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I. MATHEMATICAL PRELIMINARIES

In this chapter, we collect some mathematics that is
essential to the learning of electrodynamics.

A. Coordinate system

A coordinate system combines geometry with algebra.
That is, we can use numbers to describe geometrical ob-
jects. Here we introduce three of the most popular coor-
dinate systems.
1. Cartesian coordinate

The word Cartesian comes from the latinized name of
Descartes - Cartesius. The three coordinate axes are
perpendicular to each other. A point has coordinates
(x, y, z), and unit basis vectors are x̂, ŷ, ẑ.
A position vector is,

r = xx̂+ yŷ + zẑ. (1.1)

A vector at point r is

V(r) = Vx(r)x̂+ Vy(r)ŷ + Vz(r)ẑ. (1.2)

The distribution of vectors V(r) in space is a vector
field.
2. Cylindrical coordinate

As shown in Fig. 2(a), a point in cylindrical coordi-
nate has coordinates (ρ, ϕ, z). The unit basis vectors are
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(a)

(b)

FIG. 1 Cylindrical coordinate (a) and its volume element (b).
Figs. from Lorrain and Corson, 1970.

ρ̂, ϕ̂, ẑ, which are along the direction of increase of ρ, ϕ, z
and are perpendicular to each other. The connection be-
tween Cartesian and cylindrical coordinates are,

x = ρ cosϕ, (1.3)

y = ρ sinϕ, (1.4)

z = z. (1.5)

A position vector is

r = ρρ̂+ zẑ. (1.6)

The coordinates ρ, z account for two degrees of freedom.
The third one is hidden in the angle ϕ of ρ̂. A vector at
point r can be expanded as,

V(r) = Vρ(r)ρ̂+ Vϕ(r)ϕ̂+ Vz(r)ẑ. (1.7)

3. Spherical coordinate

As shown in Fig. 1(c), a point in spherical coordinate
has coordinates (r, θ, ϕ). These are standard notations
used by most people, so you need to keep them in mind,
since a figure is not always drawn to remind you of their
meaning. The unit basis vectors are r̂, θ̂, ϕ̂, which are
along the direction of increase of r, θ, ϕ and are perpen-
dicular to each other. The connection between Cartesian

(a)

(b)

FIG. 2 Spherical coordinate (a) and its volume element (b).
Figs. from Lorrain and Corson, 1970.

and spherical coordinates are,

x = r sin θ cosϕ, (1.8)

y = r sin θ sinϕ, (1.9)

z = r cos θ. (1.10)

A position vector is simply

r = rr̂. (1.11)

The coordinate r accounts for one degree of freedom. The
other two are hidden in the angles θ, ϕ of r̂. A vector at
point r can be expanded as,

V(r) = Vr(r)r̂+ Vθ(r)θ̂ + Vϕ(r)ϕ̂. (1.12)

Note that the volume elements in Cartesian, cylin-
drical, and spherical coordinates are (Fig. 1(b) and
Fig. 2(b))

dv = dxdydz, (1.13)

dv = ρdρdϕdz, (1.14)

dv = r2 sin θdrdθdϕ, (1.15)

The major difference between Newton’s dynamics and
Maxwell’s dynamics is that in the former we simply deal
with particle trajectory r(t), while the latter we need to
deal with field distribution V(r, t). This makes electro-
dynamic much harder to learn.
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FIG. 3 (a) A derivative. (b) An integration.

B. Basics of calculus

Recall that the derivative of f(x) at x is defined as (see
Fig. 3(a)),

df(x)

dx
= lim

h→0

f(x+ h)− f(x)

h
. (1.16)

When h = ∆x is small but finite, one has

df(x)

dx
≃ f(x+∆x)− f(x)

∆x
. (1.17)

Thus,

f(x+∆x) ≃ f(x) +
df(x)

dx
∆x. (1.18)

For a function f(r) in three dimensions,

f(r+∆r) ≃ f(r) +
∂f

∂x
∆x+

∂f

∂y
∆y +

∂f

∂z
∆z. (1.19)

We’ll often write ∆x as dx (or ∆r as dr), without distin-
guishing between finite and infinitesimal, when the limit
∆x → dx (or ∆r → dr) needs to be taken at the end of
a derivation.

The integral of f(x) is the area between the curve f(x)
and the x-axis, which can be approximated as a sum of
the areas of rectangles (Fig. 3(b))∫ b

a

dxf(x) ≃
∑
i

∆xf(xi), (1.20)

where xi can be any point (e.g., the middle one) inside
an interval ∆x. The equation above becomes an equality
when the division becomes infinitesimal, ∆x → dx. It
follows from the equation above that,∑

i

f(xi) ≃
1

∆x

∫ b

a

dxf(x). (1.21)

That is, if f(x) is smooth, then you can evaluate its sum-
mation with the help of integration.

In three dimensions, the integral of f(r) over a region
V is given as, ∫

V

dvf(r) ≃
∑
i

∆vf(ri), (1.22)

FIG. 4 The gradient vectors −∇f of a function f(x, y) in two
dimension. Fig. from the web.

where the region V is divided into many small boxes,
and dv is a volume element (the volume of a box) around
ri. The equation above approaches an equality when the
division gets finer and finer, ∆v → 0.

Finally, ∫ x

dx′
df

dx′
= f(x) + c, (1.23)

where c is a constant. Also,

d

dx

∫ x

dx′f(x′) = f(x). (1.24)

That is, integration is the opposite of differentiation, and
vice versa. This is called the fundamental theorem of
calculus.

C. Differentiation of field

A scalar field f(r), or f(x, y, z), describes, e.g., the dis-
tribution of temperature or charge density in space. A
vector field V(r), or V(x, y, z), describes, e.g., the dis-
tribution of fluid velocity or electric field in space. We
review three major differential operations of fields: gra-
dient, divergence, and curl.

1. Gradient

The gradient of a scalar function f(r) is defined as,

∇f(r)
(
or

∂f

∂r

)
=
∂f

∂x
x̂+

∂f

∂y
ŷ +

∂f

∂z
ẑ, (1.25)

in which ∇ is called del.

The total derivative of f(r) (see Eq. (1.19)),

df(r) ≡ f(r+ dr)− f(r) (1.26)

=
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz (1.27)

= ∇f · dr. (1.28)
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That is,

∇f · dr = df, the change of f along dr. (1.29)

Since df = |∇f ||dr| cos θ (θ is the angle between ∇f and
dr), if we fix |dr| and swivel the vector dr around, then
df is maximum when dr ∥ ∇f . Therefore, the direction
of ∇f = The direction of maximum increase of f(r) (i.e.,
the steepest ascent). Conversely, −∇f points to the di-
rection of steepest descent (Fig. 4). For example, given
a temperature distribution T (r), the heat current JT (r)
flows along the steepest descent of the temperature,

JT (r) = −κ∇T (r), (1.30)

where κ is the thermal conductivity. This is
Fourier’s law of heat conduction.
Similarly, given an electric potential ϕ(r), the current

are flowing along the steepest descent of the potential,

J(r) = −σ∇ϕ(r) = σE, (1.31)

where σ is the electric conductivity, and E = −∇ϕ is the
electric field. This is the Ohm’s law.
On the other hand, when dr ⊥ ∇f(r), then df = 0.

Thus f(r) is not changed (to the first order) along the
plane perpendicular to ∇f(r).
For reference, in cylindrical and spherical coordinates,

∇f =
∂f

∂ρ
ρ̂+

1

ρ

∂f

∂ϕ
ϕ̂+

∂f

∂z
ẑ, (1.32)

∇f =
∂f

∂r
r̂+

1

r

∂f

∂θ
θ̂ +

1

r sin θ

∂f

∂ϕ
ϕ̂. (1.33)

2. Divergence
The divergence of a vector field V(r) is defined as,

∇ ·V(r) =
∂Vx
∂x

+
∂Vy
∂y

+
∂Vz
∂z

. (1.34)

Given a volume element dv = dxdydz, which is a small
box around point P = (x, y, z) (Fig. 5(a)), we have

∇ ·V(r)dv =

(
∂Vx
∂x

+
∂Vy
∂y

+
∂Vz
∂z

)
dxdydz

≃ ∆Vxdydz +∆Vydzdx+∆Vzdxdy

= (Vx,+ − Vx,−)dydz + (Vy,+ − Vy,−)dzdx

+ (Vz,+ − Vz,−)dxdy, (1.35)

where Vx,± ≡ Vx(x ± dx/2, y, z), and similarly for Vy,±
and Vz,±.
The term Vx,+dydz is the flux passing through the area

dydz at x + dx/2; Vx,−dydz is the flux passing through
the area dydz at x− dx/2. Similarly for the other terms.
Thus, ∇ ·Vdv is the flux out of the box dv (Fig. 5(b)),

∇ ·Vdv =

∫
box

ds ·V(r), box → 0, (1.36)

(b)

(a)

FIG. 5 (a) A box as a volume element dv near point P . (b)
From left to right, vector fields with positive, negative, and
zero divergence at point P .

where ds = dsn̂, n̂ is the unit normal vector of the box
(pointing outward).
For reference, in cylindrical and spherical coordinates,

∇ ·V =
1

ρ

∂

∂ρ
(ρVρ) +

1

ρ

∂Vϕ
∂ϕ

+
∂Vz
∂z

, (1.37)

∇ ·V =
1

r2
∂

∂r

(
r2Vr

)
+

1

r sin θ

∂

∂θ
(sin θVθ) +

1

r sin θ

∂Vϕ
∂ϕ

.

