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I. THE MAXWELL EQUATIONS

In this chapter, we outline the fundamental equations
in electrodynamics.

A. Charge and current

1. Charge density

Consider a distribution of charge inside a volume V . If
in a volume element dv near point r, there is charge dQ,
then the charge density at this location is

ρ(r) ≡ dQ

dv
. (1.1)

By the integration of ρ(r), we can have the total charge
Q inside a volume V ,

Q =

∫
V

dvρ(r). (1.2)

As we have mentioned in Chap 1, for a point charge q
at r1, its charge density is,

ρ(r) = qδ(r− r1). (1.3)

If there are point charges q1, q1, · · · , qN at locations
r1, r2, · · · , rN , then the charge density of this system is,

ρ(r) =

N∑
i=1

qiδ(r− ri). (1.4)
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FIG. 1 (a) Current density J is the current flowing through
a unit area ds. (b) Surface current density K is the surface
current flowing pass a unit length dr.

The total charge inside a volume V that encloses these
charges is,

Q =

∫
V

dvρ(r) =

N∑
i=1

qi

∫
V

dvδ(r− ri) (1.5)

=

N∑
i=1

qi. (1.6)

Given a distribution of charges on a surface S. If on a
surface element ds near point r, there is charge dQ, then
the surface charge density at this location is

σ(r) ≡ dQ

ds
. (1.7)

By the integration of σ(r), we can have the total charge
Q on a surface S,

Q =

∫
S

ds σ(r). (1.8)

2. Current density

Electric current passing through a surface S is defined
as the amount of charge passing through S per unit time.
Current density is the current per unit area. Its dimen-
sion is [current]/[ area], the dimension of current divided
by the dimension of area. If there is current dI passing
through a surface element ds = dsn̂, then (Fig. 1(a))

dI = J(r) · ds = J‖(r)ds, (1.9)

where J(r) is the current density along the direction
of charge motion, and J‖ = J · n̂ is its component along
the surface normal n̂.
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After integration, we can find out the total current
passing through surface S,

I =

∫
S

ds · J(r). (1.10)

If a small packet of charge dQ is moving with velocity
v, then within a time dt, the charges passing through
ds have spanned a volume dv = (vdt) · ds. Inside this
volume,

dQ = ρdv = ρ(vdt) · ds, (1.11)

which delivers a current,

dI =
dQ

dt
= ρv · ds. (1.12)

Compared with Eq. (1.9), one has

J(r) = ρ(r)v(r). (1.13)

For point charges, with Eq. (1.4), one has

J(r) =

N∑
i=1

qiviδ(r− ri), (1.14)

where vi is the velocity of charge i.
Next, consider the current flowing on a surface. The

surface has normal vector n̂, and there is a line element
dr ⊥ n̂ on the surface (see Fig. 1(b)). The vector n̂× dr
is tangent to the surface and perpendicular to dr. The
current dI passes through dr is,

dI = K(r) · (n̂× dr) , (1.15)

where K(r) is the surface current density along
the direction of charge motion. Its dimension is [cur-
rent]/[length].

After integration, we can find out the total current
passing through a curve C on the surface,

I =

∫
C

K(r) · n̂× dr =

∫
C

K(r)× n̂ · dr (1.16)

3. Conservation of charge

Suppose the charge Q inside a volume V is leaking
through its surface S to the outside (Fig. 2). The leaking
current through S is,

I = −dQ
dt
. (1.17)

With (1.10), we have

I =

∫
S

ds · J =

∫
V

dv∇ · J, (1.18)

and from Eqs. (1.2),

dQ

dt
=

d

dt

∫
V

dvρ(r, t) =

∫
V

dv
∂ρ(r, t)

∂t
, (1.19)

I
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S

FIG. 2 Charges I flowing out of the surface S of volume V .

in which the region V of integration is fixed. Hence,∫
V

dv∇ · J = −
∫
V

dv
∂ρ(r, t)

∂t
(1.20)

or

∫
V

dv

(
∇ · J +

∂ρ

∂t

)
= 0. (1.21)

Since the charge should be conserved for any dv in any
location, so we can choose V to be one of the dv, then∫

V

dv

(
∇ · J +

∂ρ

∂t

)
' dv

(
∇ · J +

∂ρ

∂t

)
,(1.22)

→ ∇ · J(r, t) +
∂ρ(r, t)

∂t
= 0, at any r. (1.23)

This is equation of continuity, which is valid if and
only if charge is conserved.

B. Maxwell equations in vacuum

1. Electrostatics

According to Coulomb’s law, the electric force be-
tween two charges q, q1 at positions r, r1 is,

F =
qq1

4πε0

r− r1
|r− r1|3

, (1.24)

where the electric permittivity of free space ε0 =
8.8542× 10−12 C2/Nm2.

