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I. ELECTROSTATICS

A. Introduction

There are several ways to find out an electric field.
First, if we have the complete information of charge
distribution ρ(r), then one just needs to evaluate the
Coulomb integral,

E(r) =
1

4πε0

∫
dv′ρ(r′)

r− r′

|r− r′|3
, (1.1)

where ε0 = 8.8542× 10−12 C2/Nm2. Or, one may calcu-
late the electric potential first,

φ(r) =
1

4πε0

∫
dv′

ρ(r′)

|r− r′|
, (1.2)

then take its gradient to get E = −∇φ.
Note: when we write

∫
instead of

∫
V

, an integration over
the whole space is often implied.

The problem with the method above is that the charge
distribution is not always known. For example, when
you place a point charge near a grounded metal sphere,
the induced charge is not known beforehand (Fig. 1).
Or, a metal box is grounded for five of its surface, ex-
cept that the top surface is maintained at potential φ0.
The charges on metal box redistribute themselves to meet
this condition, but their distribution unknown. For these
cases, we need Gauss’s law,

∇ ·E(r) =
ρ(r)

ε0
, (1.3)
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FIG. 1 (a) When a positive charge is near a grounded metal
sphere, there are negative induced charges on the surface of
the sphere. (b) The metal box is grounded, except the top
surface, which is maintained at potential φ0.

or Poisson equation,

∇2φ(r) = −ρ(r)

ε0
. (1.4)

We need to solve it, given the boundary condition (BC)
for φ. Afterwards, we can get the electric field E = −∇φ.
The distribution of charges can be determined after the
field is known.

When a system has simple geometry, such as a cylinder
or a sphere, it is convenient to find E using the integral
form of Gauss’s law,∫

S

ds ·E(r) =
Q

ε0
. (1.5)

In this course, we avoid using the second method. Not
because it’s not important or less used, but because we’d
like to focus more on physics, less on solving partial dif-
ferential equations and wielding special functions.

B. Coulomb’s law

Let’s practice the first, direct integration method with
an example.
Example:
Find the electric field along the central axis of (a) a
charged ring, (b) a charged disk, and (c) a charged plane.
All of them uniformly charged.
Sol’n:
(a) Suppose a ring with radius r has charge Q, then its
charge density per unit length λ = Q/2πr. A short seg-
ment d` with charge dQ = λd` produces an electric field
dE (Fig. 2(a)). Along the central axis at a distance z
away,

dEz =
1

4πε0

dQ

r2 + z2
cosα, cosα =

z√
r2 + z2

. (1.6)
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FIG. 2 (a) A charged ring. (b) A charged disk.

After integration,

Ez(z) =
1

4πε0

∮
C

λd`

r2 + z2
cosα (1.7)

=
Q

4πε0

z

(r2 + z2)
3/2

. (1.8)

The components Ex,y cancels away after integration, thus
E(z) = Ez(z)ẑ. If you are interested in the potential
away from the central axis, which is a more difficult prob-
lem, see Chap 3 of Jackson, 1998.

(b) A disk can be considered as a collection of rings
(Fig. 2(b)). Suppose it has radius R and charge Q, then
its surface charge density σ = Q/πR2. A ring with radius
r and width dr has charge

dQ = σ 2πrdr. (1.9)

According to Eq. (1.8), along the central axis at a dis-
tance z away,

dEz =
dQ

4πε0

z

(r2 + z2)
3/2

. (1.10)

Integrate along the radial direction to get

Ez(z) =
1

2ε0

∫ R

0

σrdr
z

(r2 + z2)
3/2

(1.11)

=
σ

2ε0

(
1− z√

R2 + z2

)
. (1.12)

Finally, E(z) = Ez(z)ẑ.
(c) To get the electric field of an infinite charged plane,

just let the R in Eq. (1.12) be infinite,

E(z > 0) =
σ

2ε0
ẑ. (1.13)

On the other side of the plane, obviously we have

E(z < 0) = − σ

2ε0
ẑ. (1.14)

The electric field is discontinuous across the plate,

E(0+)−E(0−) =
σ

ε0
ẑ. (1.15)

1
φ

2
φ

E

r

dr

FIG. 3 Electric field is perpendicular to equipotential surface.