3. Curl
The curl of a vector field V(r) is defined as,

∇×V(r) =

∣∣∣∣∣∣
x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

Vx Vy Vz

∣∣∣∣∣∣ . (1.38)

Given a surface element ds = dxdyẑ, which is a small
rectangle on the x-y plane around point P = (x, y, 0)
(Fig. 6(a)), then

∇×V(r) · ds =

(
∂Vy
∂x

− ∂Vx
∂y

)
dxdy (1.39)

≃ (Vy+ − Vy−)dy − (Vx+ − Vx−)dx,

where

Vx± ≡ Vx(x, y ± dy/2, z),

Vy± ≡ Vy(x± dx/2, y, z).

Thus, ∇ × V · ds is the right-hand circulation around
the rectangle ds (Fig. 6(b)),

∇×V · ds (1.40)

≃ Vx−dx+ Vy+dy − Vx+dx− Vy−dy

≃
∫
→
dxVx− +

∫
↑
dyVy+ +

∫
←
dxVx+ +

∫
↓
dyVy−

=

∮
□
dr ·V(r), □ → 0.
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For reference, in cylindrical and spherical coordinates,

∇×V =
1

ρ

∣∣∣∣∣∣
ρ̂ ρϕ̂ ẑ
∂
∂ρ

∂
∂ϕ

∂
∂z

Vρ ρVϕ Vz

∣∣∣∣∣∣ , (1.41)

∇×V =
1

r2 sin θ

∣∣∣∣∣∣
r̂ rθ̂ r sin θϕ̂
∂
∂r

∂
∂θ

∂
∂ϕ

Vr rVθ r sin θVϕ

∣∣∣∣∣∣ . (1.42)

Note that some of the surface elements in Cartesian,
cylindrical, and spherical coordinates are,

ds = dxdy ẑ, (1.43)

ds = ρdϕdz ρ̂, (1.44)

ds = r2 sin θdθdϕ r̂. (1.45)

They lie on the x-y plane, the surface of a cylinder with
radius ρ, and the surface of a sphere with radius r re-
spectively.

4. Combined operation
It is very useful to know that a gradient has no curl,

and a curl has no divergence:

∇×∇f(r) = 0, (1.46)

∇ · ∇ ×V(r) = 0. (1.47)

These can be easily verified in Cartesian coordinate.
It’s important to keep in mind that, conversely,

if ∇×V = 0, then V = ∇f, (1.48)

if ∇ ·V = 0, then V = ∇×W. (1.49)

That is, if a vector field is curless, then it can be written
as a gradient. If a vector field is divergenceless, then it
can be written as a curl.

Finally, ∇2 ≡ ∇ · ∇ is called Laplace operator, or
Laplacian. In Cartesian, cylindrical, and spherical co-
ordinates, they are

∇2f =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
, (1.50)

∇2f =
1

ρ

∂

∂ρ

(
ρ
∂f

∂ρ

)
+

1

ρ2
∂2f

∂ϕ2
+
∂2f

∂z2
, (1.51)

∇2f =
1

r2
∂

∂r

(
r2
∂f

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

r2 sin2 θ

∂2f

∂ϕ2
. (1.52)

D. Integration of field

1. Gradient theorem
The integral of a gradient ∇f along a line C equals the

difference of function values at end points,∫
C

dr · ∇f =

∫ b

a

df = f(b)− f(a), (1.53)

x

y

dx

dy

(b)

(a)

p

*

* *

FIG. 6 (a) A rectangle as a surface element ds = daẑ near
point P . (b) Vector fields with (left and middle) and without
(right) curl at point P . If the vector fields are flows of water,
then a paddle wheel at P would rotate when the curl of the
field at P is not zero, and vice versa.

where a, b are the end points of a curve C. This is a
generalization of Eq. (1.23) to higher dimension.

2. Divergence theorem

The integral of a divergence ∇·V over a volume V can
be written as a surface integral of flux,∫

V

dv∇ ·V(r) =

∫
S

ds ·V(r), (1.54)

where S is the surface of V , and ds points out of volume
V . This can be understood as follows: First, divide the
volume V into boxes (Fig. 7(a)). Then (see Eq. (1.22))∫

V

dv∇ ·V(r) ≃
∑
i

dv∇ ·V(ri). (1.55)

This becomes an equality when dv → 0. For each box,
Eq. (1.36) applies, so that

∑
i

dv∇ ·V(ri) =
∑
i

∫
Si

ds ·V(r) (1.56)

=

∫
∑

i Si

ds ·V(r), (1.57)

where Si is the surface of box-i (with normal vectors
pointing outward). But since the sum of the surfaces of
two boxes equals their outer surface (Fig. 7(d)), so even-
tually

∑
i Si = S, and Eq. (1.54) follows. That is, the di-

vergence theorem is the macroscopic version of Eq. (1.36).

3. Curl theorem (aka Stokes theorem)

The integral of a curl ∇ ×V over a surface S can be
written as a line integral of circulation,∫

S

ds · ∇ ×V(r) =

∮
C

dr ·V(r), (1.58)
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+ =

+ =

(c)

(d)

(a)

1 2

S

C
V

1 2

1 2

1

2

dS

dr

dr

dS

(b)

FIG. 7 (a) A finite volume V with surface S can be divided
into many small volume elements dv. (b) A finite surface S
with boundary C can be divided into many surface elements
ds. (c) At the interface between adjacent boxes, the normal
vectors (in red) from these two boxes are opposite. (d) At
the boundary between adjacent rectangles, the circulations
(in red) from these two rectangles are opposite.

where C is the boundary of S, and the orientation of C
is determined by the direction of ds (see the Note be-
low). This can be understood as follows: First, divide
the surface S into rectangles (Fig. 7(b)). Then∫

S

ds · ∇ ×V(r) ≃
∑
i

ds · ∇ ×V(ri). (1.59)

This becomes an equality when ds → 0. For each rect-
angle, Eq. (1.36) applies, so that

∑
i

ds · ∇ ×V(ri) =
∑
i

∫
Ci

dr ·V(r) (1.60)

=

∫
∑

i Ci

dr ·V(r), (1.61)

where Ci is the boundary of rectangle-i (with right-hand
circulation). But since the sum of the boundaries of two
rectangles equals their outer boundary (Fig. 7(c)), so
eventually

∑
i Ci = C, and Eq. (1.58) follows. That is,

the curl theorem is the macroscopic version of Eq. (1.40).

Note: For an open surface S with boundary C, there
are two possible choices of n̂’s: it either points up or
points down. Once n̂ is chosen, the direction of C is
determined by the right-hand rule: n̂ is along the thumb,
and the direction of C is along four curved fingers.

E. Some useful symbols and identities

1. First, two symbols (i, j, k = 1, 2, 3, or x.y.z):

Kronecker delta symbol:

δij ≡
{

0 if i ̸= j
1 if i = j

(1.62)

Levi-Civita symbol:

ϵijk ≡

 0 if any two subscripts are the same
+1 if (i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2)
−1 if (i, j, k) = (2, 1, 3), (1, 3, 2), (3, 2, 1)

(1.63)
It follows that ϵijk = ϵjki = ϵkij .
For example, if c = a× b, then when written in com-

ponents, one has

ci = ϵijkajbk. (1.64)

We have used Einstein’s summation convention: re-
peated subscripts are automatically summed. Also, when
written in components,

(a× b) · c = ϵijkaibjck. (1.65)

It’s not difficult to see that

a · (b× c) = (a× b) · c. (1.66)

It is helpful to know that

ϵijkϵlmn =

∣∣∣∣∣∣
δil δim δin
δjl δjm δjn
δkl δkm δkn

∣∣∣∣∣∣ . (1.67)

Pf: First, if any two numbers in the triplet (i, j, k) or
the triplet (l,m, n) are the same, then the left-hand side
(LHS) is zero (see Eq. (1.63)). The right-hand side (RHS)
is also zero since two rows or two columns in the deter-
minant are the same. So the equality is valid.

Next, consider the cases when the numbers in a triplet
are different. If (i, j, k) = (1, 2, 3) and (l,m, n) = (1, 2, 3),
then it’s obvious that the LHS equals the RHS. Now
if you exchange any two numbers in the first triplet
or the second triplet, then the LHS changes sign (see
Eq. (1.63)). The RHS also changes sign since two rows
or two columns in the determinant are exchanged. So the
equality remains valid. It’s not difficult to see that this
applies to other permutations of the triplets. QED.

A special case:

ϵijkϵimn =

∣∣∣∣ δjm δjn
δkm δkn

∣∣∣∣ . (1.68)

Note that the subscript i is repeated and needs be
summed. It is a dummy index that would not appear
in the result. The proof of this equation is left as an
exercise.

