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I. MATHEMATICAL PRELIMINARIES

In this chapter, we collect some mathematics that is
essential to the learning of electrodynamics.

A. Coordinate system

A coordinate system combines geometry with algebra.
That is, we can use numbers to describe geometrical ob-
jects. Here we introduce three of the most popular coor-
dinate systems.

1. Cartesian coordinate
The word Cartesian comes from the latinized name of
Descartes - Cartesius. The three coordinate axes are
perpendicular to each other. A point has coordinates
(x, y, z), and unit basis vectors are x̂, ŷ, ẑ.

A position vector is,

r = xx̂ + yŷ + zẑ. (1.1)

A vector at point r is

V(r) = Vx(r)x̂ + Vy(r)ŷ + Vz(r)ẑ. (1.2)

The distribution of vectors V(r) in space is a vector
field.

2. Cylindrical coordinate
As shown in Fig. 2(a), a point in cylindrical coordi-
nate has coordinates (ρ, φ, z). The unit basis vectors are

ρ̂, φ̂, ẑ, which are along the direction of increase of ρ, φ, z
and are perpendicular to each other. The connection be-
tween Cartesian and cylindrical coordinates are,

x = ρ cosφ, (1.3)

y = ρ sinφ, (1.4)

z = z. (1.5)

(a)

(b)

FIG. 1 Cylindrical coordinate (a) and its volume element (b).
Figs. from Lorrain and Corson, 1970.

A position vector is

r = ρρ̂ + zẑ. (1.6)

The coordinates ρ, z account for two degrees of freedom.
The third one is hidden in the angle φ of ρ̂. A vector at
point r can be expanded as,

V(r) = Vρ(r)ρ̂ + Vφ(r)φ̂ + Vz(r)ẑ. (1.7)

3. Spherical coordinate

As shown in Fig. 1(c), a point in spherical coordinate
has coordinates (r, θ, φ). These are standard notations
used by most people, so you need to keep them in mind,
since a figure is not always drawn to remind you of their

meaning. The unit basis vectors are r̂, θ̂, φ̂, which are
along the direction of increase of r, θ, φ and are perpen-
dicular to each other. The connection between Cartesian
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(a)

(b)

FIG. 2 Spherical coordinate (a) and its volume element (b).
Figs. from Lorrain and Corson, 1970.

and spherical coordinates are,

x = r sin θ cosφ, (1.8)

y = r sin θ sinφ, (1.9)

z = r cos θ. (1.10)

A position vector is simply

r = rr̂. (1.11)

The coordinate r accounts for one degree of freedom. The
other two are hidden in the angles θ, φ of r̂. A vector at
point r can be expanded as,

V(r) = Vr(r)r̂ + Vθ(r)θ̂ + Vφ(r)φ̂. (1.12)

Note that the volume elements in Cartesian, cylin-
drical, and spherical coordinates are (Fig. 1(b) and
Fig. 2(b))

dv = dxdydz, (1.13)

dv = ρdρdφdz, (1.14)

dv = r2 sin θdrdθdφ, (1.15)

The major difference between Newton’s dynamics and
Maxwell’s dynamics is that in the former we simply deal
with particle trajectory r(t), while the latter we need to
deal with field distribution V(r, t). This makes electro-
dynamic much harder to learn.

f(x)

x∆

(a) (b)

FIG. 3 (a) A derivative. (b) An integration.

B. Basics of calculus

Recall that the derivative of f(x) at x is defined as (see
Fig. 3(a)),

df(x)

dx
= lim
h→0

f(x+ h)− f(x)

h
. (1.16)

When h = ∆x is small but finite, one has

df(x)

dx
' f(x+ ∆x)− f(x)

∆x
. (1.17)

Thus,

f(x+ ∆x) ' f(x) +
df(x)

dx
∆x. (1.18)

For a function f(r) in three dimensions,

f(r + ∆r) ' f(r) +
∂f

∂x
∆x+

∂f

∂y
∆y +

∂f

∂z
∆z. (1.19)

We’ll often write ∆x as dx (or ∆r as dr), without distin-
guishing between finite and infinitesimal, when the limit
∆x → dx (or ∆r → dr) needs to be taken at the end of
a derivation.

