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I. MAGNETOSTATICS

A. Introduction

There are several ways to find out a magnetic field.
Given a current distribution, we can always use the Biot-
Savart law,

B(r) =
µ0

4π

∫
V

dv′J(r′)× r− r′

|r− r′|3
, (1.1)

where µ0 = 4π × 10−7 N/A
2
. Alternatively, we can find

out the vector potential using

A(r) =
µ0

4π

∫
dv′

J(r′)

|r− r′|
, (1.2)

then take its curl to find the field, B = ∇×A.

Two of the Maxwell equations govern the magneto-
static field, ∫

S

ds ·B(r) = 0, (1.3)∮
C

dr ·B(r) = µ0I, (1.4)

where I is the current flowing through loop C. If the
current distribution has certain symmetry, then it is con-
venient to find out B using the Ampère law in Eq. (1.4).
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FIG. 1 (a) B2(x) and its slope in one dimension. (b) B2(r)
and its gradient in three dimension.

The differential form of the Maxwell equations are,

∇ ·B(r) = 0, (1.5)

∇×B(r) = µ0J. (1.6)

Since a field without divergence can be written as a curl,
the first equation implies B = ∇ × A. Substitute it
to the second equation, and recall that ∇ · A = 0 for
steady current (see Chap 2), we have the vector Pois-
sion equation,

∇2A(r) = −µ0J(r). (1.7)

It needs to be solved together with the boundary con-
dition. Again, as in electrostatics, we will not use this
approach in this course.

1. Magnetic force

A point charge q moving in a magnetic field B feels a
magnetic force, called the Lorentz force,

F = qv ×B. (1.8)

For a thin wire carrying a current I, each line element dr
feels a Lorentz force,

dF = Idr×B. (1.9)

For the whole wire, just integrate to have the total force,

F = I

∫
C

dr×B(r). (1.10)

For a general current distribution J(r), just replace Idr
with J(r)dv, so that

F =

∫
dvJ(r)×B(r). (1.11)

Note that the field B in the equation is an external one,
not including the field produced by J itself.
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FIG. 2 (a) A ring with radius a and current I. (b) Distribu-
tion of magnetic field near a ring.

2. Thomson’s theorem

In a region V without any current, a magnetic field
|B(r)| can have local minimum, but not local maximum.

Pf: We’ll prove this by contradiction. Suppose |B(r)|,
or B2(r), has local maximum at a point p, then near
the point, ∇B2 points toward p (Fig. 1). Therefore, if
we integrate it over a spherical surface S surrounding p,
then ∫

S

ds · ∇B2 < 0. (1.12)

Using the divergence theorem,∫
S

ds ·V =

∫
V

dv∇ ·V, (1.13)

we have ∫
S

ds · ∇B2 =

∫
S

dv∇2B2 (1.14)

=

∫
V

∇i∇iBjBj . (1.15)

The integrand

∇i (∇iBjBj) = ∇i [2Bj(∇iBj)] (1.16)

= 2(∇iBj)
2 + 2Bj(∇2Bj). (1.17)

The integral of the second term is zero (proved later),
thus ∫

S

ds · ∇2B2 =

∫
V

dv2(∇iBj)
2 > 0. (1.18)

This contradicts with Eq. (1.12). Thus the premise that
|B(r)| has local maximum can’t be valid. QED.

We now prove that the integral of the second term in
Eq. (1.17) is zero. First, since there is no current inside
V , ∇×B = 0, thus

∇iBj = ∇jBi. (1.19)
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FIG. 3 The magnetic field at the center of a Helmholtz coil
is nearly uniform. Fig. from Zangwill, 2013.

