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I. MAGNETIC MULTIPOLES

A. Multipole expansion

Recall that in Chap 4, given an electric potential,

ϕ(r) =
1

4πε0

∫
dv′

ρ(r′)

|r− r′|
, (1.1)

if r ≫ r′, then we can expand

1

|r− r′|
≃ 1

r
+

r̂

r2
· r′ + 1

2r3
[
3(r̂ · r′)2 − |r′|2

]
. (1.2)

Each term contributes to the potential of a certain elec-
tric multipole.

Similar approximation can be applied to the vector po-
tential,

A(r) =
µ0

4π

∫
dv′

J(r′)

|r− r′|
. (1.3)

If r ≫ r′, that is, the current source is localized and
the observer is far away (Fig. 1), then we can use the
expansion in Eq. (1.2) and keep terms to the first order
to get

A(r) ≃ µ0

4πr

∫
dv′J(r′) +

µ0

4πr3
r · r′

∫
dv′J(r′) (1.4)

≃ 0 +
µ0

4π

m× r

r3
, (1.5)

where m is the magnetic dipole moment. The magnetic
quadrupole potential from the second-order term is not
considered here.

J(r’)

B(r)

FIG. 1 An observation point is far away from a localized
current distribution.

We now explain how Eq. (1.5) is obtained. First, two
identities are required. For a steady, localized current
distribution, ∫

dv′Ji(r
′) = 0, i = x, y, z (1.6)∫

dv′
[
r′iJj(r

′) + r′jJi(r
′)
]
= 0. (1.7)

Pf: From the equation of continuity, for a steady current,

∇ · J = 0, (1.8)

∇ · (riJ) = Ji + ri���∇ · J , (1.9)

∇ · (rirjJ) = riJj + rjJi + rirj���∇ · J . (1.10)

The integration of Eq. (1.9) over the whole space gives,∫
dv′Ji =

∫
dv′∇′ · (r′iJ) (1.11)

=

∫
ds′ · (r′iJ) = 0. (1.12)

The integral is zero since the current is localized while the
surface of integration is at infinity. Thus, the monopole
term in Eq. (1.4) vanishes.

The integration of Eq. (1.10) over the whole space
gives,∫

dv′(r′iJj + r′jJi) =

∫
ds′ · (r′ir′jJ) = 0. (1.13)

Thus, we can write the integral of the dipole term in
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FIG. 2 A planar loop with current I.

Eq. (1.4) as,

ri

∫
dv′r′iJj =

ri
2

∫
dv′ (r′iJj − r′jJi)︸ ︷︷ ︸

=ϵijk(r′×J)k

(1.14)

=
1

2

∫
dv′ [(r′ × J)× r]j (1.15)

= (m× r)j , (1.16)

where

m ≡ 1

2

∫
dv′r′ × J(r′). (1.17)

Hence, up to the first order,

A(r) =
µ0

4π

m× r

r3
. (1.18)

Eq. (1.17) is the most general form of the magnetic
dipole moment. It reduces to other forms under special
circumstances:

1. Thin wire:
For the current carried by a thin wire of loop C, just
replace dv′J with Idr′ to get

m ≡ I

2

∮
C

r′ × dr′. (1.19)

If furthermore, C is a planar loop, then (see Fig. 2),

1

2
r′ × dr′ = ds′. (1.20)

Hence, after integration,

m = I

∮
ds′ = IS. (1.21)

The magnetic moment is proportional to the surface area
of the loop. The direction of S is determined by the right-
hand rule.

2. Point charges:
A set of moving charges has the current density,

J(r) =

N∑
k=1

qkvkδ(r− rk). (1.22)

(a) (b)

FIG. 3 The fields from (a) an electric dipole and (b) a current
loop.

Substitute it to Eq. (1.17) and get

m =

N∑
k=1

qk
2

∫
dv′r′ × vkδ(r

′ − rk) (1.23)

=
1

2

∑
k

qk(rk × vk) (1.24)

=
∑
k

qk
2mk

Lk, Lk ≡ mkrk × vk. (1.25)

If qk/mk is a constant, then the orbital magnetic mo-
ment

m =
q

2m
L, (1.26)

where L is the total angular momentum of these charges.