The integral of f(x) is the area between the curve f(x)
and the x-axis, which can be approximated as a sum of
the areas of rectangles (Fig. 3(b))∫ b

a

dxf(x) '
∑
i

∆xf(xi), (1.20)

where xi can be any point (e.g., the middle one) inside
an interval ∆x. The equation above becomes an equality
when the division becomes infinitesimal, ∆x → dx. It
follows from the equation above that,∑

i

f(xi) '
1

∆x

∫ b

a

dxf(x). (1.21)

That is, if f(x) is smooth, then you can evaluate its sum-
mation with the help of integration.

In three dimensions, the integral of f(r) over a region
V is given as, ∫

V

dvf(r) '
∑
i

∆vf(ri), (1.22)
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FIG. 4 The gradient vectors −∇f of a function f(x, y) in two
dimension. Fig. from the web.

where the region V is divided into many small boxes,
and dv is a volume element (the volume of a box) around
ri. The equation above approaches an equality when the
division gets finer and finer, ∆v → 0.

Finally, ∫ x

dx′
df

dx′
= f(x) + c, (1.23)

where c is a constant. Also,

d

dx

∫ x

dx′f(x′) = f(x). (1.24)

That is, integration is the opposite of differentiation, and
vice versa. This is called the fundamental theorem of
calculus.

C. Differentiation of field

A scalar field f(r), or f(x, y, z), describes, e.g., the dis-
tribution of temperature or charge density in space. A
vector field V(r), or V(x, y, z), describes, e.g., the dis-
tribution of fluid velocity or electric field in space. We
review three major differential operations of fields: gra-
dient, divergence, and curl.

1. Gradient
The gradient of a scalar function f(r) is defined as,

∇f(r)

(
or

∂f

∂r

)
=
∂f

∂x
x̂ +

∂f

∂y
ŷ +

∂f

∂z
ẑ, (1.25)

in which ∇ is called del.
The total derivative of f(r) (see Eq. (1.19)),

df(r) ≡ f(r + dr)− f(r) (1.26)

=
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz (1.27)

= ∇f · dr. (1.28)

That is,

∇f · dr = df, the change of f along dr. (1.29)

Since df = |∇f ||dr| cos θ (θ is the angle between ∇f and
dr), if we fix |dr| and swivel the vector dr around, then
df is maximum when dr ‖ ∇f . Therefore, the direction
of ∇f = The direction of maximum increase of f(r) (i.e.,
the steepest ascent). Conversely, −∇f points to the di-
rection of steepest descent (Fig. 4). For example, given
a temperature distribution T (r), the heat current JT (r)
flows along the steepest descent of the temperature,

JT (r) = −κ∇T (r), (1.30)

where κ is the thermal conductivity. This is
Fourier’s law of heat conduction.

Similarly, given an electric potential φ(r), the current
are flowing along the steepest descent of the potential,

J(r) = −σ∇φ(r) = σE, (1.31)

where σ is the electric conductivity, and E = −∇φ is the
electric field. This is the Ohm’s law.

On the other hand, when dr ⊥ ∇f(r), then df = 0.
Thus f(r) is not changed (to the first order) along the
plane perpendicular to ∇f(r).