It follows that∫
V

dvBj(∇2Bj) =

∫
V

dvBj∇i ∇iBj︸ ︷︷ ︸
=∇jBi

(1.20)

=

∫
V

dvBj∇j(∇ ·B) (1.21)

= 0. (1.22)

B. Biot-Savart law

Let’s start with a classic example:
Find out the magnetic field along the central axis of a
circular wire with radius a and current I.
Sol’n:
According to the Biot-Savart law, a line element Idr′

generates

dB(r) =
µ0

4π
Idr′ × r− r′

|r− r′|3
(1.23)

=
µ0

4π
Idr′

1

|r− r′|2
along dB. (1.24)

Note that dr′ ⊥ r− r′, and dB is shown in Fig. 2(a).
When one integrates over the circle, the horizontal

component of dB vanishes, but dBz = dB cosα survives.
Therefore,

Bz(z) =
µ0

4π

∮
C

Idr′
cosα

z2 + a2
, cosα =

a√
z2 + a2

=
µ0I

2

a2

(z2 + a2)3/2
, (1.25)

and B(z) = Bz(z)ẑ. The field decreases as 1/z3 at
large distance. The distribution of field lines is shown
in Fig. 2(b).
A Helmholtz coil consists of two rings with the same

radius, and the same magnitude and direction of current
(Fig. 3). Along the central axis,

Bz(z) =
µ0

2

{
Ia2

[(z − d/2)2 + a2]3/2
+

Ia2

[(z + d/2)2 + a2]3/2

}
.

(1.26)
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FIG. 4 (a) A solenoid with finite length. (b) The magnetic
field along the central axis of the solenoid.

It can be shown that dBz(z)/dz = 0 at the center
(z = 0). Actually, from the symmetry of the Helmholtz
coil, one can argue that the derivatives of odd orders
at z = 0 should be zero. It is left as an exercise to
show that when the separation between rings d = a, then
d2Bz(z)/dz

2|z=0 = 0. Thus, the first non-zero derivative
is of the fourth order, d4Bz(z)/dz

4. As a result, the mag-
netic field is nearly uniform at the center of the Helmholtz
coil with d = a.

1. Solenoid

Consider a solenoid with finite length L (Fig. 4(a)).
It has a uniform surface current density (current per
unit length) K = nI, where n is the number of coils
per unit length. Let’s find out the magnetic field B(z)
along the central axis inside the solenoid. The observa-
tion point is set as the origin of the coordinate. A slice of
the solenoid with width dz has current dI = Kdz, which
produces a magnetic field at the origin (see Eq. (1.25)),

dBz =
µ0

2
Kdz

a2

(z2 + a2)3/2
. (1.27)

Let z = a cot θ, then dz = −a csc2 θdθ. Integrate over
the whole solenoid to get,

Bz(z = 0) =
µ0

2
Ka2

∫ z2

z1

dz

(z2 + a2)3/2
(1.28)

= −µ0

2
K

∫ θ2

π−θ1

sin θdθ (1.29)

=
µ0

2
K(cos θ1 + cos θ2). (1.30)

The dependence of Bz on z is shown in Fig. 4(b). If the
solenoid has infinite length, then θ1, θ2 → 0, and

Bz(z) = µ0K = µ0nI, (1.31)

where n is the density of coils per unit length.
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FIG. 5 (a) A solenoid with infinite length. (b) An infinite
solenoid with a non-circular cross section that is uniform along
its length.

For the infinite solenoid, due to the translation sym-
metry along the z-axis, we expect the magnetic field to
be uniform along z and directs along the z-direction,
B(r) = Bz(ρ)ẑ, both inside and outside the solenoid.
We can find out the magnetic field easily using Ampère’s
law. First, choose the loop C1 in Fig. 5(a). Since there
is no current flowing through C1, hence∮

C1

dr ·B(r) = 0. (1.32)

Because the choice of C1 is arbitrary (as long as it is
outside), the magnetic field outside must be a constant
and can only be zero.

Next choose the loop C2, then∮
C2

dr ·B(r) = Bz(ρ)L = µ0I. (1.33)

Thus, Bz(ρ) = µ0K is independent of ρ inside the
solenoid. Note that the derivation that leads to Eq. (1.31)
applies only to the magnetic field along the central axis,
while the derivation here applies to any location inside
the solenoid.