B. Magnetic dipole

From the vector potential of a magnetic dipole (valid
for r ≫ r′),

A(r) =
µ0

4π

m× r

r3
, (1.27)

we can calculate its magnetic field,

B(r) = ∇×
(
µ0

4π

m× r

r3

)
(1.28)

· · · =
µ0

4π

3r̂(r̂ ·m)−m

r3
. (1.29)

The field decreases as 1/r3 and has the distribution
shown in Fig. 3, which is similar to the electric dipole
field (Chap 4) when r ≫ r′.

Example:
Suppose current distribution J(r) flows inside a ball V
with volume V , show that the average of the magnetic
field over the ball,

⟨B(r)⟩V ≡ 1

V

∫
V

dvB(r) =
2µ0

3

m

V
, (1.30)
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FIG. 4 The current is confined within a sphere.

where m is the magnetic dipole moment due to the cur-
rent (see Fig. 4).
Pf: Start from the Biot-Savart law,

B(r) =
µ0

4π

∫
J ̸=0

dv′J(r′)× r− r′

|r− r′|3
, (1.31)

then∫
V

dvB(r) =
µ0

4π

∫
V

dv

∫
J ̸=0

dv′J(r′)× r− r′

|r− r′|3

= −µ0

4π

∫
J ̸=0

dv′J(r′)×
∫
V

dv
r′ − r

|r′ − r|3︸ ︷︷ ︸
=Ẽ(r′)

,

where Ẽ(r′) is the fictitious “electric” field of a ball V
with charge density ρ̃ = 4πε0. According to the analysis
in Chap 4,

Ẽ(r′) =
4π

3
r′. (1.32)

Thus,

⟨B⟩V = −µ0

V

∫
dv′J(r′)× 1

3
r′ (1.33)

= +
2µ0

3

m

V
. (1.34)

Similar to the case of the electric dipole, if the current is
outside of the sphere, then

⟨B(r)⟩V = B(0). (1.35)

Its proof is similar to the case of electric dipole and will
not be repeated here.

1. Point magnetic dipole

When a magnetic dipole is produced by the current in
a tiny region (say a nucleus), we have a point magnetic
dipole. The formula in Eq. (1.29) remains valid as long
as r ̸= 0.

However, if you integrate the field in Eq. (1.29) over a
ball V centered at r = 0, then∫

V

dvB(r) =
µ0

4π

∫
V

dv
3r̂(r̂ ·m)−m

r3
= 0. (1.36)

It is zero due to angular integration, no matter if the ball
is large or small. This contradicts the result in Eq. (1.34).
To fix this discrepancy, we can add a delta function to
Eq. (1.29), so that

B(r) =
µ0

4π

3r̂(r̂ ·m)−m

r3
+

2µ0

3
mδ(r). (1.37)

The added term is important in the calculation of hyper-
fine structure (more later).

2. Magnetic dipole layer

In Fig. 5(a), there is a continuous distribution of mag-
netic dipoles on surface S. Suppose these dipole moments
are from orbital motion of charges (not from electron
spins), and are perpendicular to the surface. If S is an
open surface, then the magnetic field from these dipoles is
equal to the B field produced by a current flowing around
the boundary C of S. This Ampère’s theorem.
Pf: Each magnetic dipole is produced by a small current
loop,

dm = Ids, (1.38)

where ds is an area element. The dipole at r′ on the
surface generates a vector potential,

dA(r) =
µ0

4π
dm× r− r′

|r− r′|3
. (1.39)

Using the identity,∫
S

ds×∇f(r) =
∮
C

drf(r), (1.40)

where C is the boundary of surface S, one then has

A(r) =
µ0

4π

∫
dm× r− r′

|r− r′|3︸ ︷︷ ︸
=∇′ 1

|r−r′|

(1.41)

=
µ0

4π
I

∫
S

ds′ ×∇′ 1

|r− r′|
(1.42)

=
µ0

4π
I

∮
C

dr′
1

|r− r′|
. (1.43)

The line integral above equals the vector potential pro-
duced by a loop C carrying current I. QED.
If you’re familiar with Stoke’s theorem, then Ampère’s

theorem is simply a variant of Stokes theorem: The sum
of the circulation of current loops packed together equals
the circulation around the outer boundary of these loops
(Fig. 5(a)).
Example:

A long magnetic tape with width d is lying along the x-
axis, as shown in Fig. 5(b). The magnetic dipoles on the
tape stand straight up, and the magnetic moment per
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FIG. 5 (a) Magnetic dipole moments are standing on an open
surface. (b) A magnetic tape on the x-y plane.

unit area is M . Find out the magnetic field around this
magnetic tape.
Sol’n: According to Ampère’s theorem, we only need
to calculate the B field produced by the current flow-
ing along the boundary of the tape. Since dm = Ids,
so

I =
dm

ds
=M. (1.44)

We need to calculate the magnetic field of two long
straight wires with current I.

