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I. GENERAL ELECTROMAGNETIC FIELDS

A. Electromagnetic potentials and gauge transformations

It is known in vector calculus that the divergence of
the curl of any vector field W is zero, and the curl of the
gradient of any scalar field W is zero. The reverse is also
true: if the divergence of a vector field V is zero, then V
can be written as a curl; if the curl of V is zero, then V
can be written as a gradient:

∇ ·V = 0 ↔ V = ∇×W, (1.1)

∇×V = 0 ↔ V = ∇W. (1.2)

Recall that two of the Maxwell equations without a
source term are,

∇ ·B = 0, (1.3)

∇×E+
∂B

∂t
= 0. (1.4)

The first equation allows us to write

B = ∇×A, (1.5)

where A is the vector potential. The second equation
gives

∇× (E+
∂A

∂t
) = 0. (1.6)

It follows that,

E = −∇ϕ− ∂A

∂t
. (1.7)

Substitute Eqs. (1.5) and (1.7) to the other two
Maxwell equations,

∇ ·E =
ρ0
ε0

, (1.8)

∇×B− 1

c2
∂E

∂t
= µ0J, (1.9)

we have

∇2ϕ+
∂

∂t
∇ ·A = −ρ0

ε0
, (1.10)

∇2A− 1

c2
∂2A

∂t2
−∇

(
∇ ·A+

1

c2
∂ϕ

∂t

)
= −µ0J.(1.11)

Originally, we have four first-order partial differential eqs
for E and B, now we have two second-order partial dif-
ferential eqs for ϕ and A.

1. Gauge transformation

The fields E and B can be measured in experiments
through the Lorentz force, while the potentials ϕ and A
cannot. The latter are not uniquely defined in Eqs. (1.5)
and (1.7). Indeed, suppose ϕ,A and ϕ′,A′ are related by
the following gauge transformation,

A′ = A+∇Λ, (1.12)

ϕ′ = ϕ− ∂Λ

∂t
, (1.13)

where Λ(r, t) can be any smooth function, then they give
the same electromagnetic fields E and B.
We can take advantage of this gauge degree of freedom

to simplify Eqs. (1.10) and (1.11): Given ϕ,A, we can
choose a Λ such that

∇ ·A′ = 0 (Coulomb gauge), (1.14)

or ∇ ·A′ +
1

c2
∂ϕ′

∂t
= 0 (Lorenz gauge). (1.15)

For example, suppose ∇ ·A ̸= 0, then we demand

∇ ·A′ = ∇ ·A+∇2Λ = 0. (1.16)

The gauge function Λ needs to satisfy

∇2Λ = −∇ ·A. (1.17)
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The right hand side is supposedly known. Similar to the
Poisson equation for charge, we know that under proper
boundary condition (Λ → 0 as r → ∞), there is a formal
solution,

Λ(r, t) =
1

4π

∫
dv′

∇′ ·A(r′, t)

|r− r′|
. (1.18)

So it is always possible to choose a new vector potential
A′ that satisfies the Coulomb gauge. This works similarly
for the Lorenz gauge, which is not elaborated here.

2. Coulomb gauge

Under the Coulomb gauge, Eqs. (1.10) and (1.11) be-
come

∇2ϕ = − ρ

ε0
, (1.19)

∇2A− 1

c2
∂2A

∂t2
= −µ0J+

1

c2
∇∂ϕ

∂t
. (1.20)

The first equation is the same as the Poisson equation
for static charge, except that the ρ(r, t) here can depend
on time. It follows that,

ϕ(r, t) =
1

4πε0

∫
dv′

ρ(r′, t)

|r− r′|
. (1.21)

Even thought this looks the same as the equation from
the QES approximation (see Ch 14), the formula here is
actually exact, without any approximation. Under the
Coulomb gauge, one can easily obtain the scalar poten-
tial, but not the vector potential (Jackson, 2002).

A remark: Since the time in the ρ(r, t) of Eq. (1.21) is
not retarded, it appears that the effect of the disturbance
from the source is instantaneous. This is not true. For
example, in Prob. 6.20 of Jackson, 1998, you are given a
dipole source that flashes on and off at t = 0,

ρ(r, t) = δ(x)δ(y)δ′(z)δ(t) (1.22)

Jz(r, t) = −δ(x)δ(y)δ(z)δ′(t). (1.23)

The problem is to find out the electric field it generates.
The result shows that the field is actually retarded.
The right hand side of Eq. (1.20) can be simplified.

But before doing that, we need to learn the Helmholtz
theorem. It says that any vector field V(r) can be de-
composed as two parts,

V = V1 +V2, (1.24)

where ∇ × V1 = 0, and ∇ · V2 = 0. This is similar
to the fact that, given a vector v, it is always possible
to decompose it into two orthogonal directions (Fig. 1).