2. Solenoid with non-circular cross section

Consider a solenoid with infinite length but arbitrary
cross section, as shown in Fig. 5(b). The cross section
is uniform along its length. The surface current density
K(r) is uniform and flows horizontally. Consider a point
r outside or inside the solenoid. From the Biot-Savart
law,

dB(r) =
µ0

4π
Kdzdr′ × R

R3
, R = r− r′ (1.34)
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in which we have replaced Idr′ with (Kdz)dr′. From the
geometry in Fig. 5(b), we can see that

dr′ = dℓ, (1.35)

R+ ℓ = −zẑ, (1.36)

and R2 = z2 + ℓ2. (1.37)

Thus,

dr′ × R

R3
= −dℓ× ℓ

R3
− dℓ× zẑ

R3
. (1.38)

After integration,

B(r) = −µ0

4π
K

∫ ∞

−∞
dz

∮ (
ℓ× dℓ

R3
+
zẑ× dℓ

R3

)
(1.39)

= −µ0

4π
K

∮ (
ℓ× dℓ

∫ ∞

−∞

dz

R3
+ ẑ× dℓ

∫ ∞

−∞
dz

z

R3

)
.

The second integral is zero; the first integral equals 2/ℓ2.
Thus,

B(r) = −µ0

2π
K

∮
ℓ× dℓ

ℓ2
. (1.40)

Note that

|ℓ× dℓ| = ℓdℓ sinα, (1.41)

and

dℓ sinα = |ℓ+ dℓ| sin dβ ≃ ℓdβ. (1.42)

Hence,

B(r) =
µ0

2π
K

∮
dβ ẑ (1.43)

=

{
µ0Kẑ inside the solenoid

0 outside the solenoid
(1.44)

Note that in a real solenoid, the current cannot be
purely azimuthal since as a whole it needs to flow for-
ward along the central axis. When we take this into ac-
count, the magnetic field would have certain azimuthal
component Bϕ.

C. Ampère’s law

If the distribution of current has a simple symmetry,
then we can use the integral form of the Ampère’s law to
find out the magnetic field.

Example:
Suppose there is a straight wire with infinite length lying
along the z-axis. It has a cylindrical shape with radius a
and carries a uniform current I. Find out the magnetic
field generated by this wire.
Sol’n:

z

ρ

I

C

a

(a) (b)

ρ

B(ρ)

a

0

2

I

a

µ

π

FIG. 6 (a) A cylindrical wire along the z-axis. (b) The mag-
netic field inside and outside the wire.

Let’s choose the cylindrical coordinate. The system is
invariant if you rotate around z-axis, or translate along
z-axis, so the magnetic field cannot depend on ϕ, z. It
follows that,

B(r) = B(ρ) = Bρ(ρ)ρ̂+Bϕ(ρ)ϕ̂+Bz(ρ)ẑ. (1.45)

From Ampère’s right-hand rule, we expect the magnetic
field to be along ϕ̂, so

B(r) = Bϕ(ρ)ϕ̂. (1.46)

You may reach the same conclusion with a more detailed
analysis of the Biot-Savart integral.
Choose a loop C with radius ρ around the wire

(Fig. 6(a)), then∮
C

dr ·B(r) = µ0I(ρ), (1.47)

→ 2πρBϕ(ρ) = µ0I(ρ), (1.48)

where I(ρ) is the current passing through the circle C,

I(ρ) =

 I ρ2

a2 if ρ < a

I if ρ > a

. (1.49)

Thus (Fig. 6(b)),

B(r) =


µ0I
2πa

ρ
a ϕ̂ if ρ < a

µ0I
2πρ ϕ̂ if ρ > a

(1.50)

Example:
In Fig. 7(a), a hollow cylindrical can with radius R and
height L has a wire at its center. A current I flows up the
wire, spreads out, flows down, converges at the bottom
of the wire and flows up again.
(a) Using cylindrical coordinate, argue that the magnetic
field has the following form everywhere, both inside and
outside the can,

B(r) = B(ρ, z)ϕ̂. (1.51)
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FIG. 7 (a) A hollow can with a wire inside along its central
axis. (b) A toroidal solenoid.

