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I. DYNAMICS AND QUASISTATIC FIELDS

A. Maxwell equations in vacuum

From what we have learned so far, together with Fara-
day’s law, we have

∇ ·E =
ρ

ε0
, (1.1)

∇ ·B = 0, (1.2)

∇×E = −∂B

∂t
, (1.3)

∇×B = µ0J, (1.4)

Note that two of the equations above have source terms
(charge, current) on the right-hand side, while the other
two do not. Because of charge conservation, the sources
have to satisfy the equation of continuity,

∇ · J+
∂ρ

∂t
= 0. (1.5)

Eqs. (1.1) and (1.4) give

ρ = ε0∇ ·E, (1.6)

J =
1

µ0
∇×B. (1.7)

Substitute them to Eq.(1.5), one gets

∇ · J+
∂ρ

∂t
= 0 + ε0

∂

∂t
∇ ·E ̸= 0. (1.8)

That is, the set of equations above is not consistent with
charge conservation.
To fix this problem, one can add a term to Ampere’s

law,

∇×B = µ0J+□. (1.9)

Repeat the calculation above to get

∇ · J+
∂ρ

∂t
= − 1

µ0
∇ ·□+ ε0

∂

∂t
∇ ·E. (1.10)

For this to be zero, we need

□ = ε0µ0
∂E

∂t
+∇×K, (1.11)

where K is an arbitrary function. We will drop the sec-
ond term, and be aware of this possible addition.
After the revision, Eq. (1.4) becomes Ampere-

Maxwell’s law,

∇×B = µ0J+
1

c2
∂E

∂t
,

1

c2
= ε0µ0 (1.12)

= µ0(J+ JD), JD ≡ ε0
∂E

∂t
(1.13)

The effective current density JD produced by a changing
electric field is called the displacement current, which
is first introduced by Maxwell. Without this term, the
Maxwell equations would fail to encompass electromag-
netic waves.
The integral form of the Maxwell equations are∫

S

da ·E =
Q

ε0
, (1.14)∫

S

da ·B = 0, (1.15)∮
C

dr ·E = −
∫
S

da · ∂B
∂t

, (1.16)∮
C

dr ·B = µ0I +
1

c2

∫
S

da · ∂E
∂t

, (1.17)

in which C is the boundary of surface S. These are called
in turn,
1. Gauss’s law: The electric flux through a closed sur-
face S is proportional to the electric charges Q inside the
surface.
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FIG. 1 A steady current flowing along a wire with an open
end.

2. “Magnetic” Gauss’s law: The magnetic flux over
any closed surface S is zero. That is, there can be no
magnetic monopole. If there are magnetic monopoles,
then one needs to put magnetic charge density on the
right hand side, just like the electric case.
3. Faraday’s law: The electric circulation around a
closed loop C (which is the boundary of a surface S) is
related to the rate of change of the magnetic flux through
surface S.
4. Ampere-Maxwell’s law: The magnetic circulation
around a closed loop C (which is the boundary of a sur-
face S) is related to the current I passing through C and
the rate of change of the electric flux through surface S.
Example: The semi-infinite wire in Fig. 1 has an open

end at the origin. Suppose one can maintain a steady
current I in the wire, so that charges Q(t) = It would
build up steadily with time at the end point. Find out the
electric field and magnetic field generated by this wire.
Solution
The electric field is simply

E(r, t) =
1

4πε0

Q(t)

r2
r̂. (1.18)

Adopt spherical coordinate, and choose its z-axis to be
along the wire, then the magnetic field is static and has
the form (see p.311 of Zangwill, 2013),

B(r) = Bϕ(r, θ)ϕ̂. (1.19)

Instead of Ampere’s law, we need to use Ampere-
Maxwell’s law to find the magnetic field,∮

C

dr ·B = µ0

∫
S

da · J+
1

c2

∫
S

da · ∂E
∂t

. (1.20)

Suppose one wants to find the magnetic field at r, then
draw a circle C around the z-axis passing through r, as
shown in Fig. 1. Choose the surface S with boundary C
to be a spherical cap from a sphere centered at the origin.
There is no electric current passing through S. However,
the displacement current is nonzero,

1

c2

∫
S

da · ∂E
∂t

=
I

4πε0c2

∫
cap

r̂ · da
r2

. (1.21)

x
y

z

x

y

z

P

M

(a) (b)

dipoles surface 

charge

dipoles

surface 

current

FIG. 2 (a) A semi-infinite dielectric below the x − y plane.
(b) A semi-infinite magnet to the left of the x− z plane.

The integral is just the solid angle of the spherical cap
with respect to the origin, which is 2π(1− cos θ).
Thus, Eq. (1.20) leads to

Bϕ2πr sin θ = 0 +
µ0

2
I(1− cos θ). (1.22)

It follows that

B(r, θ) =
µ0I

4π

1− cos θ

r sin θ
ϕ̂. (1.23)

It diverges at θ = π, when r approaches the wire.
You may check that, if one chooses S to be the comple-

mentary surface to the cap on the sphere, then Eq. (1.20)
gives

Bϕ2πr sin θ = µ0I −
µ0

2
I(1 + cos θ). (1.24)

This would lead to the same result in Eq. (1.23). Note
that if there is no displacement current, then this two
approaches would give contradictory results.