One is parallel to k̂, the other is perpendicular to k̂,

v = v∥ + v⊥ (1.25)

= k̂(k̂ · v)− k̂× (k̂× v). (1.26)

k̂

v
�

v
�

�

v
⊥

�

FIG. 1 Decompose a vector v into two components.

In momentum space, ∇ ∼ k, and∇×V1 ∼ k×V1 = 0,
and ∇·V2 ∼ k·V2 = 0. Thus we call V1 the longitudinal
part, and V2 the transverse part. Since

∇× (∇×V) = ∇(∇ ·V)−∇2V, (1.27)

the longitudinal part (written as V∥) satisfies,

∇2V∥ = ∇(∇ ·V∥). (1.28)

From the Eq. of continuity and the Poisson equation, we
have

∇ · J = ∇ · J∥ = −∂ρ

∂t
= ε0

∂

∂t
∇2ϕ. (1.29)

Take the gradient of both sides and use Eq. (1.28), it
follows that,

∇2

(
µ0J∥ −

1

c2
∂

∂t
∇ϕ

)
= 0. (1.30)

It is known that if ∇2F = 0 everywhere, and F van-
ishes at infinity, then F (r) = 0. A physical interpretation
of this is that, if there is no charge everywhere, then the
potential must be a constant, and equal to its value (zero)
at infinity. Now, suppose that both terms in the equation
above vanish at infinity, then

µ0J∥ =
1

c2
∂

∂t
∇ϕ. (1.31)

Therefore, on the right hand side of Eq. (1.20), only the
transverse part is left,

∇2A− 1

c2
∂2A

∂t2
= −µ0J⊥. (1.32)

That is, only the transverse part of the current, J⊥, can
generate the vector potential, and hence the magnetic
field.

3. Lorenz gauge

Using the Lorenz gauge in Eq. (1.15), Eqs. (1.10) and
(1.11) become

∇2ϕ− 1

c2
∂2ϕ

∂t2
= −ρ0

ε0
, (1.33)

∇2A− 1

c2
∂2A

∂t2
= −µ0J. (1.34)
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This gauge condition is explicitly invariant under rel-
ativistic transformation. The potentials can be solved
with the method of Green function (see Chap 20 of
Zangwill, 2013).

First, we illustrate this method with a simple example:
To solve the Poisson equation,

∇2ϕ(r) = −ρ(r)

ε
, (1.35)

we can first solve the potential g for a point charge at r′,

∇2gr′(r) = −δ(r− r′)

ε
. (1.36)

The solution is, of course,

gr′(r) =
1

4πε0

1

|r− r′|
. (1.37)

The general charge distribution ρ can be considered as
a superposition of point charges,

ρ(r) =

∫
dv′ρ(r′)δ(r− r′), (1.38)

in which ρ(r′) can be considered as the “weight” of point
charges. By the principle of superposition, the potential
ϕ would be a superposition of the potentials from these
point charges,

ϕ(r) =

∫
dv′ρ(r′)gr′(r) (1.39)

=
1

4πε0

∫
dv′

ρ(r′)

|r− r′|
. (1.40)

The function g for a point source is called the Green
function in this approach.

Now, to solve the wave equation in Eq. (1.33), first
solve the potential gr′,t′(r, t) for a point source in space
and time,

∇2g − 1

c2
∂2g

∂t2
= −δ(r− r′)δ(t− t′)

ε0
. (1.41)

For a general distribution of charges, the potential ϕ is a
superposition of g’s for point sources,

ϕ(r, t) =

∫
dt′dv′ρ(r′, t′)gr′,t′(r, t). (1.42)

We know that a point source generates a spherical shell
of disturbance propagating at the speed of light with the
form (see Sec. 20.3 of Zangwill, 2013),

gr′,t′(r, t) =
1

4πε0

δ(t− t′ − |r− r′|/c)
|r− r′|

. (1.43)

Therefore,

ϕ(r, t) =
1

4πε0

∫
dv′

ρ(r′, tr)

|r− r′|
, (1.44)

A(r, t) =
µ0

4π

∫
dv′

J(r′, tr)

|r− r′|
, (1.45)

q

Rr

vt

θ

FIG. 2 The vector R (or r) points from the charge at present
(or earlier) location to the observation point.

in which tr = t − |r − r′|/c is the retarded time. The
electromagnetic fields can be calculated accordingly using
E = −∇ϕ− ∂A/∂t and B = ∇×A.
• Electromagnetic field of a moving charge
In Chap 14, we have calculated the electric and mag-

netic fields for a charge that moves slowly. Here we’ll
redo this without limiting the velocity. For a point charge
moving with constant velocity v = vẑ, its charge density
and current density are,

ρ(r, t) = qδ(x)δ(y)δ(z − vt), (1.46)

J(r, t) = qvδ(x)δ(y)δ(z − vt). (1.47)