If there are N charges q1, q2, · · · , qN at positions
r1, r2, · · · , rN , then a test charge charge q at r feels a
force,

F =
1

4πε0

N∑
i=1

qqi
r− ri
|r− ri|3

. (1.25)

The electric field E from these N charges is given as,

E(r) ≡ F

q
=

1

4πε0

N∑
i=1

qi
r− ri
|r− ri|3

. (1.26)

A continuous charge distribution can be divided into
small packets with charges ρ(r′)dv′ (Fig. 3). Identify qi
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FIG. 3 The electric field E(r) at point r is the sum of the
electric fields dE produced by charges ρ(r′)dv′ in volume ele-
ments.

with ρ(r′)dv′ and replace the summation with an integral,
one then has

E(r) =
1

4πε0

∫
dv′ρ(r′)

r− r′

|r− r′|3
. (1.27)

This form is valid for all kinds of charge distribution, con-
tinuous or discrete. You may check that with Eq. (1.4),
Eq. (1.27) reduces to Eq. (1.26).

We can rewrite

r− r′

|r− r′|3
= −∇ 1

|r− r′|
(1.28)

so that

E(r) = − 1

4πε0

∫
dv′ρ(r′)∇ 1

|r− r′|
, (1.29)

= −∇φ(r), (1.30)

with electric potential,

φ(r) =
1

4πε0

∫
dv′

ρ(r′)

|r− r′|
. (1.31)

Note that the order of
∫
dv′ and ∇ can be exchanged,

since r′ and r are independent variables.
Also, remember that

∇2 1

|r− r′|
= −4πδ(r− r′). (1.32)

Thus,

∇ ·E(r) = − 1

4πε0

∫
dv′ρ(r′)∇2 1

|r− r′|
(1.33)

=
1

ε0

∫
dv′ρ(r′)δ(r− r′) (1.34)

=
ρ(r)

ε0
. (1.35)

This is Gauss’s law. When written in electric potential,
we have

∇2φ(r) = −ρ(r)

ε0
. (1.36)
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FIG. 4 (a) The magnetic field dB produced by a segment dr
of a current-carrying wire. (b) A thin wire is replaced by a
body (or a region) with volume element dv.

This is the Poission equation that has been mentioned
in Chap 1.

Furthermore, since the curl of divergence is zero, so

∇×E(r) = −∇×∇φ = 0. (1.37)

In short, the fundamental equations of electrostatics
are

∇ ·E(r) =
ρ(r)

ε0
, (1.38)

∇×E(r) = 0. (1.39)

If we integrate Eq. (1.38) over a region V enclosed by
surface S, then ∫

v

dv∇ ·E(r) =
1

ε0

∫
V

dvρ(r), (1.40)

or

∫
S

ds ·E(r) =
Q

ε0
, (1.41)

where Q is the total amount of charge inside V . This is
the integral form of the Gauss’s law.

If we integrate Eq. (1.39) over a surface S with bound-
ary C, then ∫

S

ds · ∇ ×E(r) = 0, (1.42)

or

∮
C

dr ·E(r) = 0. (1.43)

2. Magnetostatics

According to Biot-Savart law, the magnetic field pro-
duced by a short segment dr′ of a thin wire carrying cur-
rent I is (see Fig. 4(a)),

dB(r) =
µ0

4π
Idr′ × r− r′

|r− r′|3
, (1.44)
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where the magnetic permeability in vacuum µ0 =
4π × 10−7 N/A

2
. For a closed loop C of thin wire,

B(r) =
µ0

4π

∮
C

Idr′ × r− r′

|r− r′|3
. (1.45)

Given a general current distribution, just (see Fig. 4(b))

replace Idr′ with J(r′)dv′, (1.46)

so that

B(r) =
µ0

4π

∫
V

dv′J(r′)× r− r′

|r− r′|3
. (1.47)

This is the most general form of the Biot-Savart law that
applies to all kinds of current distribution.