If the wire is lying on the x-axis, then for a point r on
y-z plane,

B(r) =
µ0

2π

I

ρ
ϕ̂, (1.45)

where ρ and ϕ̂ = x̂× ρ̂ are shown in Fig. 5(b).
For a wire lying along y = −d/2,

B1 =
µ0I

2π

x̂× ρ̂1

ρ1
, (1.46)

where (Fig. 5(b))

ρ1 = ρ+
d

2
ŷ =

(
y +

d

2

)
ŷ + zẑ. (1.47)

Similarly, for the other wire with current flowing along
the opposite direction,

B2 = −µ0I

2π

x̂× ρ̂2

ρ2
, (1.48)

and

ρ2 = ρ− d

2
ŷ =

(
y − d

2

)
ŷ + zẑ. (1.49)

Finally, the total magnetic field

B =
µ0I

2π

(
x̂× ρ1

ρ21
− x̂× ρ2

ρ22

)
(1.50)

or =
µ0I

2π

[(
y + d

2

)
ẑ− zŷ(

y + d
2

)2
+ z2

−
(
y − d

2

)
ẑ− zŷ(

y − d
2

)2
+ z2

]
.

B

…

ρ

θ

dz’

z

(a) (b)
r

N

S

z’<0

FIG. 6 (a) The magnetic field of a solenoid. (b) A semi-
infinite solenoid along the negative z-axis.

C. Magnetic monopole

We have shown in Sec. A that the monopole potential
of a localized current distribution is zero. Also, no mag-
netic monopole has been observed so far. Nevertheless,
theory itself does not forbid the existence of magnetic
monopole, as we’ll show now.
The magnetic field produced by a finite solenoid is sim-

ilar to that of a bar of magnetic (Fig. 6(a)). If a solenoid
is very long, then its N -pole and S-pole are far away from
each other. For a semi-infinite solenoid that extends from
the origin to z = −∞ (Fig. 6(b)), its S-pole is pushed to
infinity and all of the magnetic field emanates from the
N -pole — the opening at the origin. We can use it to
simulate a magnetic monopole.
Example:

A semi-infinite solenoid along negative z-axis carries a
current I. The cross section area is s, and the number of
coils per unit length is n. Find out its vector potential
and magnetic field.
Sol’n:
First, the vector potential of a current loop on the x-y
plane with magnetic moment m = Isẑ is,

A(r) =
µ0

4π

m× r

r3
, r = ρρ̂+ zẑ (1.51)

=
µ0

4π
m

ρ

(ρ2 + z2)3/2
ϕ̂. (1.52)

Now, the number of loops within dz′ at position z′ (< 0)
is ndz′. Its vector potential,

dA(r) =
µ0

4π
m(ndz′)

ρ

[ρ2 + (z − z′)2]
3/2

ϕ̂. (1.53)

After integration,

A(r) =
µ0

4π
mn

∫ 0

−∞
dz′

ρ

[ρ2 + (z − z′)2]
3/2

ϕ̂

=
µ0

4π
g

∫ −z

−∞
dz′

ρ

(ρ2 + z′2)3/2︸ ︷︷ ︸
≡I(z)

ϕ̂, g ≡ mn.(1.54)
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Let z′ = −ρ tanφ, then dz′ = −ρ sec2 φdφ, the integral
becomes

I(z) =

∫ π
2

tan−1 z
ρ

dφ
1

ρ secφ
(1.55)

=
1

ρ
sinφ

∣∣∣∣π2
tan−1 z

ρ

(1.56)

=
1

ρ

(
1− z√

z2 + ρ2

)
. (1.57)

If we choose spherical coordinate (ρ = r sin θ), then

A(r) =
µ0

4π

g

r

1− cos θ

sin θ
ϕ̂. (1.58)

Its magnetic field,

B(r) = ∇×A =
1

r sin θ

∂

∂θ
(sin θAϕ)r̂+ · · ·

=
µ0g

4π

r̂

r2
. (1.59)

This is valid as long as r is away from the solenoid. Fi-
nally, let s→ 0, and n→ ∞, such that g = Isn remains
fixed. Then Eqs. (1.58) and (1.59) are valid everywhere,
except along the negative z-axis.