B. Polarization and magnetization

The electromagnetic properties of matter are charac-
terized by polarization P and magnetization M,

P(r) = electric dipole moments per unit volume,

M(r) = magnetic dipole moments per unit volume.

The “volume” here is a small one surrounding the point
r. Therefore, rigorously speaking, the coordinate r in P
and M should be understood as coarse-grained points,
with the size of a molecule or above.
Non-uniform polarization or magnetization would gen-

erate effective charge and current,

ρP = −∇ ·P, (1.25)

JM = ∇×M. (1.26)

These are called polarization charge (Ch 6) and mag-
netization current (Ch 13). See the latex notes for
Chaps 4 and 11 for detailed explanations. Here we just
use two simple examples to illustrate these:
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First, in Fig. 2(a) there is a semi-infinite dielectric with
uniform polarization,

P = P0θ(−z)ẑ, (1.27)

in which θ is the step function. Its polarization charge
density is,

ρP = −∇ ·P = P0δ(z)ẑ. (1.28)

We can see from the figure that the bulk is charge-
neutral, and only the outer-most electrons can be ex-
posed. So its reasonable for the polarization charges to
reside on the surface of the dielectric.

Second, in Fig. 2(b) there is a semi-infinite magnet
with uniform magnetization,

M = M0θ(−y)ẑ. (1.29)

Its magnetization current density is,

JM = ∇×M = −M0δ(y)x̂. (1.30)

That is, magnetization current flows only on the surface
of the magnet. In Fig. 2(b), we see that molecular cur-
rents generate magnetic dipoles. Near the interface be-
tween neighboring current loops, the currents flow along
opposite directions and cancel with each other. Thus,
there is no current inside the bulk, and only the outer-
most current exposed.

Both the polarization charge and the magnetization
current in the examples are bounded to molecules. They
cannot move away like free electrons in metals.

1. Polarization current

Changing polarization would produce polarization
current JP . These charges need to be conserved locally,
and we have the following Eq. of continuity,

∇ · JP +
∂ρP
∂t

= 0. (1.31)

Plug in ρP = −∇ ·P, we get

∇ ·
(
JP − ∂P

∂t

)
= 0. (1.32)

Therefore,

JP =
∂P

∂t
+∇×Λ. (1.33)

In the example earlier, if P0(t) in Eq. (1.27) increases
linearly with time, then the polarization charges would
keep building up near the boundary, as if there is a cur-
rent ∂P/∂t flowing up toward the boundary.

In addition, the first part in Eq. (1.33) produces a mag-
netic moment,

mP =
1

2

∫
dvr× ∂P

∂t
, (1.34)

which gives a magnetization MP , whose curl contributes
to the polarization current,

JP =
∂P

∂t
+∇×MP . (1.35)

We will show thatMP = P×v for a rigid body of moving
dielectric.

Before moving on, a short note on total derivative:
Suppose a function F (r(t), t) depends on certain flow r(t)
in space. Its total derivative is,

dF

dt
≡ lim

dt→0

F (r+ dr, t+ dt)− F (r, t)

dt
(1.36)

=
∂F

∂t
+

dr

dt
· ∂F
∂r

. (1.37)

For a rigid distribution F (r, t) that moves with the flow,
F (r + dr, t + dt) = F (r, t), and dF/dt = 0. The same is
true if F is replaced with a vector function F.

Back to physics: Since the distribution of polarization
is rigid within the dielectric, we have

dP

dt
=

∂P

∂t
+ v · ∂P

∂r
= 0. (1.38)

Furthermore,

JP = ρPv = −v∇ ·P. (1.39)

Therefore, from, Eqs. (1.35) and (1.38), we have

∇×MP = −v∇ ·P+ (v · ∇)P (1.40)

= ∇× (P× v). (1.41)

That is, MP = P× v, and

JP =
∂P

∂t
+∇× (P× v). (1.42)

According to the special theory of relativity, a mov-
ing magnetic dipole generates an electric dipole mo-
ment; while a moving electric dipole generates a magnetic
dipole moment. As a result, one has

Peff = v ×M, (1.43)

Meff = P× v. (1.44)

Therefore, the magnetization MP obtained in the anal-
ysis above is consistent with the Meff in the theory of
special relativity.

C. Maxwell equations in matter

For the Maxwell equations in matter, we need to in-
clude the effective charge and current considered above.
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FIG. 3 A surface moves from S(t) to S(t+ δt) in a magnetic
field.