(b) Find out B(ρ, z).
Sol’n:
(a) Since the system is invariant with respect to the

rotation around the wire (z-axis), so the magnetic field
cannot depend on ϕ,

B(r) = B(ρ, z) (1.52)

= Bρ(ρ, z)ρ̂+Bϕ(ρ, z)ϕ̂+Bz(ρ, z)ẑ. (1.53)

There is no obvious reason to rule out certain component
of B. But from a detailed analysis of the Biot-Savart law,
we can show that the field B is circular and has only the
ϕ̂ component:
First, align the x-axis with the direction of observation

point p, which can be inside or outside the can (Fig. 7(a)).
In general,

J(r′) = Jxx̂+ Jyŷ + Jz ẑ, (1.54)

r− r′ = (x− x′)x̂+ (0− y′)ŷ + (z − z′)ẑ. (1.55)

The distribution of current has a mirror symmetry with
respect to the x-z plane. So for a current element
J(r′)dv′, there is a mirror counterpart J̃(r̃′)dv′, with

J̃ = (Jx,−Jy, Jz), and r̃′ = (x′,−y′, z′). (1.56)

The magnetic field produced by this pair of current ele-
ments is

dB ∼ J× (r− r′) + J̃× (r− r̃′) (1.57)

=

∣∣∣∣∣∣
x̂ ŷ ẑ
Jx Jy Jz

x− x′ −y′ z − z′

∣∣∣∣∣∣+
∣∣∣∣∣∣

x̂ ŷ ẑ
Jx −Jy Jz

x− x′ +y′ z − z′

∣∣∣∣∣∣
=

∣∣∣∣∣∣
x̂ 2ŷ ẑ
Jx 0 Jz

x− x′ 0 z − z′

∣∣∣∣∣∣ ∼ ŷ. (1.58)

Thus, after integration, B ∼ ŷ = ϕ̂.
(b) After the form of B(r) has been narrowed down, it’s
easy to evaluate the Ampère integral. Choose the path
C to be a horizontal circle with radius ρ, then∮

C

dr ·B = 2πρB(ρ, z) =

{
µ0I if C is inside the can
0 if C is outside the can

(1.59)

x

y
z

K

∆

�
ℓ

z
C

n̂

FIG. 8 An infinite plate on the x-y plane with a uniform sheet
of current K = Kŷ.

Thus, inside the can,

B(r) =
µ0I

2πρ
ϕ̂. (1.60)

There is no magnetic field outside the can.

Note that the same argument applies to other systems
with azimuthal symmetry and radial current flow, and
their magnetic fields must be circular. For example, for
the toroidal solenoid in Fig. 7(b), the magnetic field in-
side is

B(r) =
µ0NI

2πρ
ϕ̂, (1.61)

where N is the number of coils. There is no magnetic
field outside the solenoid.

Example:
There is a thin plate on the x-y plane with a uniform
current. Its current per unit length, or surface current
density K = Kŷ (Fig. 8). Find out the magnetic field on
both sides of the plate.
Sol’n:

Since the plate can be considered as a collection of
wires along y direction, according to Ampère’s right-hand
rule, we expect the magnetic field to be along the x-
axis (see Zangwill, 2013 for a detailed analysis based on
symmetry),

B(r) = B(z)x̂. (1.62)

Choose a small rectangular loop C with a surface normal
parallel to K, as shown in Fig. 8. The current passing
through C is I□ = K∆ℓ. Thus, the circulation∮

C

dr ·B = B+ ·∆ℓ+B− · (−∆ℓ) = µ0I□, (1.63)

where B+ (B−) is the field above (below) the plane. We
expect B− = −B+, thus

B+ = +
µ0

2
Kx̂ or

µ0

2
K× n̂, K =

I□
∆ℓ

(1.64)

B− = −µ0

2
Kx̂ or − µ0

2
K× n̂, (1.65)

in which n̂ points up. The magnetic field is uniform and
does not decrease with distance z.
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D. Boundary condition for B

In general, the magnetic fields on opposite sides of a
current sheet are not the same. Their difference is caused
by the current on the surface. Suppose a surface has
surface current density K(r). At a point r on the surface,
the magnetic fields on opposite sides are B1(r) and B2(r)
(Fig. 9). What’s the relation between this two magnetic
fields?

