 0) =

∫
d3k

(2π)3
A(k)eik·r. (1.82)

The coefficient A(k) is localized around some location
k0 in k-space. Each plane wave eik·r moves with phase

velocity vp = (ω/k)k̂. That is, after time t,

eik·r → eik·(r−vpt) = ei(k·r−ωt). (1.83)

Therefore, after superposition,

u(r, t) =

∫
d3k

(2π)3
A(k)ei(k·r−ωt). (1.84)

In an isotropic medium with linear dispersion, ω(k) =
vk. However, in general, ω(k) can be nonlinear. Suppose
ω(k) is a smooth function of k compared to A(k), then
we can expand (see Fig. 5)

ω(k) = ω(k0) +
∂ω

∂k0
· (k− k0) + · · · . (1.85)

It follows that,

u(r, t) ' e−iω0t+i
∂ω
∂k0
·k0

∫
d3k

(2π)3
A(k)e

ik·
(
r− ∂ω

∂k0
t
)

= eiφu

(
r− ∂ω

∂k0
t, 0

)
. (1.86)

That is, to this order of approximation, the wavepacket
is moving rigidly (without the change of shape) with ve-
locity,

vg =
∂ω

∂k0
. (1.87)

This is called group velocity. The energy and momen-
tum of an EM pulse propagates with the velocity of vg,
not vp.

If we go beyond the first order of the expansion in
Eq. (1.85), then the shape of the wavepacket would no
longer remain the same. Its width would grow with time.
This is the known as wavepacket expansion.
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