For reference, in cylindrical and spherical coordinates,

∇f =
∂f

∂ρ
ρ̂ +

1

ρ

∂f

∂φ
φ̂ +

∂f

∂z
ẑ, (1.32)

∇f =
∂f

∂r
r̂ +

1

r

∂f

∂θ
θ̂ +

1

r sin θ

∂f

∂φ
φ̂. (1.33)

2. Divergence
The divergence of a vector field V(r) is defined as,

∇ ·V(r) =
∂Vx
∂x

+
∂Vy
∂y

+
∂Vz
∂z

. (1.34)

Given a volume element dv = dxdydz, which is a small
box around point P = (x, y, z) (Fig. 5(a)), we have

∇ ·V(r)dv =

(
∂Vx
∂x

+
∂Vy
∂y

+
∂Vz
∂z

)
dxdydz

' ∆Vxdydz + ∆Vydzdx+ ∆Vzdxdy

= (Vx,+ − Vx,−)dydz + (Vy,+ − Vy,−)dzdx

+ (Vz,+ − Vz,−)dxdy, (1.35)

where Vx,± ≡ Vx(x ± dx/2, y, z), and similarly for Vy,±
and Vz,±.

The term Vx,+dydz is the flux passing through the area
dydz at x + dx/2; Vx,−dydz is the flux passing through
the area dydz at x− dx/2. Similarly for the other terms.
Thus, ∇ ·Vdv is the flux out of the box dv (Fig. 5(b)),

∇ ·Vdv =

∫
box

ds ·V(r), box→ 0, (1.36)

where ds = dsn̂, n̂ is the unit normal vector of the box
(pointing outward).

For reference, in cylindrical and spherical coordinates,

∇ ·V =
1

ρ

∂

∂ρ
(ρVρ) +

1

ρ

∂Vφ
∂φ

+
∂Vz
∂z

, (1.37)

∇ ·V =
1

r2

∂

∂r

(
r2Vr

)
+

1

r sin θ

∂

∂θ
(sin θVθ) +

1

r sin θ

∂Vφ
∂φ

.
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(b)

(a)

FIG. 5 (a) A box as a volume element dv near point P . (b)
From left to right, vector fields with positive, negative, and
zero divergence at point P .

3. Curl
The curl of a vector field V(r) is defined as,

∇×V(r) =

∣∣∣∣∣∣
x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

Vx Vy Vz

∣∣∣∣∣∣ . (1.38)

Given a surface element ds = dxdyẑ, which is a small
rectangle on the x-y plane around point P = (x, y, 0)
(Fig. 6(a)), then

∇×V(r) · ds =

(
∂Vy
∂x
− ∂Vx

∂y

)
dxdy (1.39)

' (Vy+ − Vy−)dy − (Vx+ − Vx−)dx,

where

Vx± ≡ Vx(x, y ± dy/2, z),
Vy± ≡ Vy(x± dx/2, y, z).

Thus, ∇ × V · ds is the right-hand circulation around
the rectangle ds (Fig. 6(b)),

∇×V · ds (1.40)

' Vx−dx+ Vy+dy − Vx+dx− Vy−dy

'
∫
→
dxVx− +

∫
↑
dyVy+ +

∫
←
dxVx+ +

∫
↓
dyVy−

=

∮
�
dr ·V(r), �→ 0.

For reference, in cylindrical and spherical coordinates,

∇×V =
1

ρ

∣∣∣∣∣∣
ρ̂ ρφ̂ ẑ
∂
∂ρ

∂
∂φ

∂
∂z

Vρ ρVφ Vz

∣∣∣∣∣∣ , (1.41)

∇×V =
1

r2 sin θ

∣∣∣∣∣∣
r̂ rθ̂ r sin θφ̂
∂
∂r

∂
∂θ

∂
∂φ

Vr rVθ r sin θVφ

∣∣∣∣∣∣ . (1.42)

Note that some of the surface elements in Cartesian,
cylindrical, and spherical coordinates are,

ds = dxdy ẑ, (1.43)

ds = ρdφdz ρ̂, (1.44)

ds = r2 sin θdθdφ r̂. (1.45)

They lie on the x-y plane, the surface of a cylinder with
radius ρ, and the surface of a sphere with radius r re-
spectively.