First, divide the surface S into a small rectangle □ and
a surface S′ (S with □ removed),

S = □+ S′. (1.66)

The rectangle is microscopically large, but macroscopi-
cally small (say, with a size of 1 µm). It can be con-
sidered as flat since it is just a small part of the smooth
surface S. The field, B1(r) or B2(r), is the superposition
of the fields produced by □ and S′.
When one infinitesimally approaches the center of the

rectangle, the field is close to the field of an infinite plane,
B(r) = ±µ0

2 K×n̂, where n̂ points from region 1 to region
2. Suppose the field produced by S′ is BS , then

B1 = BS − µ0

2
K× n̂, (1.67)

B2 = BS +
µ0

2
K× n̂. (1.68)

Even though BS remains unknown, we can substrate the
field to get

B2(r)−B1(r) = µ0K(r)× n̂. (1.69)

This is the BC for fields near a current sheet. Sometimes
it is written as,

n̂ · (B2 −B1) = 0, (1.70)

n̂× (B2 −B1) = µ0K. (1.71)

1. Force on current sheet

To find out the magnetic force on a current sheet, di-
vide the surface S into □ and S′, as in previous section.
The rectangle exerts no force on itself. So the force is
due to the magnetic field produce by S′,

F□ = I□∆L×BS (1.72)

= (K∆ℓ)∆L×BS , (1.73)

where I□ is the current passing through □ (Fig. 9). Since

BS =
1

2
(B1 +B2), (1.74)

so the force density (or pressure)

f□ ≡ F□

∆ℓ∆L
=

1

2
K× (B1 +B2). (1.75)

∆ℓ

L∆

K

r

12

S

n̂

FIG. 9 A surface S is divided into a small rectangle and a
surface without the rectangle, S′.

For example, for a long solenoid, the magnetic field
inside and outside are (see Eq. (1.44))

B1 = µ0Kẑ, B2 = 0. (1.76)

So the magnetic pressure on the wall of the solenoid is

f = µ0
K2

2
n̂, (1.77)

where n̂ points outward.
For example, for a solenoid with I = 0.1 A and coil den-

sity a = 103/m, its surface current densityK = 100 A/m.
The magnetic pressure on the wall f = 2π× 10−3 N/m2.

E. Vector potential

Assume that two vector potentials differ by a gradient
∇χ(r),

A′ = A+∇χ. (1.78)

Since ∇×∇χ(r) = 0 for any scalar function χ(r) without
singularity, so A′ and A yield the same magnetic field
B. That is, one magnetic field can have different vector
potentials. This is called gauge degree of freedom.
For example, given B(r) = B0ẑ, then its vector poten-

tial can be

A(r) = B0(0, x, 0), (1.79)

or A(r) =
B0

2
(−y, x, 0). (1.80)

They differ by the gradient in Eq. (1.78) with χ(r) =
−B0xy/2.
With the help of χ, one can demand the vector poten-

tial to satisfy the Coulomb gauge,

∇ ·A(r) = 0. (1.81)
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Pf: Suppose ∇ ·A ̸= 0, then we can choose a χ(r) such
that

∇ ·A′ = ∇ ·A+∇2χ = 0. (1.82)

What we need is a χ that satisfies

∇2χ(r) = −∇ ·A(r). (1.83)

The RHS is like the source term of the Poisson equation
in electrostatics, and in principle a solution χ(r) always
exists. Thus, we can always have ∇ ·A′ = 0. QED.
Usually, all we need to know is that χ exists. It is not
necessary to actually find out χ(r).

Note: In Chap 2, we have shown that Eq. (1.81) is
always valid for steady current. But its validity extends
to dynamic field, as we will show in a later chapter.

We can write Ampère’s law in terms of the vector po-
tential,

∇×B = µ0J, B = ∇×A,(1.84)

→ ∇(∇ ·A)−∇2A = µ0J. (1.85)

With the Coulomb gauge∇·A(r) = 0, we have the vector
Poisson equation,

∇2A(r) = −µ0J(r). (1.86)

Each component of Eq. (1.86) is a scalar Poisson equa-
tion. Thus, it has the formal solution,

Ai =
µ0

4π

∫
dv′

Ji(r
′)

|r− r′|
, i = x, y, z (1.87)

or A(r) =
µ0

4π

∫
dv′

J(r′)

|r− r′|
, (1.88)

which is consistent with Eq. (1.2). For a thin wire, just
replace dv′J with Idr′, and

A(r) =
µ0

4π
I

∫
dr′

|r− r′|
. (1.89)

Example:
Find out the vector potential of a wire that is straight,
infinite, and carries a current I.
Sol’n:

Adopt the cylindrical coordinate, and lay the wire
along z-axis (Fig. 10(a)). In the integral,

A(r) =
µ0

4π
I

∫
dr′

|r− r′|
, (1.90)

dr′ = dzẑ, thus A(r) ∥ ẑ.