The first and the last Maxwell equations become,

∇ ·E =
ρ

ε0
+

ρP
ε0

(1.45)

=
ρ

ε0
− ∇ ·P

ε0
, (1.46)

∇×B = µ0 (J+ JD + JM + JP ) (1.47)

= µ0

(
J+ ε0

∂E

∂t
+∇×M+

∂P

∂t

)
.(1.48)

Introducing

D = ε0E+P, (1.49)

H =
B

µ0
−M, (1.50)

then we have

∇ ·D = ρf , (1.51)

∇ ·B = 0, (1.52)

∇×E = −∂B

∂t
, (1.53)

∇×H = Jf +
∂D

∂t
. (1.54)

We have added the subscript f to ρ and J to empha-
size that these are free (instead of bounded) charge and
current.

D. Electromagnetic induction

First, let’s study an identity crucial to the formulation
of Faraday’s law. In Eq. (1.16), we see a time derivative
within the integrand. If the surface S of integration is
static, then∫

S

da · ∂B
∂t

=
d

dt

∫
S

da ·B =
dΦB

dt
, (1.55)

which is just the change of the magnetic flux ΦB through
S. However, if the surface S is changing with time, then
we need the flux theorem,

d

dt

∫
S(t)

da·B(t) =

∫
S(t)

da· ∂B
∂t

−
∮
C(t)

dr·v×B, (1.56)

where C(t) is the boundary of S(t).
Pf: When both B and S are changing with time, the
change of magnetic flux

δ

(∫
da ·B

)
=

∫
S(t+δt)

da ·B(t+ δt)−
∫
S(t)

da ·B(t)

=

∫
S(t+δt)

da ·B(t+ δt)−
∫
S(t+δt)

da ·B(t)

+

∫
S(t+δt)

da ·B(t)−
∫
S(t)

da ·B(t). (1.57)

With δB(t) = B(t+δt)−B(t), the first half is abbreviated
as, ∫

S(t+δ)

da · δB(t) ≃
∫
S(t)

da · δB(t), (1.58)

with an error that is of the second order. The second half
is denoted as,∫

(δda) ·B(t) =

∫
S(t+δt)

da ·B(t)−
∫
S(t)

da ·B(t). (1.59)

In short,

δ

(∫
da ·B

)
=

∫
S(t)

da · δB(t) +

∫
(δda) ·B(t). (1.60)

The first change is due to the variation of B(t), while the
second is due to the variation of S(t).
In Fig. 3, the magnetic flux out of the pill-like surface

is zero (since there is no magnetic charge inside). That
is,

0 =

∫
pill

dan̂ ·B =

∫
S(t+δt)

da ·B−
∫
S(t)

da ·B

+

∮
C(t)

(dr× vδt) ·B, (1.61)

in which n̂ points out of the pill-like surface. The area
element of the side surface (the grey area in Fig. 2) is
dr× vδt. Therefore, the second change∫

(δda) ·B = −
∮
C(t)

dr · v ×Bδt. (1.62)

Divide Eq. (1.60) with δt, then Eq. (1.56) follows. QED
As a result, the integral form of the Faraday’s law

reads, ∮
C

dr ·E = −
∫
S

da · ∂B
∂t

(1.63)

= − d

dt

∫
S

da ·B−
∮
C

dr · v ×B. (1.64)

Or, ∫
S

da · ∂B
∂t

+

∮
C

dr · v ×B = −dΦB

dt
. (1.65)
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FIG. 4 (a) The magnet is moving. (b) The wire is moving.

The first term on the right hand side is called the trans-
former EMF, the second themotional EMF. The sum
of the two, the total EMF (electromotive force) is pro-
portional to the change of the magnetic flux ΦB through
a circuit.

1. A thought experiment

Einstein’s 1905 paper, On the electrodynamics of mov-
ing bodies, begins with the following thought experiment:
A magnet and a coil are moving with respect to each
other at a constant velocity. In Fig. 4(a), we stay with the
coil and see the magnet coming. Because of the changing
magnetic field, an electric field Ei is induced surrounding
the moving magnet. Such a field provides an EMF that
drives the electrons inside the coil.

On the other hand, in Fig. 4(b), we stay with the mag-
net and see the coil coming. There is no induced field
because the magnetic field is static. Nevertheless, the
electrons in the coil are carried by the moving conduc-
tor, thus experience the Lorentz force.

Even though this two different views give the same
electromotive force around the circular wire, there is a
subtle difference regarding the existence (or not) of Ei.
Aiming to solve this puzzle, Einstein discovers the theory
of special relativity along the way.

In mathematical terms, the EMF in case (a), aka the
transformer EMF, is given as,

Ei =
∮
C

dr ·Ei = −
∫
S

da · ∂B
∂t

. (1.66)

The EMF in case (b), aka the motional EMF, is given as,

Em =

∮
C

dr · (v ×B). (1.67)

In general, the total EMF,

EF =

∮
C

dr · (Ei + v ×B) (1.68)

= −dΦB

dt
. (1.69)

R

B

R

B

(a)

(b)
A

1 2

FIG. 5 (a) Motor mode (b) Generator mode

R

A

B

FIG. 6 Feynman’s device in a uniform magnetic field that
points out of the paper.