4. Combined operation
It is very useful to know that a gradient has no curl,

and a curl has no divergence:

∇×∇f(r) = 0, (1.46)

∇ · ∇ ×V(r) = 0. (1.47)

These can be easily verified in Cartesian coordinate.
It’s important to keep in mind that, conversely,

if ∇×V = 0, then V = ∇f, (1.48)

if ∇ ·V = 0, then V = ∇×W. (1.49)

That is, if a vector field is curless, then it can be written
as a gradient. If a vector field is divergenceless, then it
can be written as a curl.

Finally, ∇2 ≡ ∇ · ∇ is called Laplace operator, or
Laplacian. In Cartesian, cylindrical, and spherical co-
ordinates, they are

∇2f =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
, (1.50)

∇2f =
1

ρ

∂

∂ρ

(
ρ
∂f

∂ρ

)
+

1

ρ2

∂2f

∂φ2
+
∂2f

∂z2
, (1.51)

∇2f =
1

r2

∂

∂r

(
r2 ∂f

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

r2 sin2 θ

∂2f

∂φ2
. (1.52)

D. Integration of field

1. Gradient theorem
The integral of a gradient ∇f along a line C equals the

difference of function values at end points,∫
C

dr · ∇f =

∫ b

a

df = f(b)− f(a), (1.53)

where a, b are the end points of a curve C. This is a
generalization of Eq. (1.23) to higher dimension.

2. Divergence theorem
The integral of a divergence ∇·V over a volume V can

be written as a surface integral of flux,∫
V

dv∇ ·V(r) =

∫
S

ds ·V(r), (1.54)
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* *

FIG. 6 (a) A rectangle as a surface element ds = daẑ near
point P . (b) Vector fields with (left and middle) and without
(right) curl at point P . If the vector fields are flows of water,
then a paddle wheel at P would rotate when the curl of the
field at P is not zero, and vice versa.

where S is the surface of V , and ds points out of volume
V . This can be understood as follows: First, divide the
volume V into boxes (Fig. 7(a)). Then (see Eq. (1.22))∫

V

dv∇ ·V(r) '
∑
i

dv∇ ·V(ri). (1.55)

This becomes an equality when dv → 0. For each box,
Eq. (1.36) applies, so that∑

i

dv∇ ·V(ri) =
∑
i

∫
Si

ds ·V(r) (1.56)

=

∫
∑

i Si

ds ·V(r), (1.57)

where Si is the surface of box-i (with normal vectors
pointing outward). But since the sum of the surfaces of
two boxes equals their outer surface (Fig. 7(d)), so even-
tually

∑
i Si = S, and Eq. (1.54) follows. That is, the di-

vergence theorem is the macroscopic version of Eq. (1.36).
3. Curl theorem (aka Stokes theorem)
The integral of a curl ∇ ×V over a surface S can be

written as a line integral of circulation,∫
S

ds · ∇ ×V(r) =

∮
C

dr ·V(r), (1.58)

where C is the boundary of S, and the orientation of C
is determined by the direction of ds (see the Note be-
low). This can be understood as follows: First, divide
the surface S into rectangles (Fig. 7(b)). Then∫

S

ds · ∇ ×V(r) '
∑
i

ds · ∇ ×V(ri). (1.59)

This becomes an equality when ds → 0. For each rect-

+ =

+ =

(c)

(d)

(a)

1 2

S

C
V

1 2

1 2

1

2

dS

dr

dr

dS

(b)

FIG. 7 (a) A finite volume V with surface S can be divided
into many small volume elements dv. (b) A finite surface S
with boundary C can be divided into many surface elements
ds. (c) At the interface between adjacent boxes, the normal
vectors (in red) from these two boxes are opposite. (d) At
the boundary between adjacent rectangles, the circulations
(in red) from these two rectangles are opposite.

angle, Eq. (1.36) applies, so that∑
i

ds∇×V(ri) =
∑
i

∫
Ci

dr ·V(r) (1.60)

=

∫
∑

i Ci

dr ·V(r), (1.61)

where Ci is the boundary of rectangle-i (with right-hand
circulation). But since the sum of the boundaries of two
rectangles equals their outer boundary (Fig. 7(c)), so
eventually

∑
i Ci = C, and Eq. (1.58) follows. That is,

the curl theorem is the macroscopic version of Eq. (1.40).
Note: For an open surface S with boundary C, there

are two possible choices of n̂’s: it either points up or
points down. Once n̂ is chosen, the direction of C is
determined by the right-hand rule: n̂ is along the thumb,
and the direction of C is along four curved fingers.