With the help of∫
dx√
x2 + a2

= ln
(
2x+ 2

√
x2 + a2

)
, (1.91)

a

I

(a) (b)I

ρ

z

dr’

o
r

FIG. 10 (a) A thin wire with a current. (b) A cylindrical wire
with a uniform current inside.

for a wire with length 2L, we have

Az(ρ) =
µ0I

4π

∫ L

−L

dz√
z2 + ρ2

(1.92)

=
µ0I

4π
ln

√
1 + (ρ/L)2 + 1√
1 + (ρ/L)2 − 1

. (1.93)

If L≫ ρ, then

ln

√
1 + (ρ/L)2 + 1√
1 + (ρ/L)2 − 1

≃ ln 4− 2 ln
ρ

L
, (1.94)

hence

Az(ρ) ≃ −µ0I

2π
ln ρ+ const. (1.95)

It diverges when ρ→ 0 (and at infinity). Finally, it’s not
difficult to show that,

B = ∇×A =
µ0I

2π

1

ρ
ϕ̂. (1.96)

Example:
Find out the vector potential of a straight, infinite cylin-
drical wire with radius a (Fig. 10(b)). The wire carries a
uniform current I.
Sol’n:
When the wire has a finite radius, the divergence of

A as ρ → 0 can be avoided. However, it’s no longer
convenient to use the integral formula in Eq. (1.88). Thus
we will use the vector Poisson equation instead.
First, since J(r) = J0ẑ, where J0 = I/πa2 is a con-

stant, Eq. (1.88) tells us that A(r) = Az(r)ẑ. Further-
more, we expect Az(r) = Az(ρ), thus ∇ ·A = 0 is auto-
matically satisfied, and

∇2A(r) = −µ0J(r). (1.97)

Since

∇2Az(r) =
1

ρ

∂

∂ρ

(
ρ
∂Az

∂ρ

)
+

1

ρ2
∂2Az

∂ϕ2
+
∂2Az

∂z2
, (1.98)

it follows that

1

ρ

d

dρ

(
ρ
dAz

dρ

)
= −µ0J0. (1.99)
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Direct integration gives

Az(ρ) = −µ0

4
J0ρ

2 + C ln ρ+ constant (1.100)

=

 −µ0

4 J0ρ
2 +D for ρ ≤ a,

+C ln ρ+D′ for ρ ≥ a.
(1.101)

Some terms have been dropped to avoid unphysical di-
vergence.

The vector potential needs be continuous at ρ = a
(otherwise the magnetic field would diverge there). This
gives

Az(ρ) =

 −µ0

4 J0ρ
2 +D for ρ ≤ a,

−µ0

4 J0a
2 + C ln ρ

a +D for ρ ≥ a.
(1.102)

We can ignore the constant D, but C is still unknown.
To find C, we require that the curl of A be continuous

across the boundary. That is,

Bout −Bin = 0. (1.103)

This so because the surface current density is zero, K =
0, for a boundary layer that is infinitely thin. Now

B(r) = ∇×A(r) = −dAz

dρ
ϕ̂. (1.104)

Match Bin and Bout at the boundary to get C =
−µ0

2 J0a
2.

Finally, drop D to get

Az(ρ) =

 −µ0

4 J0ρ
2 for ρ ≤ a,

−µ0

4 J0a
2 [1 + 2 ln(ρ/a)] for ρ ≥ a.

(1.105)
It’s not difficult to see that

Bϕ(ρ) =


µ0I
2π

ρ
a2 for ρ ≤ a,

µ0I
2πρ for ρ ≥ a.

(1.106)

This agrees with the result in Eq. (1.50), which was ob-
tained by a simpler approach.