Usually we would prefer doing integration to get ϕ and A
since the integral of Dirac delta function is trivial. This
is not the case here, because the retarded time tr inside
the delta function in Eqs. (1.44) and (1.45) is a function
of r′ and would render the integration difficult.
Therefore, instead we solve this problem with the dif-

ferential equations in Eqs. (1.33), (1.34). First, since the
charge and current sources depend on the variable z−vt,
one expects the potentials to depend on it as well,

ϕ(x, y, z − vt) and A(x, y, z − vt) = A(x, y, z − vt)ẑ.
(1.48)

It can be seen from Eq. (1.45) that A has the z-
component only. Define ξ = z − vt, then the differential
equation for ϕ becomes,

∂2ϕ

∂x2
+
∂2ϕ

∂y2
+

(
1− v2

c2

)
∂2ϕ

∂ξ2
= − q

ε0
δ(x)δ(y)δ(ξ). (1.49)

Define 1 − (v/c)2 = 1/γ2, and rescale the variable,
z′ ≡ γξ = γ(z − vt), We then have

∂2ϕ

∂x2
+

∂2ϕ

∂y2
+

∂2ϕ

∂z′2
= −γq

ε0
δ(x)δ(y)δ(z′), (1.50)

where δ(ξ) = γδ(γξ) has been used. The solution is sim-
ilar to that of a point charge at rest,

ϕ(r, t) =
1

4πε0

γq√
x2 + y2 + z′2

(1.51)

=
1

4πε0

γq√
x2 + y2 + γ2(z − vt)2

. (1.52)

Similarly, for the vector potential, we have

A(r, t) =
µ0

4π

γq√
x2 + y2 + γ2(z − vt)2

vẑ. (1.53)



4

FIG. 3 Densities of electric field lines for a point charge at
rest (a), moving with v = 0.9c (b). Fig. from Lorrain and
Corson, 1970

Use Eq. (1.7) to calculate the electric field and get,

E(r, t) =
γq

4πε0

xx̂+ yŷ + (z − vt)ẑ

[x2 + y2 + γ2(z − vt)2]3/2
. (1.54)

The electric field is along the direction of R (Fig. 2),
where

R ≡ xx̂+ yŷ + (z − vt)ẑ. (1.55)

The angle θ between R and v satisfies

sin2 θ =
x2 + y2

x2 + y2 + (z − vt)2
. (1.56)

Then the electric field can be written as,

E(r, t) =
q

4πε0

R̂

R2

1− β2

(1− β2 sin2 θ)3/2
, β ≡ v

c
. (1.57)

When β ̸= 0, the electric field is stronger in the transverse
direction, and weaker at front and end (Fig. 3). It is as
if the sphere of electric field has been squashed along
the direction of motion. This result is first obtained by
O. Heaviside. Such a Heaviside ellipsoid inspired the
notion of FitzGerald-Lorentz contraction.
The magnetic field can also be calculated straightfor-

wardly. It is left as an exercise to show that.

B =
v

c2
×E, (1.58)

similar to the relation for a slow charge (Fig. 4(a)).
Note that the denominator of Eq. (1.57) would blow

up at β = 1, and become imaginary when β > 1. This in-
dicates that it’s impossible for the charge to move faster
than light. After obtaining this result, Heaviside conjec-
tured that when v > c, there would be electromagnetic
shock wave, like the acoustic shock wave produced by a
supersonic object in air (Fig. 4(b)). Even though this is
not possible in vacuum, such a shock wave does exist in
matter. When a charged particle moves faster than the
speed of light in matter, it will generate a shock wave
called the Cerenkov radiation, named after the person
who first observed it (see Sec. 23.7 of Zangwill, 2013).

v

B

(a)

(b)

FIG. 4 (a) The magnetic field of a moving charge. (b)
Cerenkov radiation as shock wave.

B. Equation of continuity for energy

We now calculate the mechanical work Wm done
by electromagnetic field on charged particles. Suppose
charge ρ∆V is displaced by ∆r due to fields, then the
mechanical work is,

∆wm = ρ∆V (E+ v ×B) ·∆r. (1.59)

The rate of total work done is

dWm

dt
=

∫
dvρ(E+ v ×B) · v (1.60)

=

∫
dvJ ·E, J = ρv. (1.61)

Note that the magnetic force does no work.
We can use Ampere-Maxwell equation to relate current

density with fields,

∇×B− 1

c2
∂E

∂t
= µ0J (1.62)

It follows that,

J ·E =
1

µ0

(
E · ∇ ×B− 1

c2
E · ∂E

∂t

)
. (1.63)

Using a vector identity and Faraday’s law, we have

∇ · (E×B) = B · (∇×E)−E · (∇×B) (1.64)

= −B · ∂B
∂t

−E · ∇ ×B. (1.65)

Therefore,

J ·E = − 1

µ0
∇ · (E×B)− 1

µ0
B · ∂B

∂t
− ε0E · ∂E

∂t
. (1.66)

Define electromagnetic energy density as,

uEM =
ε0
2
E2 +

1

2µ0
B2. (1.67)



5

SV

S

U
EM

Joul

heat

FIG. 5 The sum of the following three is conserved: 1. The
EM field energy inside V , 2. The field energy flowing out
of surface S, and 3. The mechanical work done by field on
charged particles (Joul heat).