C. Electric potential

The following three equations state the same fact
about the electrostatic field,

1. E = −∇φ, (1.16)

2. ∇×E = 0, (1.17)

3.

∮
dr ·E = 0, (1.18)

1 implies 2 since the curl of gradient is zero. Conversely,
2 implies 1 since if a vector field is curless, then it can
be written as a gradient (see Chap 1). Also, 2 and 3 are
simply the differential form and the integral form of the
same Maxwell equation (see Chap 2).

1. Equipotential surface

The equation φ(r) = φ0, where φ0 is a constant, defines
an equipotential surface S0. If r and r + dr are both
located on S0, then moving a charge from r to r + dr
requires no work,

dW = qE · dr = 0. (1.19)

This is valid for any tangent vector dr emanating from
r. Thus, E(r) is perpendicular to the tangent plane of
S0 at r (Fig. 3). That is, the steepest descent −∇φ is
perpendicular to the equipotential surface.
Example:
Find out the electric potential of a uniformly charged
wire with length 2L and linear charge density λ.
Sol’n:
Suppose the wire is lying on the z-axis, as in Fig. 4(a).
Since there is rotational symmetry around the wire, it is
convenient to use the cylindrical coordinate. The poten-
tial at a point with coordinate z, ρ is,

φ(r) =
1

4πε0

∫
wire

λdr′

|r− r′|
(1.20)

=
1

4πε0

∫ L

−L

λdz′√
(z′ − z)2 + ρ2

(1.21)

=
λ

4πε0
ln

(√
(L− z)2 + ρ2 + L− z√
(L+ z)2 + ρ2 − L− z

)
,(1.22)

where we have used∫
dx√
x2 + a2

= ln
(√

x2 + a2 + x
)
. (1.23)
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(a) (b) u=const

t=const

FIG. 4 (a) A charged wire. (b) Equipotential surfaces and
field lines of a charged wire. (Fig. from Zangwill)

When the observation point is far away from the wire,

z, ρ� L, and r =
√
z2 + ρ2 � z, L, one has

φ(r) ' 1

4πε

Q

r
, Q = 2Lλ. (1.24)

It is similar to the potential of a point charge.
On the other hand, if the observation point is close to

the center of the wire, ρ � L, z = 0, then expand the
potential to the second order of ρ/L to get

φ(ρ) ' − λ

2πε0
ln ρ+

λ

2πε0
ln(2L). (1.25)

Note that it diverges if ρ → 0. Its gradient gives the
electric field,

E(ρ) = −∇φ ' λ

2πε0

ρ̂

ρ
. (1.26)

Further analysis of the result:
Instead of z, ρ, we can use r+, r− as coordinates (see
Fig. 4(a)),

r± ≡
√

(L± z)2 + ρ2. (1.27)

Note that

r2+ − r2− = 4Lz → z =
1

4L

(
r2+ − r2−

)
. (1.28)

With the two relations above, we can write the potential
in new coordinate φ(r+, r−).

The third choice of coordinate is u, t, where{
u = 1

2 (r− + r+),
t = 1

2 (r− − r+)
↔

{
r− = u+ t,
r+ = u− t (1.29)

Note that the equation u =constant draws out an ellipse,
and t =constant an hyperbola. Thus the new coordinate
is called elliptic coordinate, which is an orthogonal co-
ordinate since at the intersection of coordinate curves,
the tangents are perpendicular to each other.