2. A frequently used identity is,

a× (b× c) = b(a · c)− c(a · b). (1.69)



7

This is called the BAC-CAB rule:
Pf: When written in components,

[a× (b× c)]i = ϵijkaj(b× c)k (1.70)

= ϵijkϵmnk︸ ︷︷ ︸
δimδjn−δinδjm

ajbmcn (1.71)

= ajbicj − ajbjci (1.72)

= bia · c− cia · b. (1.73)

QED.
Note that a× (b× c) ̸= (a× b)× c.
3. Gradient
Assume that function f(r) depends only on r = |r|,

then

∇f(r) = df(r)

dr
r̂, or f ′(r)r̂. (1.74)

Furthermore, let R ≡ r− r′, R = |R|, then

∇f(R), or ∂f(R)

∂r

∣∣∣∣
r′ fixed

= f ′(R)R̂, (1.75)

∇′f(R), or ∂f(R)

∂r′

∣∣∣∣
r fixed

= −f ′(R)R̂, (1.76)

in which f ′(R) = df(R)/dR.
For example, f(R) = 1/|r− r′|, then

∇ 1

|r− r′|
= − r− r′

|r− r′|3
, (1.77)

∇′ 1

|r− r′|
= +

r− r′

|r− r′|3
. (1.78)

In electrodynamics, r and r′ often refer to the distribu-
tions of field and source respectively, andR is the distance
between source and field (observation point). Sometimes
we need to take a derivative with respect to r, sometimes
r′, and the results differ by a sign, ∇′f(R) = −∇f(R).

F. Dirac delta function

Dirac delta function looks like a spike,

δ(x− x′) =

{
0 if x ̸= x′

+∞ if x = x′
(1.79)

It is an even function, δ(−x) = δ(x). You may think of
it as a very sharp Gaussian distribution (Fig. 8),

δ(x− x′) = lim
w→0

1√
2πw

e−(x−x
′)2/2w2

. (1.80)

In addition, the Dirac delta function has to satisfy∫ ∞
−∞

dx δ(x− x′) = 1, (1.81)∫ ∞
−∞

dxf(x)δ(x− x′) = f(x′). (1.82)

FIG. 8 A Dirac delta function can be considered as a Gaus-
sian function with zero width and infinite height.

It’s almost always a good news to have the delta func-
tion inside an integral, since the integration then becomes
trivial.

If c is a nonzero constant, then

δ[c(x− x′)] =
1

|c|
δ(x− x′). (1.83)

The “| |” is required since the delta function is always
positive. If a function f(x) has roots at x = xi, then

δ(f(x)) =
∑
i

δ(x− xi)∣∣∣df(x)dxi

∣∣∣ . (1.84)

For example,

δ(x2 − a2) =
1

2|a|
[δ(x− a) + δ(x+ a)] . (1.85)

The delta function is the Fourier transformation of
“1”,

δ(x) =

∫ ∞
−∞

dk

2π
eikx, (1.86)

or

∫ ∞
−∞

dk eik(x−x
′) = 2πδ(x− x′). (1.87)

The delta function can be generalized to higher dimen-
sions. In three dim,

δ(r− r′) ≡ δ(x− x′)δ(y − y′)δ(z − z′). (1.88)

It is zero everywhere in space, except being infinite at a
single point r′. Also (all means all space),∫

all

dv δ(r− r′) = 1, (1.89)∫
all

dvf(r)δ(r− r′) = f(r′). (1.90)
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The 3-dim generalization of Eqs. (1.86) and (1.87) are

δ(r) =

∫
d3k

(2π)3
eik·r, (1.91)

or

∫
d3keik·(r−r

′) = (2π)3δ(r− r′). (1.92)

This is the orthogonal relation for plane waves eik·r.
The Dirac delta function is ideal for describing a point

charge. If there is a point charge q at location r′, then
its charge density can be described as,

ρ(r) = qδ(r− r′). (1.93)

It is zero everywhere in space, except being infinite at a
single point r′. After integration, we get the total charge,∫

all

dvρ(r) = q

∫
all

dvδ(r− r′) = q, (1.94)

as it should be.
Finally, we show that

∇2 1

|r− r′|
= −4πδ(r− r′). (1.95)

Pf: First, since

∇ 1

|r− r′|
= − r− r′

|r− r′|3
, (1.96)

it follows that

∇2 1

|r− r′|
= −∇ · r− r′

|r− r′|3
= 0. (1.97)

However, this is valid only if r′ ̸= r. When r′ = r,
the function diverges and its derivative cannot be taken.
However, if we integrate the ∇2(1/R) over a tiny sphere
V centered at the point r′, then with the divergence the-
orem, one has∫

V

dv∇2 1

|r− r′|
=

∫
S

ds · ∇ 1

|r− r′|
(1.98)

= −
∫
S0

ds · r

|r|3
, ds = r2 sin θdθdϕ r̂

= −4π, (1.99)

where the center of S0 is at 0. We get a finite result −4π
no matter how small V is, as long as it encloses r′. This
shows that ∇2 1

R is a delta function with strength −4π,
thus Eq. (1.95) follows. QED.

This mathematical identity is consistent with the fact
that, if there is a point charge q at r′, then its Coulomb
potential is ϕ(r) = q/4πε0|r − r′|, its charge density is
given as Eq. (1.93). From the Poission equation in
electrostatics,

∇2ϕ(r) = −ρ(r)
ε0

, (1.100)

we can also reach Eq. (1.95).

(a) (b)

FIG. 9 Use Taylor expansion to approximate ex to first order
(a) and second order (b).

G. Series expansion

Series expansions are really useful for approximations.
Here we mention two of them:
1. Binomial expansion
If |x| < 1, and α is a real number, then

(1+x)α = 1+αx+
α(α− 1)

2!
x2+

α(α− 1)(α− 2)

3!
x3 · · · .
(1.101)

For example, when |x| ≪ 1,

1√
2− (1 + x)2

≃ 1 + x+ 2x2 +O(x3). (1.102)

2. Taylor expansion
For small a, we have

f(x+ a) = f(x) + a
df

dx
+
a2

2!

d2f

dx2
+ · · · . (1.103)

An alternative form is,

f(a+x) = f(a)+x
df

dx

∣∣∣∣
x=a

+
x2

2!

d2f

dx2

∣∣∣∣
x=a

+· · · , (1.104)

in which x is small.
For example, expand f(x) = ex with respect to x = 0,

one has (see Fig. 9)

ex = 1 + x+
x2

2!
+
x3

3!
+ · · · . (1.105)

Eq. (1.103) is sometimes written as,

f(x+ a) = ea
d
dx f(x), (1.106)

in which ea
d
dx is expanded as in Eq. (1.105).

You may also check that the binomial expansion is a
special case of the Taylor expansion, if we expand f(1 +
x) = (1 + x)α with respect to x = 0.
In three dimension, we have

f(r+ a) = eax
∂
∂x eay

∂
∂y eaz

∂
∂z f(r) (1.107)

= ea·
∂
∂r f(r) (1.108)

= f(r) + a · ∂f
∂r

+
1

2!

(
a · ∂

∂r

)2

f + · · · .
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a=1

(a) (b)

r=1
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z

FIG. 10 (a) The cubic box for Prob. 2(a). (b) The circle for
Prob. 2(b).

More mathematical tools can be found in the first
chapter of Zangwill, 2013. In addition to the mathemat-
ics reviewed here, we will pick up and learn some more
along the way when they are needed.

Problems:
1. Draw the following vector fields,

V1(r) = (x, y, 0), (1.109)

V2(r) = (0, x, 0), (1.110)

V3(r) = (−y, x, 0). (1.111)

Calculate their divergence and curl. Which one has non-
zero divergence, and which one has non-zero curl?

2. (a) Calculate the flux of the vector field V(r) =
(0, x, 0) out of a cubic box with side length 1 in the first
octant (See Fig. 10(a)).
(b) Calculate the circulation of the vector field V(r) =
(−y, x, 0) around a circle with radius 1 lying on the x−y
plane centered at the origin (See Fig. 10(b)).

3. Evaluate the following expressions,

(a) δii (1.112)

(b) δijϵijk (1.113)

(c) ϵijkϵimn (1.114)

(d) ϵijkϵℓjk (1.115)

A repeated index is summed, according to the Einstein
summation convention.

4. Prove the following identities,

(a) ∇ · (a× b) = b · ∇ × a− a · ∇ × b (1.116)

(b) ∇×∇× a = ∇(∇ · a)−∇2a (1.117)

Hint: Write ∇ · (a×b) in components ϵijk
∂

∂xi
(ajbk) and

differentiate it, similarly for ∇×∇× a.
5. With the help of the divergence theorem and the

Stokes theorem, prove that

(a)

∫
V

dv∇× v(r) =

∫
S

ds× v(r) (1.118)

(b)

∫
S

ds×∇f(r) =
∮
C

drf(r) (1.119)

Hint: Let the vector fields in the divergence theorem and
the Stokes theorem be V(r) = v(r)× c or V(r) = cf(r),
c is a constant vector.

II. THE MAXWELL EQUATIONS

In this chapter, we outline the fundamental equations
in electrodynamics.