Also, define the Poynting vector,

S =
1

µ0
E×B. (1.68)

Then Eq. (1.66) can be written as,

∂uEM

∂t
+∇ · S = −J ·E. (1.69)

This is the Equation of continuity for energy. The
energy density uEM of fields is similar to the charge den-
sity in the Eq. of continuity for charge. Therefore, S
can be identified as energy current density for fields.
You may check whether the dimension of S makes sense.
First, it is not difficult to see that

[E] = [vB], and [uEM ] =

[
B2

µ0

]
. (1.70)

Therefore,

[S] =

[
EB

µ0

]
=

[
vB2

µ0

]
= [vuEM ]. (1.71)

This is indeed the dimension of energy current density.

The term on the right hand side of Eq. (1.69) plays the
role of a source or sink. If J ·E > 0, then −J ·E is a sink
for electromagnetic field energy. In this case, the field
energy transfers to charged particles because the former
does positive work Wm on the latter. In a conductor,
mobile charges collide with ions and lose their kinetic
energy, so that the mechanical energy turns into heat.
This is the Joul heat.

The total electromagnetic field energy inside a volume
V is,

UEM =

∫
V

dvuEM . (1.72)

The flux of energy current flowing out of the surface S
that bounds V is,∫

V

∇ · S =

∫
S

da · S. (1.73)

z(a)

v

a

E

θ

(b)

B

z

EB

S

FIG. 6 (a) A charged sphere moving with velocity v. (b) A
charged sphere at rest in a uniform magnetic field.

Therefore, the integral form of Eq. (1.69) is (see Fig. 5),

d

dt
UEM +

∫
S

da · S+

∫
V

dvJ ·E = 0. (1.74)

The first term is the change of field energy (per unit time)
inside V . The second is the flow of field energy (per unit
time) through the boundary S of the region V . The third
term is the loss (if J · E > 0) of field energy to charged
particles (per unit time). The net change of these three
terms is zero, which is a manifestation of the conservation
of energy.
Some remarks:

1. Note that S′ = S + ∇ × C gives the same energy
flux as S, since the flux integral is not changed by the
curl. However, this addition could change the direction
of S. Chap 27, Vol II of Feynman et al., 2010 has some
discussion on such an ambiguity.
2. Based on the relation between mass and energy

E = mc2, uEM/c2 can be identified as the effective mass
density associated with the field. Thus,

g ≡ S

c2
= ε0E×B (1.75)

can be called the electromagnetic momentum den-
sity. The total EM momentum inside V is

PEM =

∫
V

dvg = ε0

∫
V

dvE×B. (1.76)

Note: A related quantity is the radiation pressure,
which is S/c.
3. Furthermore, ℓEM ≡ r× g can be identified as the

angular momentum density of EM field (with respect
to some reference point). The total angular momentum
of the EM field inside V is

LEM = ε0

∫
V

dvr× (E×B). (1.77)

This includes both orbital and (photon) spin angular mo-
menta (Sec. 16.7.6. of Zangwill, 2013).
Example 1:
Find out the field energy and Poynting vector of a

charged spherical shell moving with velocity v ≪ c
(Fig. 6(a)). This shell with radius a is charged uniformly
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B

q>0

FIG. 7 A solenoid at the center of a disk with positive charges
on its surface.

with charge q.
Solution:

A sphere at rest at the origin has the following field
outside (no field inside),

E =
1

4πε0

q

r2
r̂. (1.78)

Since v ≪ c, we can rely on the quasi-electrostatic ap-
proximation (Chap 14). At the instant when the moving
sphere passes through the origin, it has the same electric
field as the one above. The electric field energy is

UE =
ε0
2

∫
dv|E|2 =

1

4πε0

q2

2a
. (1.79)

The magnetic field is

B =
v

c2
×E, v = vẑ. (1.80)

Sine |v ×E| = vE sin θ, we have

UB =
1

2µ0

∫
dv|B|2 =

2

3

UE

c2
v2. (1.81)

Total EM field energy would be UE + UB .
The Poynting vector is

S =
1

µ0
E×B (1.82)

= ε0E× (v ×E) (1.83)

= −ε0vE
2 sin θθ̂. (1.84)

It flows from the south pole to the north pole. The EM
momentum flowing upward is

PEM =

∫
dvg =

4

3

(
1

c2
1

4πε0

q2

2a

)
v. (1.85)

Note that if you identify UE = m0c
2, UB = mv2/2, and

PEM = mv, then the effective masses, m0,m, do not
agree with each other. So it’s advised not to interpret
these EM quantities with traditional mechanical concept.
See Chap 28, Vol II of Feynman et al., 2010 for more
discussions.