Now,

ut = −zL → z = −ut
L
. (1.30)

Thus,

φ(u, t) =
λ

4πε0
ln

(
u+ t+ L− z
u− t− L− z

)
(1.31)

=
λ

4πε0
ln

(
u+ L

u− L

)
, (1.32)

which is independent of t. Hence, the potential is a con-
stant when u is fixed. That is, the equipotential surface
is an ellipse (Fig. 4(b)), or an ellipsoid after revolving
around the z-axis. Furthermore, since the curves of fixed
t’s describe electric field lines, since they are perpendic-
ular to the equipotential surfaces.

2. Earnshaw’s theorem

Inside a region V without any charge, the electric po-
tential cannot have any local minimum or local maxi-
mum. This is called Earnshaw’s theorem, which is
true for electrostatic field.
Pf: We’ll prove this by contradiction. Suppose the po-
tential φ(r) has a local minimum at point P inside V .
Then, when one moves away from P , the potential in-
creases (Fig. 5).

Surround the point P with a small spherical surface
S. Then on surface S, the gradient ∇φ, which is along
the steepest ascent, points outward. That is, if n̂ is the
normal vector of S (pointing outward), then

n̂ · ∇φ > 0. (1.33)

for every point on S.
Thus, after integration,∫

S

dsn̂ · ∇φ > 0. (1.34)

With the help of divergence theorem, the LHS can be
written as, ∫

S

ds · ∇φ = −
∫
V

dv∇ ·E = 0, (1.35)

It is zero because there is no charge inside V . Thus, we
have a contradiction. The same contradiction occurs if P
is a local maximum. Hence, neither local minimum nor
maximum is allowed inside V . QED.

Alternatively speaking, the location of local max or
local min of φ always hosts positive or negative charges.

D. Gauss’s law

As we have mentioned in Sec. I.A, when a system has
a simple geometry, we can use the integral form of the
Gauss’s law to find electric field,∫

S

ds ·E(r) =
Q

ε0
. (1.36)
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FIG. 5 (a) Potential and its slope in one dimension. (b)
Potential and its gradient in three dimension.
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FIG. 6 Charge distribution with (a) spherical symmetry, (b)
cylindrical symmetry, and (c) planar symmetry. (Fig. from
Zangwill)

Example:
Find out the electric field for systems with (Fig. 6)
(a) Spherical symmetry: ρ(r, θ, φ) = ρ(r).
(b) Cylindrical symmetry: ρe(ρ, φ, z) = ρe(ρ).
(c) Planar symmetry: ρ(x, y, z) = ρ(z). Furthermore,
assume ρ(−z) = ρ(z).
Sol’n:
(a) We expect the electric field to be radial and depend
only on r, E(r) = E(r)r̂. Choose S to be a spherical
surface with radius r, then Eq. (1.36) gives∫

S

ds ·E(r) = 4πr2E(r) =
Q(r)

ε0
, (1.37)

where Q(r) is the charge inside the surface S. Hence,

E(r) =
1

4πε0

Q(r)

r2
. (1.38)

If all of the charges Q0 are confined within radius R, then
when r ≥ R,

E(r) =
1

4πε0

Q0

r2
, (1.39)

same as the field of a point charge Q0 at the origin.
(b) We expect the electric field to be radial and depend

only on ρ, E(r) = E(ρ)ρ̂. Choose S to be a cylindrical
surface with radius ρ and height L, then Eq. (1.36) gives∫

S

ds ·E(r) = 2πρLE(ρ) =
Q(ρ)

ε0
, (1.40)

where Q(ρ) is the charge inside the surface S. Hence,

E(ρ) =
1

2πε0

Q(ρ)/L

ρ
. (1.41)

(c) We expect the electric field to be along z and de-
pend only on z,

E(r) =

{
E(z)ẑ, for z > 0
−E(z)ẑ, for z < 0

(1.42)

FIG. 7 A charge surface has different electric fields on two
sides. (Fig. from Jackson, 1998)

Choose S to be a box surface (bisected by the x-y
plane) with area A and height 2z, then Eq. (1.36) gives∫