The monopole field B(r) is the same as the Coulomb
field for a point charge and decreases as 1/r2. If magnetic
monopole exists, then the divergence of B is no longer
zero, but (for the example above)

∇ ·B(r) = µ0gδ(r). (1.60)

Recall that the divergence of curl is always zero, so how
can ∇·∇×A(r) be non-zero here? In fact, ∇·∇×V(r) =
0 is valid only if V(r) has no singularity, which is not the
case for the A(r) here. The vector potential is singular
along the negative z-axis, when θ = π.
This string of singularity, called Dirac string, is an

artifact of theory and cannot be detected in experiment
if the monopole charge is quantized (Jackson, 1998). It’s
possible to simulate a monopole using a semi-infinite
solenoid along the positive z-axis (or other places), then

A′(r) = −µ0

4π

g

r

1 + cos θ

sin θ
ϕ̂, (1.61)

which produces the same monopole field B(r). In this
case, the Dirac string is along the positive z-axis. You
may check that A and A′ differ by a gauge transforma-
tion. That is, the position of the Dirac string is gauge
dependent.

D. Force and energy

Consider a distribution of current in an external mag-
netic field B(r). Suppose the current is “rigid”. That is,

the external magnetic field cannot alter the distribution
of current, then it feels a force,

F =

∫
dvJ(r)×B(r). (1.62)

Assume the magnetic field varies slowly across the cur-
rent, then we can expand it with respect to a point 0 near
the current,

B(r) = B(0) + (r · ∇)B(0) + · · · . (1.63)

Thus,

F ≃
(∫

dvJ(r)

)
︸ ︷︷ ︸

=0

×B(0)+

∫
dvJ(r)×(r·∇)B(0). (1.64)

The first integral is zero, as has been shown in Eq. (1.12).
When written in components, one has

Fi = ϵijk

∫
dvJjrℓ∇ℓBk. (1.65)

Before moving on, recall that (Chap 1)

(u× v)j = ϵjklukvl, (1.66)

ϵkljϵkmn =

∣∣∣∣ δlm δln
δjm δjn

∣∣∣∣ . (1.67)

Also, for an arbitrary vector w,

wℓ

∫
dvrℓJj =

1

2

∫
dv [(r× J)×w]j . (1.68)

Pf:

∫
dv [(r× J)×w]j =

∫
dvϵjkl(r× J)kwl (1.69)

=

∫
dv ϵjklϵkmn︸ ︷︷ ︸

=δlmδjn−δlnδjm

rmJnwl

=

∫
dv(rlJjwl − rjJlwl) (1.70)

= 2

∫
dvwlrlJj , (1.71)

where we have switched the subscripts of rjJl in the sec-
ond term and used Eq. (1.13). Hence Eq. (1.68) follows.
QED.
Replace wl by ∇lBk (with a fixed k), then

∇ℓBk

∫
dvrℓJj =

1

2

∫
dv [(r× J)×∇Bk]j

= (m×∇)jBk. (1.72)

Thus Eq. (1.65) becomes

F = (m×∇)×B. (1.73)



6

With the help of

∇(a · b) = a∇ · b+ b∇ · a
+ (a×∇)× b+ (b×∇)× a, (1.74)

we have

F = ∇(m ·B) (1.75)

= −∇U, (1.76)

where

U ≡ −m ·B (1.77)

is the magnetic dipole energy.