Again we can rewrite

r− r′

|r− r′|3
= −∇ 1

|r− r′|
. (1.48)

With the identity,

∇× (fv) = ∇f × v + f∇× v, (1.49)

we have

B(r) = −µ0

4π

∫
dv′J(r′)×∇ 1

|r− r′|
(1.50)

= ∇×A(r), (1.51)

with the vector potential,

A(r) =
µ0

4π

∫
dv′

J(r′)

|r− r′|
. (1.52)

For a thin wire, it reduces to

A(r) =
µ0

4π
I

∮
C

dr′
1

|r− r′|
. (1.53)

Since the divergence of curl is zero, so

∇ ·B(r) = ∇ · ∇ ×A(r) = 0. (1.54)

This is Gauss’s law in magnetism. Also, if we take
the curl of B, then

∇×B(r) = µ0J(r). (1.55)

This is Ampère’s law.
Pf: First, we can show that for the steady case ∇·J = 0,
one has ∇ ·A = 0. This is because

∇ ·A(r) =
µ0

4π

∫
dv′J(r′) · ∇ 1

|r− r′|
(1.56)

= −µ0

4π

∫
dv′J(r′) · ∇′ 1

|r− r′|
(1.57)

=
µ0

4π

∫
dv′∇′ · J(r′)︸ ︷︷ ︸

=0

1

|r− r′|
(1.58)

= 0, (1.59)

where we have used the identity,

∇ · (fv) = ∇f · v + f∇ · v. (1.60)

Also, a surface term (for the surface at infinity) has been
dropped.

Second,

∇×B(r) = ∇× (∇×A) (1.61)

= ∇(∇ ·A)−∇2A (1.62)

= −∇2A(r) ∵ ∇ ·A = 0 (1.63)

= −µ0

4π

∫
dv′J(r′) ∇2 1

|r− r′|︸ ︷︷ ︸
=−4πδ(r−r′)

(1.64)

= µ0J(r). QED (1.65)

When written in potential, we have

∇2A(r) = −µ0J(r). (1.66)

This is the vector Poission equation in magnetostat-
ics.

In short, the fundamental equations of magnetostatics
are

∇ ·B(r) = 0, (1.67)

∇×B(r) = µ0J(r). (1.68)

If we integrate Eq. (1.67) over a region V enclosed by
surface S, then∫

v

dv∇ ·B(r) =

∫
S

ds ·B(r) = 0, (1.69)

This shows that the magnetic flux through a closed sur-
face is always zero. The existence of a magnetic monopole
would contradict this result, but no magnetic monopole
has been found so far.

If we integrate Eq. (1.68) over a surface S with bound-
ary C, then∫

S

ds · ∇ ×B(r) = µ0

∫
S

ds · J(r), (1.70)

or

∮
C

dr ·B(r) = µ0I, (1.71)

where I is the total current flowing through S. This is
the integral form of the Ampère’s law.

3. Dynamic electromagnetic field

Eqs. (1.38), (1.39), (1.67), and (1.68) are the Maxwell
equations for static electromagnetic field. For dynamics
fields, we need to add two new terms,

∇ ·E(r, t) =
ρ(r, t)

ε0
, (1.72)

∇ ·B(r, t) = 0, (1.73)

∇×E(r, t) = − ∂

∂t
B(r, t), (1.74)

∇×B(r, t) = µ0J(r, t) +
1

c2
∂

∂t
E(r, t). (1.75)
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FIG. 5 Illustration of the Maxwell’s equations: (a) Gauss’s
law. (b) Gauss’s law in magnetism. (c) Faraday’s law. (d)
Ampère-Maxwell’s law (with I = 0). Figs. from the web.

The charge density and the current density are related
by the equation of continuity,

∇ · J(r, t) +
∂ρ(r, t)

∂t
= 0. (1.76)

The first change is that in Eq. (1.74), the right hand
side (RHS) is no longer zero. This is Faraday’s law:a
time-changing magnetic field produces an electric field.

The second change is that there is an extra term on
the RHS of Eq. (1.75). This is the famous displace-
ment current added by Maxwell: a time-changing elec-
tric field produces a magnetic field. This modified equa-
tion is called Ampère-Maxwell’s law.

When the fields are static, the Maxwell’s equations de-
couple into two sets of equations: two for electric field,
and two for magnetic field. Thus, electrostatics and mag-
netostatics are independent of each other.

Integrating a divergence (e.g., ∇ · E) over a volume
V or a curl (e.g., ∇ × E) over a surface, and using the
divergence theorem or the Stokes theorem, we have the
integral form of the Maxwell equations (Fig. 5):∫

S

ds ·E(r, t) =
Q

ε0
, (1.77)∫

S

ds ·B(r, t) = 0, (1.78)∮
C

dr ·E(r, t) = −dΦB
dt

, (1.79)∮
C

dr ·B(r, t) = µ0I +
1

c2
dΦE
dt

, (1.80)

in which

ΦB ≡
∫
S

ds ·B, (1.81)

ΦE ≡
∫
S

ds ·E. (1.82)

They are the magnetic flux and the electric flux pass-
ing through surface S. Eq. (1.79) (Eq. (1.80)) tells us
that a changing magnetic (electric) flux through surface
S would induce electric (magnetic) circulation around the
boundary C of S.