S

ds ·E(r) = 2AE(z) =
Q(z)

ε0
, (1.43)

where Q(z) is the charge inside the box S. Hence,

E(z) =
Q(z)/A

2ε0
. (1.44)

If all of the charges are confined within |z| < Z, then
when z ≥ Z,

E(z) =
σ0
2ε0

, (1.45)

where σ0 = Q(Z)/A is the surface charge density. In
general, for |z| ≥ Z

E(r) =
σ0
2ε0

sgn(z)ẑ. (1.46)

E. Boundary condition for E

In general, the electric fields on opposite sides of a
charged surface are not the same. Their difference is
caused by the charges on the surface. Suppose a surface
has surface charge density σ(r). At a point r on the
surface, the electric fields on opposite sides are E1(r)
and E2(r) (Fig. 7). What’s the relation between this two
electric fields?

First, divide the surface S into a small disk ◦ and a
surface S′ (S with ◦ removed),

S = ◦+ S′. (1.47)

The disk is microscopically large, but macroscopically
small (say, with a radius of 1 µm). The field, E1(r) or
E2(r), is the superposition of the fields produced by ◦
and S′.

When one approaches the center of the disk, the field is
close to the field of an infinite plane, E(r) = σ

2ε0
sgn(z)ẑ.

Suppose the field produced by S′ is ES , then

E1 = ES −
σ

2ε0
n̂, (1.48)

E2 = ES +
σ

2ε0
n̂, (1.49)
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FIG. 8 The electric fields produced by an area element ds
and the surface with a hole (at ds). (Fig. from Lorrain and
Corson)

where n̂ is the normal vector pointing from region 1 to
region 2.

Even though ES remains unknown, we can substrate
the field to get

E2(r)−E1(r) =
σ(r)

ε0
n̂. (1.50)

This is the BC for fields near a charged surface. Some-
times it is written as,

n̂ · (E2 −E1) =
σ

ε0
, (1.51)

n̂× (E2 −E1) = 0. (1.52)

1. Force on charged surface

Following the example above, the force dF on disk ◦
is due to the charges on S′. The disk exerts no force on
itself. If the disk has area ds, then

dF = (σds)ES . (1.53)

The force per unit area (or pressure), is

f ≡ dF

ds
= σES . (1.54)

Since ES = (E1 + E2)/2, we have

f =
σ

2
(E1 + E2). (1.55)

For example, for a closed metallic surface, the electric
fields on the inside and outside are (Fig. 8),

E1 = 0, E2 =
σ

ε0
n̂. (1.56)

Hence, according to Eq. (1.55),

f =
σ2

2ε0
n̂, (1.57)

where n̂ points out of the sphere.
Note that if one calculates the force via

f = σE2 =
σ2

ε0
n̂, (1.58)

then the result is wrong by a factor of two, since it has
wrongly included the force exerted by the disk on itself.

r

r

r

r ˆ ˆ 0r n⋅ >

ˆ ˆ 0r n⋅ >

ˆ ˆ 0r n⋅ >

r

1

n̂

ds

r̂ d⋅ s

r̂

2

r̂ d

r

⋅ s

(a) (c)

r
θ

Ω

(b)

ˆ ˆ 0r n⋅ <

FIG. 9 (a) The areas ds, r̂ ·ds, and r̂ ·ds/r2. (b) The origin is
inside (left) or outside (right) S. When it’s outside, two pro-
jected areas with equal magnitude but opposite signs cancel
with each other. (c) A spherical cap.

F. Solid angle

The solid angle spanned by an area element ds = dsn̂
located at r with respect to the origin (Fig. 9(a)) is de-
fined as,

dΩ ≡ r̂ · ds
r2

=
r̂ · n̂ds
r2

. (1.59)

Since r̂ · ds is the area of ds projected onto a sphere with
radius r, so dΩ equals the projected area on a unit sphere
centered at r = 0. The solid angle dΩ can be negative if
r̂ · n̂ < 0.