1. Hyperfine structure

In an atom, such as the hydrogen atom, from the point
of view of an orbiting electron, the nucleus is nearly a
point since it is about 105 times smaller than the radius
of the electron orbital. The magnetic field produced by
the nucleus magnetic dipole moment mN is (Eq. (1.37)),

BN (r) =
µ0

4π

3r̂(r̂ ·mN )−mN

r3
+

2µ0

3
mNδ(r). (1.78)

An electron with dipole moment me would interact with
BN . The Hamiltonian of the interaction is,

HHFS = −me ·BN (r) (1.79)

= −µ0

4π

3(r̂ ·me)(r̂ ·mN )−me ·mN

r3

−2µ0

3
me ·mNδ(r). (1.80)

The first term is the typical dipole-dipole interaction, and
the second term is a contact interaction.
For an s-orbital ψ(r), which is non-zero at the origin

(not so for a p-orbital or other non-s-orbitals, which van-
ishes at the origin), the second term causes an energy
shift,

∆EHFS = ⟨ψ|HHFS |ψ⟩ (1.81)

= −2µ0

3
me ·mN |ψ(0)|2. (1.82)

The expectation of the first term in HHFS is zero since
s-orbital is spherical. As a result of this contact interac-
tion, spin-up and spin-down electrons have slightly dif-
ferent energy levels (Fig. 7(a)). This is the hyperfine
structure in atomic spectroscopy.

For an electron in the 1s orbital of H atom, ∆EHFS ≃
5.89× 10−6 eV. The electron transition between this two
energy levels emits a radio wave with wavelength 21 cm.
This is the famous 21-centimeter line in astrophysics
that can help scientists mapping out the structure of the
Galaxy (Fig. 7(b)).

(a)

(b)

FIG. 7 (a) The hyperfine structure in hydrogen spectrum.
(b) The global structure of the Galaxy determined by the 21
cm line. Fig. from Unknown, 1958.

In early times, some scientists thought that the mag-
netic moments in magnetic materials could be due to
point magnetic charges, instead of tiny current loops
(see Fig. 8). If so, then instead of magnetization current
around the side surface, we should have magnetic charges
on top and bottom surfaces, as in electric polarization.

However, from the calculation of hyperfine structure,
we know that if the magnetic dipole is due to point
charges, then the contact term should be −µ0

3 mNδ(r),

as in the case of electric dipole, instead of + 2µ0

3 mNδ(r).
This would leads to a hyperfine splitting half of the
present value, and in turn produces 42-cm hydrogen line
(which is not observed). Thus, there are no magnetic
monopoles hidden inside tiny magnetic dipoles.

E. Macroscopic magnetizable medium

Consider a magnetic medium that is composed of small
current loops. If the magnetic moment of the i-th element
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FIG. 8 Two possible scenarios of magnetic dipoles. Fig. from
Kitano, 2006.

is mi, then we can define the magnetization as,

M(r′) =

∑
i in ∆V

mi

∆V
, (1.83)

where ∆V is a volume element around r′. The volume el-
ement is microscopically large but macroscopically small,
so that there are many elements in ∆V , but it remains a
point from human’s point of view.

A volume element ∆V has magnetic moment m =
M∆V and produces a vector potential,

∆A(r) ≃ µ0

4π

[
J(r′)∆V

|r− r′|
+

M(r′)∆V × (r− r′)

|r− r′|3

]
.

After integration, we have

A(r) =
µ0

4π

[∫
V

dv′
J(r′)

|r− r′|
+

∫
V

dv′
M(r′)× (r− r′)

|r− r′|3

]
,

(1.84)
where V is the volume of the material. Write

r− r′

|r− r′|3
= ∇′ 1

|r− r′|
, (1.85)

use

∇× (fv) = ∇f × v + f∇× v, (1.86)

and integrate by parts, the second integral can be written
as∫

V

dv′M(r′)×∇′ 1

|r− r′|
=

∫
V

dv′
∇′ ×M(r′)

|r− r′|

−
∫
V

dv′∇′ ×
(

M(r′)

|r− r′|

)
.

We then use ∫
V

dv∇× v =

∫
S

ds× v, (1.87)

where S is the boundary of V , and write∫
V

dv′∇′ ×
(

M(r′)

|r− r′|

)
=

∫
S

ds′ × M(r′)

|r− r′|
. (1.88)

If follows that,

A(r) =
µ0

4π

∫
V

dv′
J(r′) +∇′ ×M(r′)

|r− r′|

+
µ0

4π

∫
S

ds′
M(r′)× n̂

|r− r′|
. (1.89)

The numerator of the first integral can be considered as
an effective current density Jeff = J+ Jm, where

Jm(r) ≡ ∇×M(r) (1.90)

is themagnetization current density. The numerator
of the second integral is the magnetization surface
current density,

Km(r) ≡ M(r)× n̂, (1.91)

where r is located on the surface.
Note that instead of integrating over the material body