L

I

E

B

S

z

L

I

E

B

S

z

(a) (b)

FIG. 8 (a) The EM field and Poynting vector surrounding a
wire. (b) The electric field is tilted due to surface charge.

Note that as long as E and B coexist in a region, then
there is EM momentum flowing around. For example, in
Fig. 6(b), there is a charged sphere (not moving) in a uni-
form magnetic field B. The electric field E is radial, and
B = Bẑ. As a result, g is circulating the sphere endlessly.
It’s not difficult to see that the EM angular momentum
LEM with respect to the origin is also nonzero.

In Sec. 17-4, Vol II of Feynman et al., 2010, Feynman
proposed the following paradox: Consider a long solenoid
at the center of a disk that can rotate (Fig. 7). There are
positive charges fixed on the surface of the disk. At the
beginning, nothing is moving, and a steady current gen-
erates a uniform magnetic field inside the solenoid. Then,
we suddenly turn off the current. The changing magnetic
flux through the solenoid induces a circular electric field
outside the solenoid. As a result, the disk would start to
rotate (counter-clockwise) since the charges are pushed
by the electric force. This appears to violate the conser-
vation of angular momentum, since no external torque
has been applied to this device.

The resolution of this paradox relies on, of course, the
fact that an EM field can carry angular momentum. Be-
fore the current is turned off, the Poynting vector S is cir-
culating (counter-clockwise) inside the solenoid. There-
fore, the angular momentum LEM points up. When the
current is turned off, such an angular momentum of EM
field transfers to the charges (and the disk). Throughout
this process, the total angular momentum of field and
disk remains conserved.

1. Energy flow in a circuit

First, let’s investigate the flow of electromagnetic en-
ergy around a straight wire. In Fig. 8(a), there is a
straight wire with radius a and uniform current I. On
the surface of the wire, the magnetic field is,

B =
µ0

2π

I

a
ϕ̂. (1.86)
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FIG. 9 The EM fields and surface charges surrounding a cir-
cuit. Fig. is from Galili and Goihbarg, 2005

Since J = σE and I is uniform, the electric field inside
the wire is,

E =
J

σ
=

1

σ

I

πa2
ẑ. (1.87)

This is also the field near the surface outside the wire,
since the tangential component of E needs to be contin-
uous across the boundary, E1t = E2t.
It follows that

S =
1

µ0
E×B =

I

σπa2
I

2πa
(−ρ̂). (1.88)

The Poynting vector points toward the wire. The total
EM energy flowing into the wire within a length L is,∣∣∣∣∫

S

da · S
∣∣∣∣ = 2πaLS (1.89)

= I2ρ
L

πa2
= I2R, (1.90)

where ρ and R are the resistivity and resistance of the
wire, and R = ρ L

πa2 . As we have explained earlier, this
energy would turn into Joul heat.

In this example, the energy flux flows inward. In real-
ity, it also has to move forward along the wire in order
to transport electric energy. That is, there is a part of
S ∥ ẑ. So we need an electric field that deviates from
the tangential direction (see Fig. 8(b)). Recall that the
boundary condition for electric field is (see Chap 3)

E2 −E1 =
σs

ε0
n̂1→2, (1.91)

where σs is surface charge density. Since there is no nor-
mal component inside the wire, E1n = 0, thus on the
outside,

E2n =
σs

ε0
. (1.92)

The E2n outside the wire can exist only if there are sur-
face charges.

FIG. 10 An imaginary circuit that follows a dipole field line.
together with the flow lines of S. Fig. is from Zangwill, 2013.

Fig. 9 is a schematic plot of the energy flow surround-
ing an electric circuit. For a report of an experimental
observation of the surface charge, see Jefimenko, 1962.
An artificial setup in Fig. 10 offers a concrete example

of the energy flow from a battery to its wire. The battery
is simulated with an electric dipole. The wire lays along
one of the field lines, so that the charges inside can be
driven by the electric dipole field. Since the strength of E
varies along the wire, the current cannot remain uniform
if the conductivity is constant along the wire. To keep
the current I fixed, σ needs to vary with location, such
that

J = σ(r)E(r) = const. (1.93)

Since the magnetic field B is transverse to the wire, and
E is along the wire, the Poynting vector S ∥ E × B is
everywhere perpendicular to the wire. Their flow would
coincide with the equipotential curves of the dipole field.