F. Magnetic scalar potential

Since a vector field with zero curl can be written as
a gradient, for a static magnetic field in vacuum with
∇×B = 0, one can write

B(r) = −∇ψ(r), (1.107)

where ψ is the magnetic scalar potential. Combined with
the equation ∇ ·B = 0, we have

∇2ψ(r) = 0. (1.108)

Unlike the vector potential, the magnetic scalar potential
is not applicable to dynamic magnetic field.

1. Potential of a current loop

Suppose a magnetic field is generated from a loop of
thin wire C with current I. From Biot-Savart law,

B(r) =
µ0

4π
I

∮
C

dr′ × r− r′

|r− r′|3
. (1.109)

With the help of the identity,∮
C

dr′ ×V =

∫
S

dsk∇Vk −
∫
S

ds∇ ·V, (1.110)

where C is the boundary of S, we can write

B(r) =
µ0I

4π

∫
S

dsk∇′ (r− r′)k
|r− r′|3

− µ0I

4π

∫
S

ds∇′ · r− r′

|r− r′|3
.

(1.111)
The integrand of the second term,

∇′ · r− r′

|r− r′|3
= ∇′ · ∇′ 1

|r− r′|
(1.112)

= −4πδ(r− r′). (1.113)

Thus the second term is zero as long as the observation
point r is not on the surface S. For the first term, switch
∇′ to ∇ (getting a minus sign), then

B(r) = −µ0I

4π
∇

∫
S

ds · r− r′

|r− r′|3︸ ︷︷ ︸
=−dΩS

(1.114)

=
µ0I

4π
∇ΩS(r), (1.115)

where ΩS(r) is the solid angle of S with respect to the
observation point r. Therefore, the magnetic scalar po-
tential

ψ(r) = −µ0I

4π
ΩS(r). (1.116)

Take the ring in Fig. 2(a) as an example. Note that the
current flows counter-clockwise, hence the normal vector
of S points up, instead of pointing down, away from the
observation point. As a result, there is an extra minus
sign in ΩS , and

ΩS = −2π
[
1− cos

(π
2
− α

)]
, sinα =

z√
z2 + a2

= −2π

(
1− z√

z2 + a2

)
(1.117)

Taking the gradient of ΩS to obtain

B(r) =
µ0I

4π

d

dz
ΩS(z)ẑ =

µ0I

2

a2

(z2 + a2)3/2
ẑ. (1.118)

This agrees with the result in Eq. (1.25).
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1,2

FIG. 11 A current pierces through a surface S bounded by
C. Fig. from Zangwill, 2013

2. Multi-valuedness of ψ

It is known that for static electric field,∮
C

dr ·E(r) = 0. (1.119)

This implies that the potential difference,

ψ(r2)− ψ(r1) = −
∫ 2

1

dr ·E(r), (1.120)

is independent of the path of the integral from point-1 to
point-2.

For a static magnetic field, however, the loop integral
of B may not be zero. Thus, if one moves from r1 to r2 =

r1 around a loop C that encloses a current I (Fig. 11),
then

ψ(r2)− ψ(r1) = −
∮
C

dr ·B(r) = ±µ0I. (1.121)

That is, ψ is not single-valued. To prevent it from having
multiple values at the same location, we can refrain the
path C from crossing the surface bounded by the current
loop (Zangwill, 2013).

Problem:

1. Along the central axis of a Helmholtz coils (Fig. 3),

Bz(z) =
µ0

2

{
Ia2

[(z − d/2)2 + a2]3/2
+

Ia2

[(z + d/2)2 + a2]3/2

}
.

(a) Show that dBz(z)/dz = 0 at the center (z = 0).
(b) Argue that the derivatives of odd orders at z = 0
should be zero.
(c) Show that when the separation between rings d = a,
d2Bz(z)/dz

2|z=0 = 0.

REFERENCES

Zangwill, Andrew (2013), Modern electrodynamics (Cam-
bridge Univ. Press, Cambridge).


	Lecture notes on classical electrodynamics
	Contents
	Magnetostatics
	Introduction
	Magnetic force
	Thomson's theorem

	Biot-Savart law
	Solenoid
	Solenoid with non-circular cross section

	Ampère's law
	Boundary condition for B
	Force on current sheet

	Vector potential
	Magnetic scalar potential
	Potential of a current loop
	Multi-valuedness of 


	References