In spherical coordinate,

ds = r2 sin θdθdφ n̂, (1.60)

hence

dΩ = r̂ · n̂ sin θdθdφ. (1.61)

For a sphere with radius r, the solid angle extended by
an area dsn̂ (n̂ = r̂) on its surface is,

dΩ =
ds

r2
= sin θdθdφ, (1.62)

or ds = r2dΩ. (1.63)

The total solid angle of a sphere is

Ω =

∫ π

0

sin θdθ

∫ 2π

0

dφ = 4π. (1.64)

If S is a closed surface surrounding the origin, then its
projected image covers the unit sphere centered at the
origin once. If the origin is outside S, then part of S
has “positive” image on the unit sphere, the other part
has negative image, and the two parts cancel with each
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other. Thus, the total solid angle Ω is zero (Fig. 9(b)).
That is,

Ω =

{
4π if the origin is inside S,
0 if the origin is outside S.

(1.65)

In general, for a surface S described by coordinate r, its
solid angle with respect to a point rs is,

Ω =

∫
dΩ =

∫
S

r− rs
|r− rs|3

· ds. (1.66)

We have just replaced the r in Eq. (1.59) by R = r− rs.

Example:
Find out the solid angle of a spherical cap with respect
to the origin, as shown in Fig. 9(c).
Sol’n:

Ω =

∫
r̂ · ds
r2

(1.67)

=

∫ θ

0

sin θdθ

∫ 2π

0

dφ (1.68)

or =

∫ 1

cos θ

d cos θ

∫ 2π

0

dφ (1.69)

= 2π(1− cos θ). (1.70)

When the cap covers the whole sphere (θ = π), Ω = 4π,
as it should be.

Application
There is a point charge q(> 0) at the origin in a uniform
electric field E = E0ẑ (E0 > 0). Find out the electric
field lines of this system.
Sol’n:
It’s easy to get the electric field of this system,

E(r) =
q

4πε0

r̂

r2
+ E0ẑ. (1.71)

However, we are interested in field lines, not E, which is
the tangent of a field line.

To obtain the mathematical expression of field lines,
let’s adopt the following method. In Fig. 10(a) we see
that the electric flux is conserved along the flow of field
lines,

ΦE(S) = ΦE(S′), (1.72)

where S and S′ are flat disks perpendicular to the z-axis.
If we can write ΦE as a function of r, θ (no φ because
of the rotation symmetry around the z-axis), then flux
conservation should give us an equation of field lines.

Note that the flux through S is the same as the flux
through the cap Sc in Fig. 10(a), thus with spherical

(a) (b)

Sc

FIG. 10 (a) A point charge in a uniform electric field (Fig.
from Zangwill). (b) The field lines and equipotential lines of
the system in (a). Fig. from Maxwell, 1891.

coordinate,

ΦE(S) =

∫
Sc

E · ds, ds = r2r̂dΩ (1.73)

=
q

4πε0

∫
Sc

r̂

r2
· ds +

∫
Sc

E0 · ds (1.74)

=
q

4πε0
Ω(Sc) + E0

∫ 1

cos θ

cos θr2d cos θdφ

=
q

4πε0
2π(1− cos θ) + E0πr

2 sin2 θ (1.75)

= constant α, (1.76)

in which Ω(Sc) is the solid angle of Sc. Note that the
choice of Sc (instead of S) makes the second term harder
to calculate. However, if we choose S, then the first term
would be even harder to calculate.