V , we can also integrate over the whole space, then S is
the surface at infinity, and the surface integral vanishes
since M = 0 at infinity. These two choices of V give the
same result of A, since in the second choice, Jm would
automatically pick up the surface current on boundary
(see next subsection). In what follows, we prefer to in-
tegrate over the whole space, so that the surface integral
in Eq. (1.89) can be dispensed with.
Now, since the current density in the volume integral

above directly links with the one in Ampère’s law (see
Chap 2), we have

∇×B = µ0Jeff = µ0 (J+∇×M) . (1.92)

Introduce an H field,

H =
1

µ0
B−M, (1.93)

then ∇×H(r) = J(r). (1.94)

This is Ampère’s law in material. The official term for B
is magnetic flux density, which is in units of Tesla (N
s/C m). The H field is called magnetic field strength,
which is in units of A/m. For simplicity, we’ll call them
B field and H field, or simply magnetic field (for both)
if the context is clear.
Note that

B = µ0(H+M). (1.95)

We call a magnet simple if it is isotropic and linear. That
is, its M is proportional to and aligns with H,

M = χmH, (1.96)

and

B = µ0(1 + χm)H = µH, (1.97)

where χm is the magnetic susceptibility, and µ the
magnetic permeability of material.

For paramagnetic material ,

M ∥ H, and χm > 0. (1.98)

For diamagnetic material,

M ∥ −H, and χm < 0. (1.99)

The magnitude of χm is typically of the order of 10−5. A
simple magnet such as soft iron can have χm ∼ 104. The
χm of hard ferromagnet materials can be as large as 106,
but they are not simple magnets.
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FIG. 9 Distribution of magnetic dipoles in the half-space y <
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1. Magnetization current

Non-uniform magnetization generates effective cur-
rent, Jm = ∇ × M. We’ll use a simple example to il-
lustrate this: In Fig. 9 there is a semi-infinite magnet
with uniform magnetization,

M =M0θ(−y)ẑ. (1.100)

Its magnetization current density is,

Jm = ∇×M = −M0δ(y)x̂. (1.101)

That is, magnetization current flows only on the surface
of the magnet. In the figure, molecular currents generate
magnetic dipoles. Near the interface between neighbor-
ing current loops, the currents flow along opposite direc-
tions. Thus, there is no current inside the bulk, and only
the outer-most current exposed.

Note that the magnetization currents in the example
are bounded to molecules. They cannot flow away like
conduction current in metals.

Since the magnetization current flows on a surface, we
can describe it with surface current density Km,

Km =

∫
dyJm = −

∫
dyM0δ(y)x̂ (1.102)

= −M0x̂ = Ms × n̂, (1.103)

where Ms is the magnetization on the surface.

2. Boundary condition

In previous chapter, we have learned about the bound-
ary condition for magnetic field,

n̂ · (B2 −B1) = 0, (1.104)

n̂× (B2 −B1) = µ0K. (1.105)

In the presence of magnetic materials, the boundary con-
dition would depend on magnetization and needs be re-
derived. Let’s start from the integral form of the Maxwell

equations, ∫
S

ds ·B = 0, (1.106)∮
C

dr ·H = I, (1.107)

where I is the current flowing through C, not including
the magnetization current.
As shown in Fig. 10(a), near the boundary surface, we

can choose the S in Eq. (1.106) to be a small pillar box
with area ds and nearly zero thickness, then∫

S

ds ·B ≃ B1 · ds(−n̂) +B2 · dsn̂ = 0, (1.108)

where n̂ points from region 1 to region 2. Hence, the
normal components

n̂ · (B2 −B1) = 0, (1.109)

which is the same as Eq. (1.104).
Choose the C in Eq. (1.107) to be a small rectangular

loop perpendicular to the current flow. Suppose the loop
has width d and nearly zero height, then∮

C

dr ·H ≃ H1 · (−d) +H2 · d = I, (1.110)

where d = dd̂ and d̂ = Ĵ× n̂, as shown in figure. Hence

(H2 −H1) · d̂ = K, (1.111)

or n̂× (H2 −H1) = K, (1.112)

which replaces Eq. (1.105).