A. Charge and current

1. Charge density

Consider a distribution of charge inside a volume V . If
in a volume element dv near point r, there is charge dQ,
then the charge density at this location is

ρ(r) ≡ dQ

dv
. (2.1)

By the integration of ρ(r), we can have the total charge
Q inside a volume V ,

Q =

∫
V

dvρ(r). (2.2)

As we have mentioned in Chap 1, for a point charge q
at r1, its charge density is,

ρ(r) = qδ(r− r1). (2.3)

If there are point charges q1, q1, · · · , qN at locations
r1, r2, · · · , rN , then the charge density of this system is,

ρ(r) =

N∑
i=1

qiδ(r− ri). (2.4)

The total charge inside a volume V that encloses these
charges is,

Q =

∫
V

dvρ(r) =

N∑
i=1

qi

∫
V

dvδ(r− ri) (2.5)

=

N∑
i=1

qi. (2.6)

Given a distribution of charges on a surface S. If on a
surface element ds near point r, there is charge dQ, then
the surface charge density at this location is

σ(r) ≡ dQ

ds
. (2.7)

By the integration of σ(r), we can have the total charge
Q on a surface S,

Q =

∫
S

ds σ(r). (2.8)
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ds

S

(a) (b)

dr

J k

n

C

dI

FIG. 11 (a) Current density J is the current flowing through
a unit area ds. (b) Surface current density K is the surface
current flowing pass a unit length dr.

2. Current density

Electric current passing through a surface S is defined
as the amount of charge passing through S per unit time.
Current density is the current per unit area. Its dimen-
sion is [current]/[ area], the dimension of current divided
by the dimension of area. If there is current dI passing
through a surface element ds = dsn̂, then (Fig. 1(a))

dI = J(r) · ds = J∥(r)ds, (2.9)

where J(r) is the current density along the direction
of charge motion, and J∥ = J · n̂ is its component along
the surface normal n̂.

After integration, we can find out the total current
passing through surface S,

I =

∫
S

ds · J(r). (2.10)

If a small packet of charge dQ is moving with velocity
v, then within a time dt, the charges passing through
ds have spanned a volume dv = (vdt) · ds. Inside this
volume,

dQ = ρdv = ρ(vdt) · ds, (2.11)

which delivers a current,

dI =
dQ

dt
= ρv · ds. (2.12)

Compared with Eq. (2.9), one has

J(r) = ρ(r)v(r). (2.13)

For point charges, with Eq. (2.4), one has

J(r) =

N∑
i=1

qiviδ(r− ri), (2.14)

where vi is the velocity of charge i.
Next, consider the current flowing on a surface. The

surface has normal vector n̂, and there is a line element
dr ⊥ n̂ on the surface (see Fig. 1(b)). The vector n̂× dr

I

V

S

FIG. 12 Charges I flowing out of the surface S of volume V .

is tangent to the surface and perpendicular to dr. The
current dI passes through dr is,

dI = K(r) · (n̂× dr) , (2.15)

where K(r) is the surface current density along
the direction of charge motion. Its dimension is [cur-
rent]/[length].
After integration, we can find out the total current

passing through a curve C on the surface,

I =

∫
C

K(r) · n̂× dr =

∫
C

K(r)× n̂ · dr (2.16)

3. Conservation of charge

Suppose the charge Q inside a volume V is leaking
through its surface S to the outside (Fig. 2). The leaking
current through S is,

I = −dQ
dt
. (2.17)

With (2.10), we have

I =

∫
S

ds · J =

∫
V

dv∇ · J, (2.18)

and from Eqs. (2.2),

dQ

dt
=

d

dt

∫
V

dvρ(r, t) =

∫
V

dv
∂ρ(r, t)

∂t
, (2.19)

in which the region V of integration is fixed. Hence,∫
V

dv∇ · J = −
∫
V

dv
∂ρ(r, t)

∂t
(2.20)

or

∫
V

dv

(
∇ · J+

∂ρ

∂t

)
= 0. (2.21)

Since the charge should be conserved for any dv in any
location, so we can choose V to be one of the dv, then∫

V

dv

(
∇ · J+

∂ρ

∂t

)
≃ dv

(
∇ · J+

∂ρ

∂t

)
,(2.22)

→ ∇ · J(r, t) + ∂ρ(r, t)

∂t
= 0, at any r. (2.23)

This is equation of continuity, which is valid if and
only if charge is conserved.
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B. Maxwell equations in vacuum

1. Electrostatics

According to Coulomb’s law, the electric force be-
tween two charges q, q1 at positions r, r1 is,

F =
qq1
4πε0

r− r1
|r− r1|3

, (2.24)

where the electric permittivity of free space ε0 =
8.8542× 10−12 C2/Nm2.

If there are N charges q1, q2, · · · , qN at positions
r1, r2, · · · , rN , then a test charge charge q at r feels a
force,

F =
1

4πε0

N∑
i=1

qqi
r− ri

|r− ri|3
. (2.25)

The electric field E from these N charges is given as,

E(r) ≡ F

q
=

1

4πε0

N∑
i=1

qi
r− ri

|r− ri|3
. (2.26)

A continuous charge distribution can be divided into
small packets with charges ρ(r′)dv′ (Fig. 3). Identify qi
with ρ(r′)dv′ and replace the summation with an integral,
one then has

E(r) =
1

4πε0

∫
dv′ρ(r′)

r− r′

|r− r′|3
. (2.27)

This form is valid for all kinds of charge distribution, con-
tinuous or discrete. You may check that with Eq. (2.4),
Eq. (2.27) reduces to Eq. (2.26).

We can rewrite

r− r′

|r− r′|3
= −∇ 1

|r− r′|
(2.28)

so that

E(r) = − 1

4πε0

∫
dv′ρ(r′)∇ 1

|r− r′|
, (2.29)

= −∇ϕ(r), (2.30)

with electric potential,

ϕ(r) =
1

4πε0

∫
dv′

ρ(r′)

|r− r′|
. (2.31)

Note that the order of
∫
dv′ and ∇ can be exchanged,

since r′ and r are independent variables.

Also, remember that

∇2 1

|r− r′|
= −4πδ(r− r′). (2.32)

dE
�

'r
�

r
�

‘‘

FIG. 13 The electric field E(r) at point r is the sum of the
electric fields dE produced by charges ρ(r′)dv′ in volume ele-
ments.

Thus,

∇ ·E(r) = − 1

4πε0

∫
dv′ρ(r′)∇2 1

|r− r′|
(2.33)

=
1

ε0

∫
dv′ρ(r′)δ(r− r′) (2.34)

=
ρ(r)

ε0
. (2.35)

This is Gauss’s law. When written in electric potential,
we have

∇2ϕ(r) = −ρ(r)
ε0

. (2.36)

This is the Poission equation that has been mentioned
in Chap 1.
Furthermore, since the curl of divergence is zero, so

∇×E(r) = −∇×∇ϕ = 0. (2.37)

In short, the fundamental equations of electrostatics
are

∇ ·E(r) =
ρ(r)

ε0
, (2.38)

∇×E(r) = 0. (2.39)

If we integrate Eq. (2.38) over a region V enclosed by
surface S, then ∫

v

dv∇ ·E(r) =
1

ε0

∫
V

dvρ(r), (2.40)

or

∫
S

ds ·E(r) =
Q

ε0
, (2.41)

where Q is the total amount of charge inside V . This is
the integral form of the Gauss’s law.
If we integrate Eq. (2.39) over a surface S with bound-

ary C, then ∫
S

ds · ∇ ×E(r) = 0, (2.42)

or

∮
C

dr ·E(r) = 0. (2.43)
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(a)

(b)

Idr
�

Jdv
�

dr
�

dB
�

'R r r= −

�

� �

FIG. 14 (a) The magnetic field dB produced by a segment
dr of a current-carrying wire. (b) A thin wire is replaced by
a body (or a region) with volume element dv.

2. Magnetostatics

According toBiot-Savart law, the magnetic field pro-
duced by a short segment dr′ of a thin wire carrying cur-
rent I is (see Fig. 4(a)),

dB(r) =
µ0

4π
Idr′ × r− r′

|r− r′|3
, (2.44)

where the magnetic permeability in vacuum µ0 =
4π × 10−7 N/A

2
. For a closed loop C of thin wire,

B(r) =
µ0

4π

∮
C

Idr′ × r− r′

|r− r′|3
. (2.45)

Given a general current distribution, just (see Fig. 4(b))

replace Idr′ with J(r′)dv′, (2.46)

so that

B(r) =
µ0

4π

∫
V

dv′J(r′)× r− r′

|r− r′|3
. (2.47)

This is the most general form of the Biot-Savart law that
applies to all kinds of current distribution.