No matter who is moving, the EMF can be calculated
with the changing magnetic flux dΦB/dt.
Even though the flux theorem helps us connecting the

two cases, Einstein’s puzzle regarding the existence of Ei

is still there. Its resolution requires the Lorentz trans-
formation (see Sec. 22.6 of Zangwill, 2013). Suppose
a frame K ′ is moving with velocity v with respect to a
rest frame K. The electromagnetic fields in frames K
and K ′ are E,B, and E′,B′ respectively. Then, the spe-
cial theory of relativity tells us that at low velocity
(v ≪ c),

E′ ≃ E+ v ×B, (1.70)

B′ ≃ B− v

c2
×E. (1.71)

Thus, whether there is Ei or not would depend on an
observer’s standpoint. There is no conflict as long as
both observers agree on such a transformation. Let K
be the coordinate frame of the magnet, and K ′ that of
the coil, then in the frame K, an observer sees Ei = 0.
On the other hand, in the frame K ′, an observer sees
E′ = v ×B, which is the induced electric field.

2. Faraday’s disk generator (1831)

In Fig. 5, a conducting disk in a uniform magnetic field
is connected with wires to form a circuit. It can operate
in two different modes. The first is the motor mode:
The battery generates a current that flows to the disk
and is picked up by the wire at the center of the disk.
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TABLE I EMF in Faraday disk experiments

Disk Magnet EMF

rotate fix nonzero

fix rotate zero

rotate rotate nonzero

The charge current under the magnetic field experiences
a Lorentz force, which pushes the disk to rotate counter-
clockwise. As a result, electric energy is transformed to
mechanical energy.

The second is the generator mode: There is no battery
to drive the current. Instead, an external force sets the
disk spinning. The charges in the spinning disk experi-
ence a motional EMF, and a current due to free charges
starts flowing in the circuit. As a result, mechanical en-
ergy transforms to electric energy.

Suppose the disk with radius a is spinning with angular
frequency ω. Only the segment between points 1 and 2
in Fig. 5(b) contributes to the motional EMF. Thus,

EF =

∫ 2

1

dr · (v ×B) (1.72)

=

∫ a

0

drrωB =
1

2
ωa2B. (1.73)

Note that even though Eq. (1.68) is valid, Eq. (1.69)
fails, since the flux through the disk remains the same
and dΦB/dt = 0. In order to be safe, it is advised to
apply the flux rule, EF = −dΦB/dt, only to a circuit of
thin wire.

A circuit devised by Feynman is shown in Fig. 6 (see
Sec. 17-2, Vol II of Feynman et al., 2010). Two conduct-
ing plates touch each other by a point that serve as a
pathway of current. The shape of the plate is designed
in such a way that, with a slow rotation, the contact point
moves swiftly up and down. As a result, the magnetic
flux through the circuit changes rapidly. This would gen-
erate a large current if the flux rule is correct. However,
since the plate is barely moving, we do not expect to see
a large current. Indeed, Eq. (1.68) would predict little
current, which turns out to be case. The lesson is, again,
don’t apply the flux rule if the circuit is not made of thin
wires only.

Instead of spinning the disk, if we spin the magnet
(Fig. 7), would there be current? A related question is,
if one rotates the magnet and the disk together (without
relative motion), would there be current? According to
observation, we have the results shown in Table 1 (Kelly,
1998). These results indicate that the magnetic field lines
do not rotate with the magnet. (In these experiments,
the connecting wires do not rotate with the setup.)

Let’s consider another variation of the Faraday disk.
Instead of Fig. 5(b), the wire is deformed to form a loop

R
B

A

R
B

A

(a) (b)

FIG. 7 (a) The disk is spinning. (b) The magnets are spin-
ning.

above the disk (see Fig. 8). Under the generator mode,
there is a magnetic field B at the beginning. When we
start spinning the disk, current begins to flow. Thus, the
current loop above generates a magnetic field B′ (also
points up). We now can remove the external field B
slowly. The disk would keep spinning and the current
keep flowing because B′ is still there. That is, this is a
self-sustained Faraday generator. Eventually Joul heat
and other dissipations would wear the energy out and
stop the motion. It is believed that the geomagnetic field
of the earth is maintained in a similar way.