C. Electromagnetic momentum

Newton’s third law, which states that action equals re-
action, is no longer valid between two moving charges.
Consider two point charges q1, q2, moving with veloc-
ities v1,v2. Charge-i produces electromagnetic field
Ei,Bi (i = 1, 2). The forces F1,2 on charges q1,2 are,

F1 = q1(E2 + v1 ×B2), (1.94)

F2 = q2(E1 + v2 ×B1). (1.95)

We know that

B1(r2) =
v1

c2
×E1(r2), (1.96)

B2(r1) =
v2

c2
×E2(r1). (1.97)

Therefore, in general the two magnetic forces, q1v1 ×B2

and q2v2 ×B1, are not opposite to each other, and F1 ̸=
−F2.
The problem, of course, is that the EM field also carries

momentum, and we need to take this into account. Let’s
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jump to a frame that stays with q1, so that q1 sits at rest
at r1, and q2 is located at r2(t) moving with velocity v.
The electric fields are

E1 = −∇ϕ1, (1.98)

E2 = −∇ϕ2 −
∂A2

∂t
. (1.99)

Even though charge q2 produces a magnetic field, it does
not have an effect on the charge q1 at rest. The forces on
q1 and q2 are

F1 = q1E2 = −q1∇ϕ2(r1, t)− q1
∂A2

∂t
(r1, t),(1.100)

F2 = q2E1 = −q2∇ϕ1(r2). (1.101)

Using the Coulomb gauge, we have

ϕ1(r2) =
1

4πε0

q1
|r2(t)− r1|

, (1.102)

ϕ2(r1) =
1

4πε0

q2
|r1 − r2(t)|

. (1.103)

Therefore, q1∇1ϕ2 = −q2∇2ϕ1. The total force on these
two particles is,

F1 + F2

(
=

dPmech

dt

)
= −q1

∂A2

∂t
̸= 0. (1.104)

This is in the absence of any external force. To remedy
this problem, define

PEM = q1A2, (1.105)

so that

d

dt
Pmech +

∂

∂t
PEM = 0. (1.106)

PEM is the momentum carried by the field.

Earlier we mentioned that g = S/c2 is the momentum
density of EM field. How would this relate to the defini-
tion of PEM above? For this system with two charges,
E = E1 +E2, B = 0 +B2. Therefore,

g = ε0E×B (1.107)

= ε0E1 ×B2 + ε0E2 ×B2. (1.108)

The second term is solely from the fields of q2. It would
diverge for a point charge. To avoid the divergence, one
can start from a charged sphere with a finite radius a,
calculate its field momentum (see Eq. (1.85)), then let
a → 0. In any case, this just leads to a constant (that
diverges) times v, so we will ignore this term and keep
only the first term. It follows that

PEM = ε0

∫
dvE1 ×B2. (1.109)

Before demonstrating the equivalence of Eq. (1.105)
and (1.109), let’s prove the following equation:∫

dv [E× (∇×A) +A× (∇×E)]

=

∫
dv (A∇ ·E+E∇ ·A) . (1.110)

pf: First, use

∇(a · b) = (a · ∇)b+ (b · ∇)a

+ a× (∇× b) + b× (∇× a). (1.111)

Thus,

E× (∇×A) +A× (∇×E)

= ∇(E ·A)− (E · ∇)A− (A · ∇)E. (1.112)

The first term on the RHS would vanish after integration
over the whole space (assuming E ·A → 0 at infinity), so
let’s focus on the second and the third terms:

Ej∂jAi +Aj∂jEi = ∂j(EjAi + EiAj)

− Ai∂jEj − Ei∂jAj . (1.113)

The first term on the RHS again would vanish after in-
tegration over space. Thus,∫

dv [E× (∇×A) +A× (∇×E)]

=

∫
dv (A∇ ·E+E∇ ·A) . (1.114)

In the two-charge problem, E1 = −∇ϕ1, thus∇×E1 =
0. The divergence ∇ · E1 = ρ1/ε0. Also, under the
Coulomb gauge, ∇·A = 0. Putting all of these together,
we have

PEM = ε0

∫
dvE1 ×B2 (1.115)

= ε0

∫
dvA2∇ ·E1 (1.116)

=

∫
dvρ1A2. (1.117)

For a point charge, ρ1(r) = q1δ(r− r1), and

PEM = q1A2(r1, t). (1.118)

Therefore, the two forms of EM momentum are indeed
equivalent.
A remark: In classical mechanics, the Hamiltonian of

a particle with charge q in an electromagnetic field is,

H =
(p− qA)2

2m
+ ϕ(r). (1.119)

Momentum p is the canonical momentum, which is
also the total momentum of this system. It is the sum of
particle momentum and field momentum,

p = mṙ+ qA. (1.120)
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FIG. 11 (a) A parallel-plate capacitor in a uniform magnetic
field B0.

The combination p − qA in the Hamiltonian accounts
only for the particle momentum. To quantize a system,
we need to replace the canonical momentum with a dif-
ferential operator,

p → ℏ
i
∇. (1.121)

An explanation about the replacement of p, instead of
mṙ, by the differential operator can be found in Vol III
of Feynman et al., 2010.
Example 2:

In Fig. 11, there is a parallel-plate capacitor with area
A in a uniform magnetic field B0 = B0ŷ. Find out the
electromagnetic momentum of this system.
Solution:
Let’s ignore the fringe effect, so that the electric field is

constant inside the capacitor, and drops to zero abruptly
at the edge. The electric field inside is

E =
Q

ε0A
ẑ. (1.122)