Again we can rewrite

r− r′

|r− r′|3
= −∇ 1

|r− r′|
. (2.48)

With the identity,

∇× (fv) = ∇f × v + f∇× v, (2.49)

we have

B(r) = −µ0

4π

∫
dv′J(r′)×∇ 1

|r− r′|
(2.50)

= ∇×A(r), (2.51)

with the vector potential,

A(r) =
µ0

4π

∫
dv′

J(r′)

|r− r′|
. (2.52)

For a thin wire, it reduces to

A(r) =
µ0

4π
I

∮
C

dr′
1

|r− r′|
. (2.53)

Since the divergence of curl is zero, so

∇ ·B(r) = ∇ · ∇ ×A(r) = 0. (2.54)

This is Gauss’s law in magnetism. Also, if we take
the curl of B, then

∇×B(r) = µ0J(r). (2.55)

This is Ampère’s law.
Pf: First, we can show that for the steady case ∇·J = 0,
one has ∇ ·A = 0. This is because

∇ ·A(r) =
µ0

4π

∫
dv′J(r′) · ∇ 1

|r− r′|
(2.56)

= −µ0

4π

∫
dv′J(r′) · ∇′ 1

|r− r′|
(2.57)

=
µ0

4π

∫
dv′∇′ · J(r′)︸ ︷︷ ︸

=0

1

|r− r′|
(2.58)

= 0, (2.59)

where we have used the identity,

∇ · (fv) = ∇f · v + f∇ · v. (2.60)

Also, a surface term (for the surface at infinity) has been
dropped.
Second,

∇×B(r) = ∇× (∇×A) (2.61)

= ∇(∇ ·A)−∇2A (2.62)

= −∇2A(r) ∵ ∇ ·A = 0 (2.63)

= −µ0

4π

∫
dv′J(r′) ∇2 1

|r− r′|︸ ︷︷ ︸
=−4πδ(r−r′)

(2.64)

= µ0J(r). QED (2.65)

When written in potential, we have

∇2A(r) = −µ0J(r). (2.66)

This is the vector Poission equation in magnetostat-
ics.
In short, the fundamental equations of magnetostatics

are

∇ ·B(r) = 0, (2.67)

∇×B(r) = µ0J(r). (2.68)
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If we integrate Eq. (2.67) over a region V enclosed by
surface S, then∫

v

dv∇ ·B(r) =

∫
S

ds ·B(r) = 0, (2.69)

This shows that the magnetic flux through a closed sur-
face is always zero. The existence of a magnetic monopole
would contradict this result, but no magnetic monopole
has been found so far.

If we integrate Eq. (2.68) over a surface S with bound-
ary C, then∫

S

ds · ∇ ×B(r) = µ0

∫
S

ds · J(r), (2.70)

or

∮
C

dr ·B(r) = µ0I, (2.71)

where I is the total current flowing through S. This is
the integral form of the Ampère’s law.

3. Dynamic electromagnetic field

Eqs. (2.38), (2.39), (2.67), and (2.68) are the Maxwell
equations for static electromagnetic field. For dynamics
fields, we need to add two new terms,

∇ ·E(r, t) =
ρ(r, t)

ε0
, (2.72)

∇ ·B(r, t) = 0, (2.73)

∇×E(r, t) = − ∂

∂t
B(r, t), (2.74)

∇×B(r, t) = µ0J(r, t) +
1

c2
∂

∂t
E(r, t). (2.75)

The charge density and the current density are related
by the equation of continuity,

∇ · J(r, t) + ∂ρ(r, t)

∂t
= 0. (2.76)

The first change is that in Eq. (2.74), the right hand
side (RHS) is no longer zero. This is Faraday’s law:a
time-changing magnetic field produces an electric field.

The second change is that there is an extra term on
the RHS of Eq. (2.75). This is the famous displace-
ment current added by Maxwell: a time-changing elec-
tric field produces a magnetic field. This modified equa-
tion is called Ampère-Maxwell’s law.

When the fields are static, the Maxwell’s equations de-
couple into two sets of equations: two for electric field,
and two for magnetic field. Thus, electrostatics and mag-
netostatics are independent of each other.

Integrating a divergence (e.g., ∇ · E) over a volume
V or a curl (e.g., ∇ × E) over a surface, and using the
divergence theorem or the Stokes theorem, we have the

(a) (b)

(c) (d)

S

Q

S

( )E t

�

B

�

B

�

S

C

S

C

( )t

B
Φ

E
Φ

V

V

FIG. 15 Illustration of the Maxwell’s equations: (a) Gauss’s
law. (b) Gauss’s law in magnetism. (c) Faraday’s law. (d)
Ampère-Maxwell’s law (with I = 0). Figs. from the web.

integral form of the Maxwell equations (Fig. 5):∫
S

ds ·E(r, t) =
Q

ε0
, (2.77)∫

S

ds ·B(r, t) = 0, (2.78)∮
C

dr ·E(r, t) = −dΦB

dt
, (2.79)∮

C

dr ·B(r, t) = µ0I +
1

c2
dΦE

dt
, (2.80)

in which

ΦB ≡
∫
S

ds ·B, (2.81)

ΦE ≡
∫
S

ds ·E. (2.82)

They are the magnetic flux and the electric flux pass-
ing through surface S. Eq. (2.79) (Eq. (2.80)) tells us
that a changing magnetic (electric) flux through surface
S would induce electric (magnetic) circulation around the
boundary C of S.
Note: The first order derivatives of a vector V(r) have

9 components, ∂Vi/∂xj (i, j = 1, 2, 3). The Maxwell
equations are written in terms of divergence and curl
of E (or B), which does not exhaust the possibilities
just mentioned. This is all right since according to the
Helmholtz theorem, a vector field V(r) that vanishes
at infinity is completely determined by giving its diver-
gence and curl everywhere in space.

C. Some history

In 1873, James C. Maxwell published ”Treatise on elec-
tricity and magnetism” (Maxwell, 1891), in which he con-
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FIG. 16 From left to right, Maxwell, Heaviside, and Hertz.

structed a mathematical framework to describe the phe-
nomena of electromagnetism. It has all the essence in-
cluded but it’s hard to find “Maxwell equations” in the
Treatise, since they are written as 20 equations in 20
variables scattered through the monograph. Some of the
equations describe things like D = εE, or B = ∇ × A.
It’s a pity that Maxwell died six years later at the age of
48, and was unable to pursue this subject further.

The four Maxwell equations we are familiar with nowa-
days are mainly the works of Oliver Heaviside and, in-
dependently, Heinrich R. Hertz (Fig. 6). It’s interest-
ing to know that when the Treatise was just published,
Heaviside (then 24 years old) flipped through it in li-
brary and immediately saw the “prodigious possibilities
in its power”. He then “determined to master the book”.
(Mahon, 2017) Remember that at that time Maxwell is
still not “the Maxwell” and not many people trust his
obscure, sometimes unintelligible theory of electromag-
netism.

Heaviside has no college education, and has forgotten
most of the algebra and trigonometry learned in school.
Thus, he quit his job that has a decent pay, stayed at
home with his far-from-rich parents and started studying
the Treatise. He remained “self-employed” ever since and
never to get a job again. Heaviside has to learn all of
the difficult mathematics of divergence, curl, and related
theorems on his own, without friendly textbooks to ease
the job. In his later years, Heaviside recalls that “It took
me several years before I could understand as much as
I possibly could. Then I set Maxwell aside and followed
my own course.”

The effort and sacrifice pay off. With his own formula-
tion of Maxwell equations, Heaviside discovered things
like electric inductance, contraction of the electric
field of a moving charge (Heaviside ellipsoid), and
magnetic-like field of gravity (gravito-magnetism).

In 1888, to the surprise of everybody, Hertz generated
and detected electromagnetic wave in free space. This
is the strongest boost to the status of Maxwell’s electro-
magnetic theory since at that time there was no other
theory of electromagnetism that predicted the existence
of EM wave. Afterwards, optics becomes a branch of
electromagnetism.

More progress followed, such as the discovery of elec-
tron (the source of electric field) by J. J. Thomson in
1897, the theory of thermal radiation (randomized EM
field) by Ludwig E. Boltzmann and others. The latter
pursuit eventually leads to Max Planck’s important dis-
covery of energy quantum at 1900.
Furthermore, in an attempt to resolve a paradox

regarding motional electromotive force, Einstein dis-
covered the theory of special relativity in 1905. As
a result, Newton’s theory of mechanics needs to be
revised. Nevertheless, Maxwell’s theory remains intact,
since it is based on experimental observations that have
already included relativistic effects.

Problem:
1. The electric potential of an atom is given by

ϕ(r) =
q

4πε0

e−αr

r
, (2.83)

where q(> 0), α are constants.
(a) Find out the electron charge density ρ(r) outside the
nucleus.
(b) Find out the total charge of this charge distribution.
Hint: Poission equation.
2. (a) Show that Eqs. (2.72) and (2.75) are consistent

with the equation of continuity in Eq. (2.76).
Hint: Take the time derivative of ρ on the right-hand side
of Eq. (2.72), and the divergence of J on the right-hand
side of Eq. (2.75).
(b) Suppose there are magnetic monopoles, such that

∇ ·B = µoρm, (2.84)

where ρm is the magnetic charge density Similar to
electric charges, the equation of continuity of magnetic
charges is,

∇ · Jm +
∂ρm
∂t

= 0, (2.85)

where Jm is the magnetic current density. What type of
term should be added to the right-hand-side of Eq. (2.74),
so that new Maxwell equations can be consistent with the
equation of continuity above?