E. Quasi-static fields

Again the Maxwell equations in vacuum are,

∇ ·E =
ρ

ε0
, (1.74)

∇ ·B = 0, (1.75)

∇×E = −∂B

∂t
, (1.76)

∇×B = µ0J+
1

c2
∂E

∂t
, (1.77)

From the third and the fourth equations, a changing mag-
netic field induces an electric field, and a changing elec-
tric field induces a magnetic field. Therefore, the electric
and magnetic fields generate each other, and the self-
sustaining electromagnetic field can propagate in vacuum
far away from its source.
We’ll show that if electric charge varies slowly, then

the ∂B/∂t term in the third equation can be ignored.
Therefore, one can determine the electric field from the
first and the third equations, without knowing B. This
is called quasi-electrostatic field.
On the other hand, if electric current varies slowly,

then the displacement current in the last equation can
be ignored. Thus, one can determine the magnetic field
from the second and the last equations, without knowing
E. This is called quasi-magnetostatic field.
The decoupling of electric and magnetic fields helps

simplifying a calculation significantly.
When can one say that a variation is “slow”? Consider

a system with oscillating charge or current. Suppose the
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FIG. 8 A self-sustained dynamo

length scale of a system of our interest is ℓ, and the period
of oscillation is T = 1/f . A process is slow if

ℓ/c ≪ T (1.78)

That is, there is little lag between cause (from a source)
and effect (on an observation point). This condition can
also be written as,

f ≪ c/ℓ, or ℓ ≪ λ, (1.79)

where λ = c/f is the wavelength of the electromagnetic
disturbance.

For example, for a capacitor connected to a current
oscillating at 6000 Hz, λ ≃ 50 km. Thus, this system is
quasi-electrostatic as long as its detector is not placed far
away. For a power line with a 60 Hz current, the corre-
sponding λ ≃ 5000 km. Therefore, a power line stretch-
ing, for example, 300 km satisfies quasi-magnetostatic
condition. A microprocessor chip that operates at 3 GHz
has λ ≃ 0.1 m. This oscillation can still be roughly con-
sidered as slow.

1. Slowly time-varying charge in vacuum

We now show that when charge varies slowly, the
∂B/∂t term can be ignored. First, we get the zeroth
order fields, E0 and B0, from the Maxwell equations if
all of the terms with time-derivative are dropped. That
is,

∇ ·E0 =
ρ

ε0
, (1.80)

∇ ·B0 = 0, (1.81)

∇×E0 = 0, (1.82)

∇×B0 = µ0J. (1.83)

To estimate the order of magnitude of each term, replac-
ing ∇ with 1/ℓ, and ∂/∂t with ω, so that

E0 ∼ ρ

ε0
ℓ, (1.84)

B0 ∼ µ0Jℓ. (1.85)

Next, consider the first-order correction. We have

∇ · (E0 +E1) =
ρ

ε0
, (1.86)

∇ ·B = 0, (1.87)

∇×E1 = −∂B

∂t
, (∇×E0 = 0), (1.88)

∇×B = µ0J+
1

c2
∂

∂t
(E0 +E1). (1.89)

One can write B as B0 +B1, but that doesn’t alter the
following analysis.

Order-of-magnitude estimate gives

E1 ∼ ωℓB, (1.90)

B ∼ µ0Jℓ+
ωℓ

c2
(E0 + E1) (1.91)

∼ µ0Jℓ+
ωℓ2

c2
ρ

ε0
+

(
ωℓ

c

)2

B. (1.92)

Note that the Eq. of continuity gives,

J

ℓ
∼ ωρ. (1.93)

Thus, the 2nd term on the RHS of Eq. (1.92) has the
same magnitude as the first term, and

B ∼ µ0ωℓ
2ρ+

(
ωℓ

c

)2

B. (1.94)

This gives,

B ∼ µ0ωℓ
2ρ

1−
(
ωℓ
c

)2 . (1.95)

It follows that

E1

E0
∼ ωℓB

ρℓ/ε0
∼ (ωℓ/c)2

1− (ωℓ/c)2
. (1.96)

Thus, E1 is of the second order: E1 ≪ E0 if ωℓ ≪ c.
Note: Even though the 2nd term on the RHS of Eq. (1.92)
has the same magnitude as the first term here, this is
not always so. For the static case, the second term from
∂E0/∂t would vanish. So it cannot be taken as the zeroth
order in the static case.

Now,

∂B

∂t
∼ µ0Jωℓ ∼

ρ

εo

(
ωℓ

c

)2

. (1.97)

Thus, the inductive term ∂B/∂t is also of the second
order. This is the only term in the Maxwell equa-
tions whose first non-trivial order is of the second or-
der. Hence it can be ignored if we are only interested in
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the first-order correction. Therefore, under the quasi-
electrostatic (QES) approximation, we have

∇ ·E =
ρ

ε0
, (1.98)

∇ ·B = 0, (1.99)

∇×E = 0, (1.100)

∇×B = µ0J+
1

c2
∂E

∂t
, (1.101)

The first and the third equations are the same as those
of electrostatic field, the only difference being ρ(r, t) is
time-dependent here. Thus, the quasi-electrostatic field
is,

E(r, t) = −∇ϕ(r, t), ϕ(r, t) =
1

4πε0

∫
dv′

ρ(r′, t)

|r− r′|
.

(1.102)
Similarly (but hard to prove), the magnetic field is,

B(r, t) = ∇×A(r, t), A(r, t) =
µ0

4π

∫
dv′

J(r′, t)

|r− r′|
.

(1.103)
You may check that they satisfy Ampere’s law.