Therefore, the EM momentum is

PEM = ε0

∫
V

dvE×B0 (1.123)

= ε0AdE×B0. (1.124)

An alternative, and more complicated approach is as
follows: Treat the charged plates as a collection of electric
dipoles. Each of the dipole moment is

p0 = −qdẑ. (1.125)

The total dipole moment of the capacitor is

pT = −Qdẑ = −ε0AdE. (1.126)

The vector potential of a uniform magnetic field can
be written as,

A =
1

2
B0 × r. (1.127)

Thus, the EM momentum for one dipole in B0 is

pEM =

∫
dvρA (1.128)

=
1

2
B0 ×

∫
dvρr (1.129)

=
1

2
B0 × p0. (1.130)

After summing over all of the dipoles, the total EM mo-
mentum is

PEM = −1

2
pT ×B0 (1.131)

=
1

2
ε0AdE×B0. (1.132)

This result differs from the previous one by a factor of
two. The first result is actually wrong because of the
negligence of fringe effect. The latter has the fringe ef-
fect included and is correct. Thus, the fringe field has a
significant effect on field momentum. However, when one
calculates the electrostatic field energy of the capacitor,
the fringe field can be neglected, with negligible error.
The reason is that UE depends on E2, instead of linearly
on E, as PEM does.
If you connect the two plates with a wire, the capaci-

tor would discharge, and the EM momentum disappears
eventually. This poses another paradox: conservation of
momentum seems to be violated since there is no exter-
nal force acting on the capacitor. For a resolution of this
paradox, see Prob. 3.

1. Equation of continuity for momentum

So far we have derived the equations of continuity for
charge and energy. They are the result of local conserva-
tion of charge and energy respectively. Since momentum
is also conserved, there is the equation of continuity for
momentum, which is derived below. First, charge and
current in electromagnetic field subject to the mechani-
cal force,

Fmech =

∫
dv(ρE+ J×B). (1.133)

The integrand, fmech = ρE+J×B, is called force den-
sity. We relate the sources to fields via the Maxwell
equations,

∇ ·E =
ρ

ε0
, (1.134)

∇×B = µ0J+
1

c2
∂E

∂t
. (1.135)

With the help of the following identity and Faraday’s law,

∇(a · b) = (a · ∇)b+ (b · ∇)a

+ (a×∇)× b+ (b×∇)× a, (1.136)

it’s not difficult to show that

fmech = ρE+ J×B (1.137)

= ε0(∇ ·E)E+
1

µ0
(∇×B)×B− ε0

∂E

∂t
×B

= − 1

c2
∂S

∂t
+ ε0

[
(∇ ·E)E+ (E · ∇)E− 1

2
∇(E ·E)

]
+

1

µ0

[
(∇ ·B)B+ (B · ∇)B− 1

2
∇(B ·B)

]
. (1.138)
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The sum of the two square brackets can be written
as the divergence of a tensor T, called Maxwell stress
tensor,

T ≡ ε0

[
EE+ c2BB− 1

2
(E2 + c2B2)

]
. (1.139)

We have used the dyadic notation: putting two vectors
side by side turns it into a matrix (or a 2nd-rank tensor),
with the matrix elements,

(EE)ij ≡ EiEj . (1.140)

That is,

Tij = ε0

[
EiEj + c2BiBj −

δij
2
(E2 + c2B2)

]
, (1.141)

which is symmetric, Tji = Tij . Also,

(∇ · T)j = ∂iTij (1.142)

= ε0∂i(EiEj) + · · · (1.143)

= ε0(∂iEi)Ej + ε0Ei∂iEj + · · · ,(1.144)

which is equal to the last two terms of Eq. (1.138).
Therefore, Eq. (1.138) can be written as

fmech

(
=

dpmech

dt

)
= − 1

c2
∂S

∂t
+∇ · T, (1.145)

or, since g = S/c2, one has

dpmech

dt
+

∂g

∂t
= ∇ · T. (1.146)

This is the Eq. of continuity for momentum. We
can check the dimension of T to have some idea about
this quantity. From the equation above, one has

[T ]

[x]
=

1

[t]

[P ]

[V ]
, (1.147)

therefore

[T ] = [v]
[P ]

[V ]
. (1.148)

This has the dimension of (velocity)×(momentum den-
sity). Since (velocity)×(energy density) is called energy
current density, T can be called momentum current den-
sity.

Integration of momentum density over a volume V
gives the momentum inside that volume,

Pmech =

∫
V

dv pmech, (1.149)

PEM =

∫
V

dv g. (1.150)

z

n

Tzxx

y

P

.

z

n

Txzx

y

P

.

(a) (b)

FIG. 12 (a) A force along x̂ acting on an area element daẑ.
(b) A force along ẑ acting on an area element dax̂.