Note: The first order derivatives of a vector V(r) have
9 components, ∂Vi/∂xj (i, j = 1, 2, 3). The Maxwell
equations are written in terms of divergence and curl
of E (or B), which does not exhaust the possibilities
just mentioned. This is all right since according to the
Helmholtz theorem, a vector field V(r) that vanishes
at infinity is completely determined by giving its diver-
gence and curl everywhere in space.

C. Some history

In 1873, James C. Maxwell published ”Treatise on elec-
tricity and magnetism” (Maxwell, 1891), in which he con-
structed a mathematical framework to describe the phe-
nomena of electromagnetism. It has all the essence in-
cluded but it’s hard to find “Maxwell equations” in the
Treatise, since they are written as 20 equations in 20
variables scattered through the monograph. Some of the
equations describe things like D = εE, or B = ∇ ×A.
It’s a pity that Maxwell died six years later at the age of
48, and was unable to pursue this subject further.

The four Maxwell equations we are familiar with nowa-
days are mainly the works of Oliver Heaviside and, in-
dependently, Heinrich R. Hertz (Fig. 6). It’s interest-
ing to know that when the Treatise was just published,
Heaviside (then 24 years old) flipped through it in li-
brary and immediately saw the “prodigious possibilities
in its power”. He then “determined to master the book”.
(Mahon, 2017) Remember that at that time Maxwell is
still not “the Maxwell” and not many people trust his
obscure, sometimes unintelligible theory of electromag-
netism.

Heaviside has no college education, and has forgotten
most of the algebra and trigonometry learned in school.
Thus, he quit his job that has a decent pay, stayed at
home with his far-from-rich parents and started studying
the Treatise. He remained “self-employed” ever since and
never to get a job again. Heaviside has to learn all of
the difficult mathematics of divergence, curl, and related
theorems on his own, without friendly textbooks to ease
the job. In his later years, Heaviside recalls that “It took
me several years before I could understand as much as
I possibly could. Then I set Maxwell aside and followed
my own course.”

The effort and sacrifice pay off. With his own formula-
tion of Maxwell equations, Heaviside discovered things
like electric inductance, contraction of the electric
field of a moving charge (Heaviside ellipsoid), and
magnetic-like field of gravity (gravito-magnetism).

In 1888, to the surprise of everybody, Hertz generated
and detected electromagnetic wave in free space. This
is the strongest boost to the status of Maxwell’s electro-



6

FIG. 6 From left to right, Maxwell, Heaviside, and Hertz.

magnetic theory since at that time there was no other
theory of electromagnetism that predicted the existence
of EM wave. Afterwards, optics becomes a branch of
electromagnetism.

More progress followed, such as the discovery of elec-
tron (the source of electric field) by J. J. Thomson in
1897, the theory of thermal radiation (randomized EM
field) by Ludwig E. Boltzmann and others. The latter
pursuit eventually leads to Max Planck’s important dis-
covery of energy quantum at 1900.

Furthermore, in an attempt to resolve a paradox
regarding motional electromotive force, Einstein dis-
covered the theory of special relativity in 1905. As
a result, Newton’s theory of mechanics needs to be
revised. Nevertheless, Maxwell’s theory remains intact,
since it is based on experimental observations that have
already included relativistic effects.

Problem:
1. The electric potential of an atom is given by

φ(r) =
q

4πε0

e−αr

r
, (1.83)

where q(> 0), α are constants.
(a) Find out the electron charge density ρ(r) outside the
nucleus.
(b) Find out the total charge of this charge distribution.
Hint: Poission equation.

2. (a) Show that Eqs. (1.72) and (1.75) are consistent
with the equation of continuity in Eq. (1.76).
Hint: Take the time derivative of ρ on the right-hand side
of Eq. (1.72), and the divergence of J on the right-hand
side of Eq. (1.75).
(b) Suppose there are magnetic monopoles, such that

∇ ·B = µoρm, (1.84)

where ρm is the magnetic charge density Similar to
electric charges, the equation of continuity of magnetic
charges is,

∇ · Jm +
∂ρm
∂t

= 0, (1.85)

where Jm is the magnetic current density. What type of
term should be added to the right-hand-side of Eq. (1.74),
so that new Maxwell equations can be consistent with the
equation of continuity above?
References

Mahon, B., 2017, The Forgotten Genius of Oliver Heaviside
(Prometheus Books).

Maxwell, J. C., 1891, A Treatise on Electricity and Magnetism
(Cambridge University Press), 3rd edition.


	Contents
	The Maxwell equations
	Charge and current
	Charge density
	Current density
	Conservation of charge

	Maxwell equations in vacuum
	Electrostatics
	Magnetostatics
	Dynamic electromagnetic field

	Some history

	References