III. ELECTROSTATICS

A. Introduction

There are several ways to find out an electric field.
First, if we have the complete information of charge
distribution ρ(r), then one just needs to evaluate the
Coulomb integral,

E(r) =
1

4πε0

∫
dv′ρ(r′)

r− r′

|r− r′|3
, (3.1)
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FIG. 17 (a) When a positive charge is near a grounded metal
sphere, there are negative induced charges on the surface of
the sphere. (b) The metal box is grounded, except the top
surface, which is maintained at potential ϕ0.

where ε0 = 8.8542× 10−12 C2/Nm2. Or, one may calcu-
late the electric potential first,

ϕ(r) =
1

4πε0

∫
dv′

ρ(r′)

|r− r′|
, (3.2)

then take its gradient to get E = −∇ϕ.
Note: when we write

∫
instead of

∫
V
, an integration over

the whole space is often implied.
The problem with the method above is that the charge

distribution is not always known. For example, when
you place a point charge near a grounded metal sphere,
the induced charge is not known beforehand (Fig. 1).
Or, a metal box is grounded for five of its surface, ex-
cept that the top surface is maintained at potential ϕ0.
The charges on metal box redistribute themselves to meet
this condition, but their distribution unknown. For these
cases, we need Gauss’s law,

∇ ·E(r) =
ρ(r)

ε0
, (3.3)

or Poisson equation,

∇2ϕ(r) = −ρ(r)
ε0

. (3.4)

We need to solve it, given the boundary condition (BC)
for ϕ. Afterwards, we can get the electric field E = −∇ϕ.
The distribution of charges can be determined after the
field is known.

When a system has simple geometry, such as a cylinder
or a sphere, it is convenient to find E using the integral
form of Gauss’s law,∫

S

ds ·E(r) =
Q

ε0
. (3.5)

In this course, we avoid using the second method. Not
because it’s not important or less used, but because we’d
like to focus more on physics, less on solving partial dif-
ferential equations and wielding special functions.

B. Coulomb’s law

Let’s practice the first, direct integration method with
an example.

Example:
Find the electric field along the central axis of (a) a
charged ring, (b) a charged disk, and (c) a charged plane.
All of them uniformly charged.
Sol’n:
(a) Suppose a ring with radius r has charge Q, then its
charge density per unit length λ = Q/2πr. A short seg-
ment dℓ with charge dQ = λdℓ produces an electric field
dE (Fig. 2(a)). Along the central axis at a distance z
away,

dEz =
1

4πε0

dQ

r2 + z2
cosα, cosα =

z√
r2 + z2

. (3.6)

After integration,

Ez(z) =
1

4πε0

∮
C

λdℓ

r2 + z2
cosα (3.7)

=
Q

4πε0

z

(r2 + z2)
3/2

. (3.8)

The components Ex,y cancels away after integration, thus
E(z) = Ez(z)ẑ. If you are interested in the potential
away from the central axis, which is a more difficult prob-
lem, see Chap 3 of Jackson, 1998.
(b) A disk can be considered as a collection of rings

(Fig. 2(b)). Suppose it has radius R and charge Q, then
its surface charge density σ = Q/πR2. A ring with radius
r and width dr has charge

dQ = σ 2πrdr. (3.9)

According to Eq. (3.8), along the central axis at a dis-
tance z away,

dEz =
dQ

4πε0

z

(r2 + z2)
3/2

. (3.10)

Integrate along the radial direction to get

Ez(z) =
1

2ε0

∫ R

0

σrdr
z

(r2 + z2)
3/2

(3.11)

=
σ

2ε0

(
1− z√

R2 + z2

)
. (3.12)

Finally, E(z) = Ez(z)ẑ.
(c) To get the electric field of an infinite charged plane,

just let the R in Eq. (3.12) be infinite,

E(z > 0) =
σ

2ε0
ẑ. (3.13)

On the other side of the plane, obviously we have

E(z < 0) = − σ

2ε0
ẑ. (3.14)

The electric field is discontinuous across the plate,

E(0+)−E(0−) =
σ

ε0
ẑ. (3.15)
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FIG. 18 (a) A charged ring. (b) A charged disk.
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FIG. 19 Electric field is perpendicular to equipotential sur-
face.

C. Electric potential

The following three equations state the same fact
about the electrostatic field,

1. E = −∇ϕ, (3.16)

2. ∇×E = 0, (3.17)

3.

∮
dr ·E = 0, (3.18)

1 implies 2 since the curl of gradient is zero. Conversely,
2 implies 1 since if a vector field is curless, then it can
be written as a gradient (see Chap 1). Also, 2 and 3 are
simply the differential form and the integral form of the
same Maxwell equation (see Chap 2).

1. Equipotential surface

The equation ϕ(r) = ϕ0, where ϕ0 is a constant, defines
an equipotential surface S0. If r and r+ dr are both
located on S0, then moving a charge from r to r + dr
requires no work,

dW = qE · dr = 0. (3.19)

This is valid for any tangent vector dr emanating from
r. Thus, E(r) is perpendicular to the tangent plane of
S0 at r (Fig. 3). That is, the steepest descent −∇ϕ is
perpendicular to the equipotential surface.
Example:
Find out the electric potential of a uniformly charged
wire with length 2L and linear charge density λ.
Sol’n:
Suppose the wire is lying on the z-axis, as in Fig. 4(a).
Since there is rotational symmetry around the wire, it is

(a) (b) u=const

t=const

FIG. 20 (a) A charged wire. (b) Equipotential surfaces and
field lines of a charged wire. (Fig. from Zangwill)

convenient to use the cylindrical coordinate. The poten-
tial at a point with coordinate z, ρ is,

ϕ(r) =
1

4πε0

∫
wire

λdr′

|r− r′|
(3.20)

=
1

4πε0

∫ L

−L

λdz′√
(z′ − z)2 + ρ2

(3.21)

=
λ

4πε0
ln

(√
(L− z)2 + ρ2 + L− z√
(L+ z)2 + ρ2 − L− z

)
,(3.22)

where we have used∫
dx√
x2 + a2

= ln
(√

x2 + a2 + x
)
. (3.23)

When the observation point is far away from the wire,
z, ρ≫ L, and r =

√
z2 + ρ2 ≫ z, L, one has

ϕ(r) ≃ 1

4πε

Q

r
, Q = 2Lλ. (3.24)

It is similar to the potential of a point charge.
On the other hand, if the observation point is close to

the center of the wire, ρ ≪ L, z = 0, then expand the
potential to the second order of ρ/L to get

ϕ(ρ) ≃ − λ

2πε0
ln ρ+

λ

2πε0
ln(2L). (3.25)

Note that it diverges if ρ → 0. Its gradient gives the
electric field,

E(ρ) = −∇ϕ ≃ λ

2πε0

ρ̂

ρ
. (3.26)

Further analysis of the result:
Instead of z, ρ, we can use r+, r− as coordinates (see
Fig. 4(a)),

r± ≡
√

(L± z)2 + ρ2. (3.27)

Note that

r2+ − r2− = 4Lz → z =
1

4L

(
r2+ − r2−

)
. (3.28)

With the two relations above, we can write the potential
in new coordinate ϕ(r+, r−).
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The third choice of coordinate is u, t, where{
u = 1

2 (r− + r+),
t = 1

2 (r− − r+)
↔

{
r− = u+ t,
r+ = u− t

(3.29)

Note that the equation u =constant draws out an ellipse,
and t =constant an hyperbola. Thus the new coordinate
is called elliptic coordinate, which is an orthogonal co-
ordinate since at the intersection of coordinate curves,
the tangents are perpendicular to each other.

Now,

ut = −zL → z = −ut
L
. (3.30)

Thus,

ϕ(u, t) =
λ

4πε0
ln

(
u+ t+ L− z

u− t− L− z

)
(3.31)

=
λ

4πε0
ln

(
u+ L

u− L

)
, (3.32)

which is independent of t. Hence, the potential is a con-
stant when u is fixed. That is, the equipotential surface
is an ellipse (Fig. 4(b)), or an ellipsoid after revolving
around the z-axis. Furthermore, since the curves of fixed
t’s describe electric field lines, since they are perpendic-
ular to the equipotential surfaces.

2. Earnshaw’s theorem

Inside a region V without any charge, the electric po-
tential cannot have any local minimum or local maxi-
mum. This is called Earnshaw’s theorem, which is
true for electrostatic field.
Pf: We’ll prove this by contradiction. Suppose the po-
tential ϕ(r) has a local minimum at point P inside V .
Then, when one moves away from P , the potential in-
creases (Fig. 5).

Surround the point P with a small spherical surface
S. Then on surface S, the gradient ∇ϕ, which is along
the steepest ascent, points outward. That is, if n̂ is the
normal vector of S (pointing outward), then

n̂ · ∇ϕ > 0. (3.33)

for every point on S.
Thus, after integration,∫

S

dsn̂ · ∇ϕ > 0. (3.34)

With the help of divergence theorem, the LHS can be
written as, ∫

S

ds · ∇ϕ = −
∫
V

dv∇ ·E = 0, (3.35)

It is zero because there is no charge inside V . Thus, we
have a contradiction. The same contradiction occurs if P

( )xφ

0
d

dx

φ
>0

d

dx

φ
<

(a) (b)

p
p

φ∇

S V

FIG. 21 (a) Potential and its slope in one dimension. (b)
Potential and its gradient in three dimension.