For example, consider a point charge moving with con-
stant velocity v (v ≪ c). The charge and current densi-
ties are,

ρ(r, t) = qδ(r− vt), (1.104)

J(r, t) = qvδ(r− vt). (1.105)

Thus,

ϕ(r, t) =
1

4πε0

q

|r− vt|
, (1.106)

A(r, t) =
µ0

4π

qv

|r− vt|
. (1.107)

It follows that,

E(r, t) =
q

4πε0

r− vt

|r− vt|3
, (1.108)

B(r, t) = ∇× v

c2
1

4πε0

q

|r− vt|
(1.109)

=
v

c2
×E(r, t). (1.110)

With a small modification, the potentials in
Eqs. (1.102) and (1.103) can be universally valid: Just
change the t in the sources to be the retarded time tr,

t → tr ≡ t− |r− r′|
c

. (1.111)

That is,

ϕ(r, t) =
1

4πε0

∫
dv′

ρ(r′, tr)

|r− r′|
, (1.112)

A(r, t) =
µ0

4π

∫
dv′

J(r′, tr)

|r− r′|
. (1.113)

x

y

FIG. 9 Paul trap as a quadrupole mass spectrometer.

We will prove this in a later chapter. The physics be-
hind is simple: whatever happens to the source at r′, the
disturbance takes time |r− r′|/c to reach r.

After having the electromagnetic potentials, one can
proceed to calculate the electromagnetic fields. However,
the dummy variable r′ hidden inside the time-dependence
of ρ and J makes it very difficult to carry out the in-
tegrations. This will be left to a later chapter on the
generation of EM radiation.

Note that the relation between the fields and their
source is required to be causal. But the relation between
the potentials and its source actually needs not to be
explicitly causal (as the ones above). We will come back
to this in next chapter when talking about the Coulomb
gauge.

• Paul trap and quadrupole mass spectrometer

A Paul trap consists of four parallel metal rods. Two
opposing rods are held at positive potential, while the
other two negative (Fig. 9). Near the central axis of the
four rods, the potential is

ϕ(x, y) = ϕ0
x2 − y2

R2
+ higher order terms, (1.114)

where R is roughly the scale of the trap. The electrostatic
potential has a saddle point at the origin. A charge is
trapped along x-axis, but it can roll away along y-axis.
Nevertheless, a charged particle can be trapped with an
ingenious modification: Let the potential be oscillatory,

ϕ0 → ϕ0(t) = u0 + v0 cosωt. (1.115)

After half of a period, the polarities of the potential are
reversed, and a charge is trapped along y-axis instead.
An anaogy is that, you can trap a bunch of small fishes
with only two hands, as long as you swap hands quickly
and alternatively between two orthogonal directions.

With a slow oscillation, we can use the quasi-
electrostatic approximation: ∇ × E = 0, so E = −∇ϕ.
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x

y

u

v

v

u
A
B
C

FIG. 10 Stable solutions for Eq. (1.120) belong to the upper
half of the shaded regions, while those for y(t) belong to the
lower half. Part of the overlap region is indicated in red and
is blown up in the inset. Along the scan line, only point B is
stable. Fig. from Paul, 1990

The electric force on a charged particle is,

F = mr̈ = −q
∂ϕ

∂r
. (1.116)

When written in components, one has

mẍ+
2q

R2
ϕ0(t)x = 0, (1.117)

mÿ − 2q

R2
ϕ0(t)y = 0, (1.118)

mz̈ = 0. (1.119)

For the x component (similarly for the y component), we
have

ẍ+ (u+ v cosωt)x = 0, (1.120)

u =
2q

mR2
u0, v =

2q

mR2
v0. (1.121)

This is the Mathieu differential equation, which is
also used in, e.g., the problem of inverted pendulum, or
the Schrödinger equation with periodic potential.

The solution can be stable or unstable (diverge with
time) depending on the parameters u, v (Fig. 10). A par-
ticle can be trapped only if the parameters (u, v) are
located in the intersection of x-stable region and y-stable
region.

In an experiment, one can scan u, v, but keep u/v fixed
(inset of Fig. 10), so that only particular values of u, v can
be stable. As a result, only particles with certain q/m
ratio can be stable. They would stay near the central
axis while flying along z-axis and be selected. Such a
device is called a quadrupole mass spectrometer.