Finally, one can write r in terms of θ, and different
constants give different field lines (Fig. 10(b)),

r2 =
α− q

ε0
sin2 θ

2

E0π sin2 θ
, θ 6= 0. (1.77)

G. Electric potential energy

Electric potential energy is the potential energy of
charges in an external electric potential. Suppose there
are two sets of charge distribution ρ1(r) and ρ2(r). They
can be spatially separated or mixed (but remain different
sets). The first set produces electric potential,

φ1(r) =
1

4πε0

∫
dv′

ρ1(r′)

|r− r′|
, (1.78)

similarly for the second set. Then ρ2(r) in φ1(r) has the
electric potential energy,

VE =

∫
dvρ2(r)φ1(r) (1.79)

=
1

4πε0

∫
dvdv′

ρ2(r)ρ1(r′)

|r− r′|
(1.80)

=

∫
dv′ρ1(r′)φ2(r′). (1.81)
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That is, the potential energy of ρ2(r) in φ1(r) is the same
as that of ρ1(r) in φ2(r). This is called Green’s reci-
procity relation.
Application:
In a finite region without any charge, the average of po-
tential φ(r) over a spherical surface S is equal to its value
at the center of the sphere (Fig. 3-11). That is, if the ra-
dius of the fictitious sphere S is R (which does not need
to be small), then

〈φ1(r)〉S ≡
1

4πR2

∫
S

dsφ(r) = φ(0). (1.82)

This is called the mean value theorem of electrostatic
potential.
Pf: The are more than one way to prove this theorem.
Here we use a trick using Green’s reciprocity relation.
Suppose that the charge density that produces the po-
tential is ρ(r), which is outside S. Let

ρ1(r) = ρ(r), φ1(r) = φ(r). (1.83)

In order to select the potential on the surface of S, choose

ρ2(r) = δ(r −R). (1.84)

It has a total charge

Q2 =

∫
dvδ(r −R) = 4πR2. (1.85)

The charge ρ2(r) produces a potential φ2(r),

φ2(r) =
1

4πε0

∫
dv′

ρ2(r′)

|r− r′|
(1.86)

=

{
1

4πε0

Q2

r , r ≥ R,
1

4πε0

Q2

R , r ≤ R. (1.87)

Be aware that ρ2(r) is simply a mathematical apparatus
and does not really physically coexist with ρ1(r).

According to Green’s reciprocity relation, one has∫
dvδ(r −R)φ1(r) =

∫
dvρ1(r)φ2(r), (1.88)

The integration is over the whole space. First, the LHS
gives

LHS =

∫
r2drdΩδ(r −R)φ1(r) (1.89)

=

∫
S

R2dΩφ1(R), R2dΩ = ds (1.90)

=

∫
S

dsφ1(r). (1.91)

Since the charge density ρ is outside S, the integrand of
the RHS is nonzero only when r > R,

RHS =

∫
r>R

dvρ1
1

4πε0
(r)

Q2

r
(1.92)

=
Q2

4πε0

∫
r>R

dv
ρ1(r)

r
(1.93)

= 4πR2︸ ︷︷ ︸
Q2

φ1(0). (1.94)

R

+
+
+

+ ++
+

+

+

1
ρ

2
ρ

+
+
+

+ ++
+

+

+

S

FIG. 11 A fictitious sphere outside the distribution ρ1 of
charges. The charges ρ2 on the surface of the sphere are
employed to prove the mean value theorem.

Equate the LHS with the RHS, we have

〈φ1(r)〉S = φ1(0), QED. (1.95)

Note that the mean value theorem implies Earnshaw’s
theorem: If there is a local min or max in a charge-free
region, then the mean value theorem would no longer be
true. Thus, in order for the later to be true, there cannot
be local min/max in a charge-free region.

H. Electrostatic energy

The electrostatic energy of a charge distribution equals
the total work required to assemble these charges, start-
ing from an initial state with energy zero, when all
of the charges are dispersed far away from each other.
First, consider two point charges q1, q2 at r1, r2. The
electrostatic energy is (ignoring the self-energy of point
charges),

U12 =
1

4πε0

q1q2
|r1 − r2|

, (1.96)

which is the same as the potential energy of q2 in the
field produced by q1, or vice versa.