E. Some useful symbols and identities

1. First, two symbols (i, j, k = 1, 2, 3, or x.y.z):
Kronecker delta symbol:

δij ≡
{

0 if i 6= j
1 if i = j

(1.62)

Levi-Civita symbol:

εijk ≡

 0 if any two subscripts are the same
+1 if (i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2)
−1 if (i, j, k) = (2, 1, 3), (1, 3, 2), (3, 2, 1)

(1.63)
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It follows that εijk = εjki = εkij .
For example, if c = a× b, then when written in com-

ponents, one has

ci = εijkajbk. (1.64)

We have used Einstein’s summation convention: re-
peated subscripts are automatically summed. Also, when
written in components,

(a× b) · c = εijkaibjck. (1.65)

It’s not difficult to see that

a · (b× c) = (a× b) · c. (1.66)

It is helpful to know that

εijkεlmn =

∣∣∣∣∣∣
δil δim δin
δjl δjm δjn
δkl δkm δkn

∣∣∣∣∣∣ . (1.67)

Pf: First, if any two numbers in the triplet (i, j, k) or
the triplet (l,m, n) are the same, then the left-hand side
(LHS) is zero (see Eq. (1.63)). The right-hand side (RHS)
is also zero since two rows or two columns in the deter-
minant are the same. So the equality is valid.

Next, consider the cases when the numbers in a triplet
are different. If (i, j, k) = (1, 2, 3) and (l,m, n) = (1, 2, 3),
then it’s obvious that the LHS equals the RHS. Now
if you exchange any two numbers in the first triplet
or the second triplet, then the LHS changes sign (see
Eq. (1.63)). The RHS also changes sign since two rows
or two columns in the determinant are exchanged. So the
equality remains valid. It’s not difficult to see that this
applies to other permutations of the triplets. QED.

A special case:

εijkεimn =

∣∣∣∣ δjm δjn
δkm δkn

∣∣∣∣ . (1.68)

Note that the subscript i is repeated and needs be
summed. It is a dummy index that would not appear
in the result. The proof of this equation is left as an
exercise.

2. A frequently used identity is,

a× (b× c) = b(a · c)− c(a · b). (1.69)

This is called the BAC-CAB rule:
Pf: When written in components,

[a× (b× c)]i = εijkaj(b× c)k (1.70)

= εijkεmnk︸ ︷︷ ︸
δimδjn−δinδjm

ajbmcn (1.71)

= ajbicj − ajbjci (1.72)

= bia · c− cia · b. (1.73)

QED.
Note that a× (b× c) 6= (a× b)× c.

FIG. 8 A Dirac delta function can be considered as a Gaus-
sian function with zero width and infinite height.

3. Gradient
Assume that function f(r) depends only on r = |r|,

then

∇f(r) =
df(r)

dr
r̂, or f ′(r)r̂. (1.74)

Furthermore, let R ≡ r− r′, R = |R|, then

∇f(R), or
∂f(R)

∂r

∣∣∣∣
r′ fixed

= f ′(R)R̂, (1.75)

∇′f(R), or
∂f(R)

∂r′

∣∣∣∣
r fixed

= −f ′(R)R̂, (1.76)

in which f ′(R) = df(R)/dR.
For example, f(R) = 1/|r− r′|, then

∇ 1

|r− r′|
= − r− r′

|r− r′|3
, (1.77)

∇′ 1

|r− r′|
= +

r− r′

|r− r′|3
. (1.78)

In electrodynamics, r and r′ often refer to the distribu-
tions of field and source respectively, andR is the distance
between source and field (observation point). Sometimes
we need to take a derivative with respect to r, sometimes
r′, and the results differ by a sign, ∇′f(R) = −∇f(R).