(a) (b) (c)

S S S

L

A

FIG. 22 Charge distribution with (a) spherical symmetry, (b)
cylindrical symmetry, and (c) planar symmetry. (Fig. from
Zangwill)

is a local maximum. Hence, neither local minimum nor
maximum is allowed inside V . QED.
Alternatively speaking, the location of local max or

local min of ϕ always hosts positive or negative charges.

D. Gauss’s law

As we have mentioned in Sec. III.A, when a system has
a simple geometry, we can use the integral form of the
Gauss’s law to find electric field,∫

S

ds ·E(r) =
Q

ε0
. (3.36)

Example:
Find out the electric field for systems with (Fig. 6)
(a) Spherical symmetry: ρ(r, θ, ϕ) = ρ(r).
(b) Cylindrical symmetry: ρe(ρ, ϕ, z) = ρe(ρ).
(c) Planar symmetry: ρ(x, y, z) = ρ(z). Furthermore,
assume ρ(−z) = ρ(z).
Sol’n:
(a) We expect the electric field to be radial and depend
only on r, E(r) = E(r)r̂. Choose S to be a spherical
surface with radius r, then Eq. (3.36) gives∫

S

ds ·E(r) = 4πr2E(r) =
Q(r)

ε0
, (3.37)

where Q(r) is the charge inside the surface S. Hence,

E(r) =
1

4πε0

Q(r)

r2
. (3.38)

If all of the charges Q0 are confined within radius R, then
when r ≥ R,

E(r) =
1

4πε0

Q0

r2
, (3.39)



18

FIG. 23 A charge surface has different electric fields on two
sides. (Fig. from Jackson, 1998)

same as the field of a point charge Q0 at the origin.
(b) We expect the electric field to be radial and depend

only on ρ, E(r) = E(ρ)ρ̂. Choose S to be a cylindrical
surface with radius ρ and height L, then Eq. (3.36) gives∫

S

ds ·E(r) = 2πρLE(ρ) =
Q(ρ)

ε0
, (3.40)

where Q(ρ) is the charge inside the surface S. Hence,

E(ρ) =
1

2πε0

Q(ρ)/L

ρ
. (3.41)

(c) We expect the electric field to be along z and de-
pend only on z,

E(r) =

{
E(z)ẑ, for z > 0

−E(z)ẑ, for z < 0
(3.42)

Choose S to be a box surface (bisected by the x-y
plane) with area A and height 2z, then Eq. (3.36) gives∫

S

ds ·E(r) = 2AE(z) =
Q(z)

ε0
, (3.43)

where Q(z) is the charge inside the box S. Hence,

E(z) =
Q(z)/A

2ε0
. (3.44)

If all of the charges are confined within |z| < Z, then
when z ≥ Z,

E(z) =
σ0
2ε0

, (3.45)

where σ0 = Q(Z)/A is the surface charge density. In
general, for |z| ≥ Z

E(r) =
σ0
2ε0

sgn(z)ẑ. (3.46)

E. Boundary condition for E

In general, the electric fields on opposite sides of a
charged surface are not the same. Their difference is

caused by the charges on the surface. Suppose a surface
has surface charge density σ(r). At a point r on the
surface, the electric fields on opposite sides are E1(r)
and E2(r) (Fig. 7). What’s the relation between this two
electric fields?
First, divide the surface S into a small disk ◦ and a

surface S′ (S with ◦ removed),

S = ◦+ S′. (3.47)

The disk is microscopically large, but macroscopically
small (say, with a radius of 1 µm). The field, E1(r) or
E2(r), is the superposition of the fields produced by ◦
and S′.
When one approaches the center of the disk, the field is

close to the field of an infinite plane, E(r) = σ
2ε0

sgn(z)ẑ.
Suppose the field produced by S′ is ES , then

E1 = ES − σ

2ε0
n̂, (3.48)

E2 = ES +
σ

2ε0
n̂, (3.49)

where n̂ is the normal vector pointing from region 1 to
region 2.
Even though ES remains unknown, we can substrate

the field to get

E2(r)−E1(r) =
σ(r)

ε0
n̂. (3.50)

This is the BC for fields near a charged surface. Some-
times it is written as,

n̂ · (E2 −E1) =
σ

ε0
, (3.51)

n̂× (E2 −E1) = 0. (3.52)

1. Force on charged surface

Following the example above, the force dF on disk ◦
is due to the charges on S′. The disk exerts no force on
itself. If the disk has area ds, then

dF = (σds)ES . (3.53)

The force per unit area (or pressure), is

f ≡ dF

ds
= σES . (3.54)

Since ES = (E1 +E2)/2, we have

f =
σ

2
(E1 +E2). (3.55)

For example, for a closed metallic surface, the electric
fields on the inside and outside are (Fig. 8),

E1 = 0, E2 =
σ

ε0
n̂. (3.56)
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FIG. 24 The electric fields produced by an area element ds
and the surface with a hole (at ds). (Fig. from Lorrain and
Corson)

Hence, according to Eq. (3.55),

f =
σ2

2ε0
n̂, (3.57)

where n̂ points out of the sphere.
Note that if one calculates the force via

f = σE2 =
σ2

ε0
n̂, (3.58)

then the result is wrong by a factor of two, since it has
wrongly included the force exerted by the disk on itself.

F. Solid angle

The solid angle spanned by an area element ds = dsn̂
located at r with respect to the origin (Fig. 9(a)) is de-
fined as,

dΩ ≡ r̂ · ds
r2

=
r̂ · n̂ds
r2

. (3.59)

Since r̂ · ds is the area of ds projected onto a sphere with
radius r, so dΩ equals the projected area on a unit sphere
centered at r = 0. The solid angle dΩ can be negative if
r̂ · n̂ < 0.

In spherical coordinate,

ds = r2 sin θdθdϕ n̂, (3.60)

hence

dΩ = r̂ · n̂ sin θdθdϕ. (3.61)

For a sphere with radius r, the solid angle extended by
an area dsn̂ (n̂ = r̂) on its surface is,

dΩ =
ds

r2
= sin θdθdϕ, (3.62)

or ds = r2dΩ. (3.63)

The total solid angle of a sphere is

Ω =

∫ π

0

sin θdθ

∫ 2π

0

dϕ = 4π. (3.64)

r

r

r

r ˆ ˆ 0r n⋅ >

ˆ ˆ 0r n⋅ >

ˆ ˆ 0r n⋅ >

r

1

n̂

ds

r̂ d⋅ s

r̂

2

r̂ d

r

⋅ s

(a) (c)

r
θ

Ω

(b)

ˆ ˆ 0r n⋅ <

FIG. 25 (a) The areas ds, r̂ · ds, and r̂ · ds/r2. (b) The
origin is inside (left) or outside (right) S. When it’s outside,
two projected areas with equal magnitude but opposite signs
cancel with each other. (c) A spherical cap.

If S is a closed surface surrounding the origin, then its
projected image covers the unit sphere centered at the
origin once. If the origin is outside S, then part of S
has “positive” image on the unit sphere, the other part
has negative image, and the two parts cancel with each
other. Thus, the total solid angle Ω is zero (Fig. 9(b)).
That is,

Ω =

{
4π if the origin is inside S,
0 if the origin is outside S.

(3.65)

In general, for a surface S described by coordinate r, its
solid angle with respect to a point rs is,

Ω =

∫
dΩ =

∫
S

r− rs
|r− rs|3

· ds. (3.66)

We have just replaced the r in Eq. (3.59) by R = r− rs.
Example:
Find out the solid angle of a spherical cap with respect
to the origin, as shown in Fig. 9(c).
Sol’n:

Ω =

∫
r̂ · ds
r2

(3.67)

=

∫ θ

0

sin θdθ

∫ 2π

0

dϕ (3.68)

or =

∫ 1

cos θ

d cos θ

∫ 2π

0

dϕ (3.69)

= 2π(1− cos θ). (3.70)

When the cap covers the whole sphere (θ = π), Ω = 4π,
as it should be.
Application
There is a point charge q(> 0) at the origin in a uniform
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electric field E = E0ẑ (E0 > 0). Find out the electric
field lines of this system.
Sol’n:
It’s easy to get the electric field of this system,

E(r) =
q

4πε0

r̂

r2
+ E0ẑ. (3.71)

However, we are interested in field lines, not E, which is
the tangent of a field line.

To obtain the mathematical expression of field lines,
let’s adopt the following method. In Fig. 10(a) we see
that the electric flux is conserved along the flow of field
lines,

ΦE(S) = ΦE(S
′), (3.72)

where S and S′ are flat disks perpendicular to the z-axis.
If we can write ΦE as a function of r, θ (no ϕ because
of the rotation symmetry around the z-axis), then flux
conservation should give us an equation of field lines.

Note that the flux through S is the same as the flux
through the cap Sc in Fig. 10(a), thus with spherical
coordinate,

ΦE(S) =

∫
Sc

E · ds, ds = r2r̂dΩ (3.73)

=
q

4πε0

∫
Sc

r̂

r2
· ds+

∫
Sc

E0 · ds (3.74)

=
q

4πε0
Ω(Sc) + E0

∫ 1

cos θ

cos θr2d cos θdϕ

=
q

4πε0
2π(1− cos θ) + E0πr

2 sin2 θ (3.75)

= constant α, (3.76)

in which Ω(Sc) is the solid angle of Sc. Note that the
choice of Sc (instead of S) makes the second term harder
to calculate. However, if we choose S, then the first term
would be even harder to calculate.