2. Slowly time-varying current in vacuum

We now show that when current varies slowly, the
∂E/∂t term can be ignored. First, we get the zeroth

order fields, E0 and B0, from the Maxwell equations if
all of the terms with time-derivative are dropped. Next,
consider the first-order correction of the magnetic field.
We have

∇ ·E =
ρ

ε0
, (1.122)

∇ · (B0 +B1) = 0, (1.123)

∇×E = −∂(B0 +B1)

∂t
, (1.124)

∇×B1 =
1

c2
∂E

∂t
, (∇×B0 = µ0J). (1.125)

Faraday’s law gives

E ∼ ωℓ(B0 +B1). (1.126)

Since ∇×B0 = µ0J, one has

B0 ∼ µ0Jℓ, B1 ∼ ωℓ

c2
E. (1.127)

It follows that,

E ∼ ωℓµ0Jℓ+

(
ωℓ

c

)2

E, (1.128)

→ E ∼ µ0ωℓ
2J

1−
(
ωℓ
c

)2 . (1.129)

Eventually,

B1

B0
∼

ωℓ
c2 E

µ0Jℓ
∼

(
ωℓ
c

)2
1−

(
ωℓ
c

)2 . (1.130)

Thus, B1 ≪ B0 if ωℓ ≪ c. It’s not difficult to see that,
among all of the terms in the Maxwell equations, only the
∂E/∂t term is of the second order and can be dropped.
Under the quasi-magnetostatic (QMS) approxima-
tion, we then have

∇ ·E =
ρ

ε0
, (1.131)

∇ ·B = 0, (1.132)

∇×E = −∂B

∂t
, (1.133)

∇×B = µ0J. (1.134)

The second and the last equations are the same as those
of magnetostatic field, the only difference being J(r, t) is
time-dependent here.
Taking the divergence of the last equation, one has

∇ · ∇ ×B = µ0∇ · J = 0. (1.135)

This leads to a constraint on charge density through the
Eq. of continuity,

∂ρ

∂t
= 0 → ρ(r, t) = ρ(r). (1.136)
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If the system is charge neutral at the beginning, then
it stays neutral and ρ can be ignored from the Maxwell
equations.
• A solenoid with time-varying current

Consider an infinite solenoid along the z-axis with
current I(t) and radius a. There are n turns of coils
per unit length. Suppose the variation of the current,
I(t) = I0 cosωt, satisfies the QMS approximation. We’d
like to find out the EM field inside and outside the
solenoid.

We’ll calculate the EM field in the following order:
First, the zero-th order magnetic field satisfies

∇×B0 = µ0J. (1.137)

From B0 we can get the first-order electric field,

∇×E1 = −∂B0

∂t
. (1.138)

From E1 we can get the first-order correction of the mag-
netic field,

∇×B1 =
1

c2
∂E1

∂t
. (1.139)

When written in integral form, these equations become∮
C

B0 · dr = µ0I, (1.140)∮
C

E · dr = −dΦB

dt
, (1.141)∮

C

B1 · dr =
1

c2
dΦE

dt
. (1.142)

From Eq. (1.140), one gets

B0(t) =

{
µ0nI(t)ẑ for ρ < a,

0 for ρ > a.
(1.143)

This is similar to the result for the magnetostatic case.
The changing magnetic field would induce a circular

electric field around the solenoid, E = Eϕ(ρ, t)ϕ̂. From
Eq. (1.141), it’s not difficult to obtain

Eϕ(ρ, t) =

{
−µ0nİ

ρ
2 for ρ < a,

−µ0nİ
a2

2ρ for ρ > a.
(1.144)

Finally, to find the B1 outside the solenoid with
Eq. (1.142), one can choose a rectangular path C shown
in Fig. 11. Suppose the left and right legs of C are lo-
cated at radii ρ1 and ρ2 respectively, then Eq. (1.142)
gives

[B1(ρ1, t)−B1(ρ2, t)]ℓ =
1

c2
d

dt

∫ ρ2

ρ1

Eϕdρℓ (1.145)

= −µ0n
a2

c2

∫ ρ2

ρ1

Ï

2ρ
dρℓ (1.146)

= −µ0n
a2

2c2
ω2Iℓ ln

ρ1
ρ2

, (1.147)

B

E

ℓ

B

C

ρ

FIG. 11 A rectangular path C near the solenoid.

in which Ï = −ω2I has been used. There are two un-
knowns, B1(ρ1, t) and B1(ρ2, t) in the equation. We can-
not choose ρ1 = a+ since the magnetic field there is not
known. We cannot choose ρ2 = ∞ either – even though
it removes B1(ρ2, t), since ln ρ2 diverges. Furthermore,
the QMS approximation works only if the scale of the
system is smaller than λ ≃ c/ω. So we will set ρ2 = c/ω,
and let B1(ρ2, t) ≃ 0. It follows that

B1(ρ, t) ≃ −µ0n
a2

2c2
ω2I ln

ωρ

c
. (1.148)

This is very close to the result obtained from a rigorous
analysis (see p. 718 of Zangwill),

B1(ρ, t) = −µ0n
a2

2c2
ω2I0

(
cosωt ln

ωρ

c
− π

2
sinωt

)
.