Thus, the integral form of Eq. (1.146) is,

dPmech

dt
+

dPEM

dt
=

∫
V

dv ∇ · T (1.151)

=

∫
S

da · T. (1.152)

For an area element, we have

∆Ṗj ≃ ∆aiTij . (1.153)

Hence,

Tij ≃
∆Ṗj

∆ai
=

force along j

area with normal along i
, (1.154)

which is stress (or pressure) indeed. It is a shear stress
when i ̸= j. The shear stresses Tzx and Txz are shown in
Fig. 12. Note that Txz = Tzx since Tij is symmetric.
Consider two special circumstances: 1. If there is only

electric field, then the mechanical force density

fmech = ρE = ∇ · T, (1.155)

where

T = ε0

(
EE− 1

2
E2

)
. (1.156)

The EM momentum density g = 0. If there is only B
field, then

fmech = J×B = ∇ · T, (1.157)

where

T =
1

µ0

(
BB− 1

2
B2

)
. (1.158)

Note that in this two cases, the LHS’s are quite different,
but the RHS’s look similar.
Given a device surrounded by an electric or a magnetic

field, it could be difficult to calculate the force on the
LHS, if the distribution of ρ or J couldn’t be found easily.
In this case, it might be easier to calculate the RHS if we
can find out the distribution of E(r) or B(r) (Kirtly Jr.,
2005).
Example 3:
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Phidden = m x E

FIG. 13 (a) A point charge q at the center of a toroidal
solenoid. (b) The charges moving in one coil of the solenoid.

Consider a charged plate on the x− y plane. Suppose
there is a uniform electric field E = Eẑ above but no
field below. Find out the electric force (per unit area) on
the surface.
Solution:
The stress tensor above the plate is

Tij = ε0

(
EiEj −

δij
2
E2

)
(1.159)

=
ε0
2

 −E2 0 0
0 −E2 0
0 0 E2

 (1.160)

The force on a surface with area A is (da = daẑ)∫
S

da · T =

∫
S

daTzz =
ε0
2
E2A. (1.161)

Thus the force per unit area is ε0E
2/2 (points up). We

can reach the same result using fmech = σsEs, where σs

is surface charge density. The tricky part is that Es is
the field from other part of the charged conductor that
excludes the point of interest, rather than E itself. In this
example, Es = E/2 (see Sec. 3.4.3 of Zangwill, 2013).

2. Hidden momentum

Let’s conclude this chapter with yet another paradox,
first raised by Shockley and James (Shockley and James,
1967). Here is a simpler version proposed by Vaidman,
1990. In Fig. 13(a), there is a point charge q(> 0) at
the center of a toroidal solenoid. The charge has a ra-
dial electric field penetrating through the solenoid. The
magnetic field inside the solenoid is circular, and there is
no magnetic field outside. Now, if you calculate S or g,
the vector points up no matter where you are inside the
solenoid. Therefore, total field momentum PEM points
up. The total momentum of this system seems to be
nonzero, again in the absence of any external force. This
does not make sense, since we do not expect the solenoid
to lift up by itself without any external force.

The resolution of this paradox is rather subtle. One has
to consider the electron momentum inside the wire. In
Fig. 13(b), we see that when an electron moves near the
top of the coil, it is accelerated by the electric field; when

it moves down to the bottom, it is de-accelerated. When
it gains (loses) velocity, it also gains (loses) some mass
due to relativistic effect, m(v) = γ(v)m0. Therefore, it
carries a larger momentum when it is flowing down, and
a smaller momentum up. The net effect is that there is
a mechanical momentum (from electrons) flowing down-
ward,

phidden = m×E, (1.162)

where m is the magnetic moment of the coil. This is
called the hidden momentum. It turns out that this
cancels with PEM , and conservation of total momentum
is again rescued. For more details, see Sec. 15.7 of Zang-
will, 2013.
Problems:
1. (a) Starting from Eq. (1.54), verify that the electric
field can be written as,

E(r, t) =
q

4πε0

R̂

R2

1− β2

(1− β2 sin2 θ)3/2
, β ≡ v

c
. (1.163)

(b) Take the curl of the vector potential in Eq. (1.53),
show that

B =
v

c2
×E, (1.164)

where E is given in Eq. (1.54).
2. In Example 1, given the fields in Eqs. (1.78) and
(1.80), show that

S = −ε0vE
2 sin θθ̂. (1.165)

and

PEM =
µ0

4π

2q2

3a
v. (1.166)

3. In Example 2, the EM momentum of the parallel-
plate capacitor vanishes after the capacitor is discharged.
During the discharge, current is flowing along the wire.
Therefore, the wire in a magnetic field experiences a
Lorentz force. Show that the total impulse delivered to
the wire by this Lorentz force is equal to the EM mo-
mentum in Eq. (1.124) before discharge (see Chap 8 of
Griffiths, 2017). Thus, the momentum of this system re-
mains conserved.
Note: As we have explained in the text, the result in
Eq. (1.124) is wrong by a factor of 2. Therefore, the
analysis here is not entirely satisfactory. One can see
Babson et al., 2009 for more discussions.
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