F. Dirac delta function

Dirac delta function looks like a spike,

δ(x− x′) =

{
0 if x 6= x′

+∞ if x = x′
(1.79)

It is an even function, δ(−x) = δ(x). You may think of
it as a very sharp Gaussian distribution (Fig. 8),

δ(x− x′) = lim
w→0

1√
2πw

e−(x−x′)2/2w2

. (1.80)
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In addition, the Dirac delta function has to satisfy∫ ∞
−∞

dx δ(x− x′) = 1, (1.81)∫ ∞
−∞

dxf(x)δ(x− x′) = f(x′). (1.82)

It’s almost always a good news to have the delta func-
tion inside an integral, since the integration then becomes
trivial.

If c is a nonzero constant, then

δ[c(x− x′)] =
1

|c|
δ(x− x′). (1.83)

The “| |” is required since the delta function is always
positive. If a function f(x) has roots at x = xi, then

δ(f(x)) =
∑
i

δ(x− xi)∣∣∣df(x)
dxi

∣∣∣ . (1.84)

For example,

δ(x2 − a2) =
1

2|a|
[δ(x− a) + δ(x+ a)] . (1.85)

The delta function is the Fourier transformation of
“1”,

δ(x) =

∫ ∞
−∞

dk

2π
eikx, (1.86)

or

∫ ∞
−∞

dk eik(x−x′) = 2πδ(x− x′). (1.87)

The delta function can be generalized to higher dimen-
sions. In three dim,

δ(r− r′) ≡ δ(x− x′)δ(y − y′)δ(z − z′). (1.88)

It is zero everywhere in space, except being infinite at a
single point r′. Also (all means all space),∫

all

dv δ(r− r′) = 1, (1.89)∫
all

dvf(r)δ(r− r′) = f(r′). (1.90)

The 3-dim generalization of Eqs. (1.86) and (1.87) are

δ(r) =

∫
d3k

(2π)3
eik·r, (1.91)

or

∫
d3keik·(r−r

′) = (2π)3δ(r− r′). (1.92)

This is the orthogonal relation for plane waves eik·r.
The Dirac delta function is ideal for describing a point

charge. If there is a point charge q at location r′, then
its charge density can be described as,

ρ(r) = qδ(r− r′). (1.93)

It is zero everywhere in space, except being infinite at a
single point r′. After integration, we get the total charge,∫

all

dvρ(r) = q

∫
all

dvδ(r− r′) = q, (1.94)

as it should be.
Finally, we show that

∇2 1

|r− r′|
= −4πδ(r− r′). (1.95)

Pf: First, since

∇ 1

|r− r′|
= − r− r′

|r− r′|3
, (1.96)

it follows that

∇2 1

|r− r′|
= −∇ · r− r′

|r− r′|3
= 0. (1.97)

However, this is valid only if r′ 6= r. When r′ = r,
the function diverges and its derivative cannot be taken.
However, if we integrate the ∇2(1/R) over a tiny sphere
V centered at the point r′, then with the divergence the-
orem, one has∫
V

dv∇2 1

|r− r′|
=

∫
S

ds · ∇ 1

|r− r′|
(1.98)

= −
∫
S0

ds · r

|r|3
, ds = r2 sin θdθdφ r̂

= −4π, (1.99)

where the center of S0 is at 0. We get a finite result −4π
no matter how small V is, as long as it encloses r′. This
shows that ∇2 1

R is a delta function with strength −4π,
thus Eq. (1.95) follows. QED.