If there are N charges q1, · · · , qN at r1, · · · , rN , then
the electrostatic energy is (again ignoring the self-
energy),

UE =
∑
i<j

Uij =
1

2

N∑
i,j=1

Uij (1.97)

=
1

8πε0

N∑
i,j=1

qiqj
|ri − rj |

(1.98)

=
1

2

N∑
i=1

qiφ(ri), (1.99)

where

φ(ri) =
1

4πε0

N∑
j=1

qj
|ri − rj |

. (1.100)

It is half (to avoid double counting) of the sum of the
potential energy from each charge.
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A continuous charge distribution can be divided into
volume elements with charges qi = ρ(ri)dvi. Thus, just
replace the qi in Eq. (1.98) with ρ(ri)dvi, and replace the
summation with integral to get

UE =
1

8πε0

∫
dvdv′

ρ(r)ρ(r′)

|r− r′|
(1.101)

=
1

2

∫
dvρ(r)φ(r). (1.102)

We can rewrite this expression as,

UE =
ε0
2

∫
dv|E|2. (1.103)

Pf: The charge density can be related to field using
Gauss’s law,

ρ(r) = ε0∇ ·E. (1.104)

With integration by parts, Eq. (1.102) becomes

UE =
ε0
2

∫
dv∇ ·E φ(r) (1.105)

= −ε0
2

∫
dvE · ∇φ+ surface term (1.106)

=
ε0
2

∫
dv|E|2. (1.107)

The surface term can be dropped since the surface (of
the whole space) is at infinity. The integrand above is
the energy density of electric field,

uE =
ε0
2
|E|2 (1.108)

Note that the electrostatic energy in Eq. (1.101) is
always positive but the one in Eq. (1.98) can be posi-
tive or negative. This is because the self-energy of point
charge, which is positive and infinite, is not included in
Eq. (1.98).

To illustrate this, consider two different charge dis-
tributions ρ1 and ρ2. The electrostatic energy of the
whole system with ρ(r) = ρ1(r) + ρ(r) is, according to
Eq. (1.101),

UE = U1 + U2 +
1

4πε0

∫
dvdv′

ρ1(r)ρ2(r)

|r− r′|
, (1.109)

where U1,2 are the “self-energies” of ρ1,2. UE is al-
ways positive, but the “interaction energy” (the last term
above) can be either positive or negative.
Example:
Calculate the electrostatic energy of a uniformly charged
ball with radius a and charge Q.

Sol’n:
Instead of using Eq. (1.107), let’s calculate UE with the
work required to build this charged ball. Write the charge
density of the ball as ρ0. A ball with radius r has charge
Q(r) = ρ0(4πr3/3). The work required to add an addi-
tional layer with thickness dr is dW = dQ φs, where φs
is the potential at the surface,

dQ = ρ04πr2dr, (1.110)

φs =
1

4πε0

Q(r)

r
=

ρ0
3ε0

r2. (1.111)

Thus,

dW = dQ φs =
4π

3ε0
ρ20r

4dr, (1.112)

and

UE =

∫
dW (1.113)

=
4π

3ε0
ρ20

∫ a

0

r4dr, ρ0 =
Q

4πa3/3
(1.114)

=
3

5

Q2

4πε0a
. (1.115)

You may also calculate UE using Eq. (1.107). This is
left as an exercise.

Problem:
1. Starting from the electric potential for a finite,

charged wire in Eq. (1.22), verify that (a) at large dis-
tance it reduces to Eq. (1.24); (b) at short distance, it
reduces to (1.25).

2. Suppose a metallic, spherical shell with radius 1 m
has total charge Q = 10−3 C.
(a) Find out its surface charge density σ.
(b) Find out magnitude and direction of the pressure f
(due to the electric field) on the wall of the spherical shell.

3. Two concentric, spherical metal shells have radii a
and b (b > a). The inner shell and the outer shell have
charges Q and –Q respectively. Two shells are separated
by vacuum.
(a) What is the electric field inside and outside the two
shells?
(b) What is the total electrostatic energy of this system?
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