(1.149)

F. Quasi-static fields in matter

If a material is isotropic, and that P is proportional to
E, M is proportional to B, then we say that it is simple.
A simple material has

D = εE, H = B/µ. (1.150)

The Maxwell equations are

∇ ·E =
ρf
ε
, (1.151)

∇ ·B = 0, (1.152)

∇×E = −∂B

∂t
, (1.153)

∇×B = µJf +
1

c2
∂E

∂t
. (1.154)

in which 1/c2 = εµ for the velocity of light c in matter.
The quasi-static condition becomes ωℓ ≪ c.
• Charge relaxation inside a conductor
Suppose we put a charge inside a conductor, then it

would move to the surface quickly. This can be studied
with the Eq. of continuity,

∇ · Jf +
∂ρf
∂t

= 0. (1.155)
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FIG. 12 Comparison between different rates. The valid
ranges of (a) QES approximation and (b) QMS approxima-
tion are indicated by dotted lines.

Since

Jf = σE, (1.156)

∇ ·E =
ρf
ε
, (1.157)

one has

σ
ρf
ε

+
∂ρf
∂t

= 0. (1.158)

Thus,

ρf (r, t) = ρf (r, 0)e
−t/τE , τE ≡ ε/σ. (1.159)

The relaxation time τE is inversely proportional to the
conductivity.

For example, for distilled water, the conductivity σ ∼
2 × 10−4 1/(Ωm), and ε ≃ 80 ε0. Therefore, τE ∼ 10−6

s. For copper, the conductivity σ ∼ 6 × 107 1/(Ωm),
and ε ≃ ε0. Therefore, τE ∼ 10−19 s. In the second ex-
ample (for good conductors), this result is not accurate.
In reality, τE ∼ 10−14 s. The problem is not with the
QES approximation (since ∇×E = 0 has not been used
above), but with the assumption that σ is a constant. A
better analysis needs to take into account the frequency
dependence of conductivity, σ(ω) (see p. 634 of Zangwill,
2013).

1. Poor conductors: Quasi-electrostatics

Inside a matter, for the quasi-static approximation to
be valid, we need ωℓ ≪ c. Charge relaxation time τE
offers another characteristic time, which can be larger
or smaller than ℓ/c. Assume τE > ℓ/c, then under the
QES condition, one can still have ωτE > 1 or ωτE < 1
(Fig. 11(a)). In the former, energy is mostly stored in
electric field (called capacitive regime). In the latter,
most of the energy is dissipated through current (called
ohmic region). See p. 205 of Orlando and Delin, 1991.

2. Good conductors: Quasi-magnetostatics

Suppose a system is charge neutral so that ∇ · E =
0,∇ ·B = 0. Before any approximation, we have

∇×E = −∂B

∂t
, (1.160)

∇×B = µ0Jf +
1

c2
∂E

∂t
. (1.161)

Let’s consider the possibility that the induced electric
field E drives a current (such as the eddy current), so
that

Jf = Jext + σE. (1.162)

Jext is the current without induction. To ignore the dis-
placement current JD (as in the QMS approximation),
one needs

JD

(
= ε

∂E

∂t

)
≪ Jext, σE. (1.163)

First, to the 0-th order,

∇×B0 = µ0Jf , (1.164)

∇×E = −∂B0

∂t
. (1.165)

Therefore,

B0 ∼ ℓµJext, (1.166)

E ∼ ωℓB0, (1.167)

and

JD ∼ εωE. (1.168)

It follows that

JD
Jext

∼ εω
E

Jext
∼ εµω2ℓ2, (1.169)

and JD ≪ Jext if ωℓ ≪ c.
Second,

JD
σE

∼ εωE

σE
= ωτE . (1.170)

Thus, JD ≫ σE if ω ≫ 1/τE . This would be called a
poor conductor. A good conductor would have JD ≪ σE
and ω ≪ 1/τE . In order to meet the QMS condition and
drop the displacement current, one needs ω ≪ c/ℓ and
ω ≪ 1/τE . Several interesting phenomena occur in this
range, such as skin effect, eddy current, and magnetic
diffusion (see Zangwill, 2013 for more).
We can also compare the magnitudes of induced cur-

rent and Jext,

σE

Jext
∼ σE

B/ℓµ
∼ σE

E/ωℓ2µ
(1.171)

= ωτM , τM ≡ σµℓ2. (1.172)



12

B

To charge 
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FIG. 13 Flip a coil with respect to the vertical axis generates
a current.

This gives another time scale τM (Fig. 11(b)). When
ω ≪ 1/τM , magnetic induction is negligible (called ohmic
regime). When ω ≫ 1/τM , magnetic induction is domi-
nant (called inductive regime). Finally, note that

τEτM = εµℓ2 = (ℓ/c)2. (1.173)

Homework:

1. The flip coil shown in figure is a simple device to
measure the magnitude of magnetic field. Suppose the

radius of the coil is a, and a uniform magnetic field is
perpendicular to the plane of the coil. Flip it around a
radial axis would generate a transient current I(t) around
the coil. Connect the coil to an external charge storage
and collect the accumulated charge Q (from a 180 degrees
flip). Determine the magnetic field B from the charge Q.
2. The scalar and the vector potentials of a slowly mov-

ing charge are given in Eqs.(1.106) and (1.107). Confirm
that the electric and the magnetic fields are those shown
in Eqs. (1.108) and (1.110).
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