This mathematical identity is consistent with the fact
that, if there is a point charge q at r′, then its Coulomb
potential is φ(r) = q/4πε0|r − r′|, its charge density is
given as Eq. (1.93). From the Poission equation in
electrostatics,

∇2φ(r) = −ρ(r)

ε0
, (1.100)

we can also reach Eq. (1.95).

G. Series expansion

Series expansions are really useful for approximations.
Here we mention two of them:

1. Binomial expansion
If |x| < 1, and α is a real number, then

(1+x)α = 1+αx+
α(α− 1)

2!
x2 +

α(α− 1)(α− 2)

3!
x3 · · · .
(1.101)
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(a) (b)

FIG. 9 Use Taylor expansion to approximate ex to first order
(a) and second order (b).

For example, when |x| � 1,

1√
2− (1 + x)2

' 1 + x+ 2x2 +O(x3). (1.102)

2. Taylor expansion
For small a, we have

f(x+ a) = f(x) + a
df

dx
+
a2

2!

d2f

dx2
+ · · · . (1.103)

An alternative form is,

f(a+x) = f(a)+x
df

dx

∣∣∣∣
x=a

+
x2

2!

d2f

dx2

∣∣∣∣
x=a

+· · · , (1.104)

in which x is small.
For example, expand f(x) = ex with respect to x = 0,

one has (see Fig. 9)

ex = 1 + x+
x2

2!
+
x3

3!
+ · · · . (1.105)

Eq. (1.103) is sometimes written as,

f(x+ a) = ea
d
dx f(x), (1.106)

in which ea
d
dx is expanded as in Eq. (1.105).

You may also check that the binomial expansion is a
special case of the Taylor expansion, if we expand f(1 +
x) = (1 + x)α with respect to x = 0.

In three dimension, we have

f(r + a) = eax
∂
∂x eay

∂
∂y eaz

∂
∂z f(r) (1.107)

= ea·
∂
∂r f(r) (1.108)

= f(r) + a · ∂f
∂r

+
1

2!

(
a · ∂

∂r

)2

f + · · · .

More mathematical tools can be found in the first
chapter of Zangwill, 2013. In addition to the mathemat-
ics reviewed here, we will pick up and learn some more
along the way when they are needed.

Problems:

a=1

(a) (b)

r=1
S

C

V S

x
y

z

x
y

z

FIG. 10 (a) The cubic box for Prob. 2(a). (b) The circle for
Prob. 2(b).

1. Draw the following vector fields,

V1(r) = (x, y, 0), (1.109)

V2(r) = (0, x, 0), (1.110)

V3(r) = (−y, x, 0). (1.111)

Calculate their divergence and curl. Which one has non-
zero divergence, and which one has non-zero curl?

2. (a) Calculate the flux of the vector field V(r) =
(0, x, 0) out of a cubic box with side length 1 in the first
octant (See Fig. 10(a)).
(b) Calculate the circulation of the vector field V(r) =
(−y, x, 0) around a circle with radius 1 lying on the x−y
plane centered at the origin (See Fig. 10(b)).

3. Evaluate the following expressions,

(a) δii (1.112)

(b) δijεijk (1.113)

(c) εijkεimn (1.114)

(d) εijkε`jk (1.115)

A repeated index is summed, according to the Einstein
summation convention.

4. Prove the following identities,

(a) ∇ · (a× b) = b · ∇ × a− a · ∇ × b (1.116)

(b) ∇×∇× a = ∇(∇ · a)−∇2a (1.117)

Hint: Write ∇ · (a×b) in components εijk
∂
∂xi

(ajbk) and
differentiate it, similarly for ∇×∇× a.

5. With the help of the divergence theorem and the
Stokes theorem, prove that

(a)

∫
V

dv∇× v(r) =

∫
S

ds× v(r) (1.118)

(b)

∫
S

ds×∇f(r) =

∮
C

drf(r) (1.119)

Hint: Let the vector fields in the divergence theorem and
the Stokes theorem be V(r) = v(r)× c or V(r) = cf(r),
c is a constant vector.
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