F. Magnetostatic energy

The magnetostatic energy of a current distribution
equals the total work required to assemble the current,
starting from the state when there is no current. The in-
crease of current leads to the increase of magnetic field,
which induces an electric field E that interacts with the
current.
For the reason above, even though we are discussing

magnetostatic energy, Faraday’s law needs be used,

∇×E = −∂B
∂t
. (1.113)

It is assumed that the current builds up slowly so the
process is quasi-static. The electromagnetic energy in a
dynamic system will be discussed in Chap 15.
Suppose charge ρ∆V is displaced by ∆r due to fields,

the mechanical work done by electromagnetic field on
charged particles is,

∆wm = ρ∆V (E+ v ×B) ·∆r. (1.114)
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1970.

The rate of total work done is

dWm

dt
=

∫
dvρ(E+ v ×B) · v (1.115)

=

∫
dvJ ·E, J = ρv. (1.116)

Note that the magnetic force does no work.
According to Lenz’s law, the induced field E opposes

the increase of current. To build up the current, an ex-
ternal agent must provide Wext to work against Wm. It
is this external work that increases the energy UB of the
system.

For simplicity, consider a thin wire of loop C. Replace
dvJ with Idr, then

dWm

dt
= I

∮
C

dr ·E = IE , (1.117)

where E is the electromotive force around C. The rate
of external work is,

dWext

dt
= −I

∫
C

dr ·E (1.118)

= −I
∫
S

ds · ∇ ×E (1.119)

= I

∫
S

ds · ∂B
∂t

(1.120)

= I
dΦ

dt
, (1.121)

where S is a surface (not moving) bounded by C, and Φ

is the magnetic flux through S. Finally, in a time δt,

δWext =
dWext

dt
δt = IδΦ, (1.122)

hence

δUB = δWext = IδΦ. (1.123)

This is the first form of δUB .
With Stoke’s theorem, the magnetic flux can be writ-

ten as,

Φ =

∫
S

ds · ∇ ×A =

∮
C

dr ·A. (1.124)

The current is held fixed in δt, hence

δUB = I

∮
C

dr · δA. (1.125)

For a general current distribution, replace Idr with dvJ,
then

δUB =

∫
dvJ · δA. (1.126)

This is the second form of δUB .
We can also write UB in terms of magnetic field. Recall

that ∇ × H equals J (not including the magnetization
current), thus

δUB =

∫
dv(∇×H) · δA. (1.127)

Using

∇ · (u× v) = (∇× u) · v − (∇× v) · u, (1.128)

then

δUB =

∫
dv(∇× δA) ·H+

∫
dv∇ · (H× δA)

=

∫
dv δB ·H. (1.129)

The second integral can be converted to an integral over
a boundary surface at infinity and vanishes when the field
distribution is localized. This is the third form of δUB .
Back to the first form of δUB . Suppose the current

(flux) increases from 0 to a final value I (Φ). In an in-
termediate state,

I(λ) = λI, and δΦ(λ) = δλΦ (0 ≤ λ ≤ 1), (1.130)

then

UB =

∫
I(λ)δΦ(λ) (1.131)

=

∫ 1

0

dλλ IΦ (1.132)

=
1

2
IΦ. (1.133)
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Similarly, the second form also has the factor 1/2,

UB =
1

2

∫
dvJ ·A. (1.134)

For the third form, in a simple magnet (such as a para-
magnetic or a diamagnetic material), B is proportional
to H, and we can also have

UB =
1

2

∫
dvB ·H. (1.135)

The integrand is the energy density for magnetic field,

uB =
1

2
B ·H =

µ

2
H2. (1.136)

However, for non-simple magnet (such as a ferromagnet),
the original form in Eq. (1.129) needs be used to compute
the change of energy step by step.
Problem:
1. Suppose a current distribution outside a sphere with
volume V produces a magnetic field B(r). Show that
the magnetic field averaged over the sphere (which has
no current inside) equals the field at the center of the
sphere,

⟨B(r)⟩V ≡ 1

V

∫
V

dvB(r) = B(0).

2. A point magnetic dipole at the origin produces a mag-
netic field,

B(r) =
µ0

4π

3r̂(r̂ ·m)−m

r3
, r > 0.

Suppose m = mẑ. Show that the field averaged over a
sphere centered at the origin is zero,

∫
V

dvB(r) =
µ0

4π

∫
V

dv
3r̂(r̂ ·m)−m

r3
= 0.
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