Finally, one can write r in terms of θ, and different
constants give different field lines (Fig. 10(b)),

r2 =
α− q

ε0
sin2 θ

2

E0π sin
2 θ

, θ ̸= 0. (3.77)

G. Electric potential energy

Electric potential energy is the potential energy of
charges in an external electric potential. Suppose there
are two sets of charge distribution ρ1(r) and ρ2(r). They
can be spatially separated or mixed (but remain different
sets). The first set produces electric potential,

ϕ1(r) =
1

4πε0

∫
dv′

ρ1(r
′)

|r− r′|
, (3.78)

(a) (b)

Sc

FIG. 26 (a) A point charge in a uniform electric field (Fig.
from Zangwill). (b) The field lines and equipotential lines of
the system in (a). Fig. from Maxwell, 1891.

similarly for the second set. Then ρ2(r) in ϕ1(r) has the
electric potential energy,

VE =

∫
dvρ2(r)ϕ1(r) (3.79)

=
1

4πε0

∫
dvdv′

ρ2(r)ρ1(r
′)

|r− r′|
(3.80)

=

∫
dv′ρ1(r

′)ϕ2(r
′). (3.81)

That is, the potential energy of ρ2(r) in ϕ1(r) is the same
as that of ρ1(r) in ϕ2(r). This is called Green’s reci-
procity relation.
Application:
In a finite region without any charge, the average of po-
tential ϕ(r) over a spherical surface S is equal to its value
at the center of the sphere (Fig. 3-11). That is, if the ra-
dius of the fictitious sphere S is R (which does not need
to be small), then

⟨ϕ1(r)⟩S ≡ 1

4πR2

∫
S

dsϕ(r) = ϕ(0). (3.82)

This is called the mean value theorem of electrostatic
potential.
Pf: The are more than one way to prove this theorem.
Here we use a trick using Green’s reciprocity relation.
Suppose that the charge density that produces the po-
tential is ρ(r), which is outside S. Let

ρ1(r) = ρ(r), ϕ1(r) = ϕ(r). (3.83)

In order to select the potential on the surface of S, choose

ρ2(r) = δ(r −R). (3.84)

It has a total charge

Q2 =

∫
dvδ(r −R) = 4πR2. (3.85)

The charge ρ2(r) produces a potential ϕ2(r),

ϕ2(r) =
1

4πε0

∫
dv′

ρ2(r
′)

|r− r′|
(3.86)

=

{
1

4πε0

Q2

r , r ≥ R,
1

4πε0

Q2

R , r ≤ R.
(3.87)
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FIG. 27 A fictitious sphere outside the distribution ρ1 of
charges. The charges ρ2 on the surface of the sphere are
employed to prove the mean value theorem.

Be aware that ρ2(r) is simply a mathematical apparatus
and does not really physically coexist with ρ1(r).
According to Green’s reciprocity relation, one has∫

dvδ(r −R)ϕ1(r) =

∫
dvρ1(r)ϕ2(r), (3.88)

The integration is over the whole space. First, the LHS
gives

LHS =

∫
r2drdΩδ(r −R)ϕ1(r) (3.89)

=

∫
S

R2dΩϕ1(R), R
2dΩ = ds (3.90)

=

∫
S

dsϕ1(r). (3.91)

Since the charge density ρ is outside S, the integrand of
the RHS is nonzero only when r > R,

RHS =

∫
r>R

dvρ1
1

4πε0
(r)

Q2

r
(3.92)

=
Q2

4πε0

∫
r>R

dv
ρ1(r)

r
(3.93)

= 4πR2︸ ︷︷ ︸
Q2

ϕ1(0). (3.94)

Equate the LHS with the RHS, we have

⟨ϕ1(r)⟩S = ϕ1(0), QED. (3.95)

Note that the mean value theorem implies Earnshaw’s
theorem: If there is a local min or max in a charge-free
region, then the mean value theorem would no longer be
true. Thus, in order for the later to be true, there cannot
be local min/max in a charge-free region.

H. Electrostatic energy

The electrostatic energy of a charge distribution equals
the total work required to assemble these charges, start-
ing from an initial state with energy zero, when all
of the charges are dispersed far away from each other.
First, consider two point charges q1, q2 at r1, r2. The

electrostatic energy is (ignoring the self-energy of point
charges),

U12 =
1

4πε0

q1q2
|r1 − r2|

, (3.96)

which is the same as the potential energy of q2 in the
field produced by q1, or vice versa.

If there are N charges q1, · · · , qN at r1, · · · , rN , then
the electrostatic energy is (again ignoring the self-
energy),

UE =
∑
i<j

Uij =
1

2

N∑
i,j=1

Uij (3.97)

=
1

8πε0

N∑
i,j=1

qiqj
|ri − rj |

(3.98)

=
1

2

N∑
i=1

qiϕ(ri), (3.99)

where

ϕ(ri) =
1

4πε0

N∑
j=1

qj
|ri − rj |

. (3.100)

It is half (to avoid double counting) of the sum of the
potential energy from each charge.

A continuous charge distribution can be divided into
volume elements with charges qi = ρ(ri)dvi. Thus, just
replace the qi in Eq. (3.98) with ρ(ri)dvi, and replace the
summation with integral to get

UE =
1

8πε0

∫
dvdv′

ρ(r)ρ(r′)

|r− r′|
(3.101)

=
1

2

∫
dvρ(r)ϕ(r). (3.102)

We can rewrite this expression as,

UE =
ε0
2

∫
dv|E|2. (3.103)

Pf: The charge density can be related to field using
Gauss’s law,

ρ(r) = ε0∇ ·E. (3.104)

With integration by parts, Eq. (3.102) becomes

UE =
ε0
2

∫
dv∇ ·E ϕ(r) (3.105)

= −ε0
2

∫
dvE · ∇ϕ+ surface term (3.106)

=
ε0
2

∫
dv|E|2. (3.107)
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The surface term can be dropped since the surface (of
the whole space) is at infinity. The integrand above is
the energy density of electric field,

uE =
ε0
2
|E|2 (3.108)

Note that the electrostatic energy in Eq. (3.101) is
always positive but the one in Eq. (3.98) can be posi-
tive or negative. This is because the self-energy of point
charge, which is positive and infinite, is not included in
Eq. (3.98).

To illustrate this, consider two different charge dis-
tributions ρ1 and ρ2. The electrostatic energy of the
whole system with ρ(r) = ρ1(r) + ρ(r) is, according to
Eq. (3.101),

UE = U1 + U2 +
1

4πε0

∫
dvdv′

ρ1(r)ρ2(r)

|r− r′|
, (3.109)

where U1,2 are the “self-energies” of ρ1,2. UE is al-
ways positive, but the “interaction energy” (the last term
above) can be either positive or negative.
Example:
Calculate the electrostatic energy of a uniformly charged
ball with radius a and charge Q0.
Sol’n:
Instead of using Eq. (3.107), let’s calculate UE with the
work required to build this charged ball. Write the charge
density of the ball as ρ0. A ball with radius r has charge
Q(r) = ρ0(4πr

3/3), Q(a) = Q0. The work required to
add an additional layer with thickness dr is dW = dQ ϕs,
where ϕs is the potential at the surface,

dQ = ρ04πr
2dr, (3.110)

ϕs =
1

4πε0

Q(r)

r
=

ρ0
3ε0

r2. (3.111)

Thus,

dW = dQ ϕs =
4π

3ε0
ρ20r

4dr, (3.112)

and

UE =

∫
dW (3.113)

=
4π

3ε0
ρ20

∫ a

0

r4dr, ρ0 =
Q0

4πa3/3
(3.114)

=
3

5

Q2
0

4πε0a
. (3.115)

You may also calculate UE using Eq. (3.107). This is
left as an exercise.

Problem:
1. Starting from the electric potential for a finite,

charged wire in Eq. (3.22), verify that (a) at large dis-
tance it reduces to Eq. (3.24); (b) at short distance, it
reduces to (3.25).

ρ(r’)

E(r)

FIG. 28 Observe a localized charge distribution at a distance
far away.

2. Suppose a metallic, spherical shell with radius 1 m
has total charge Q = 10−3 C.
(a) Find out its surface charge density σ.
(b) Find out magnitude and direction of the pressure f
(due to the electric field) on the wall of the spherical shell.

3. Two concentric, spherical metal shells have radii a
and b (b > a). The inner shell and the outer shell have
charges Q and –Q respectively. Two shells are separated
by vacuum.
(a) What is the electric field inside and outside the two
shells?
(b) What is the total electrostatic energy of this system?

IV. ELECTRIC MULTIPOLES

A. Multipole expansion

Electric multipoles are useful if 1). the charge distri-
bution ρ(r) is localized within a finite region, and 2). the
location of observation is far away (Fig. 1).

In general, the electric potential is given as,

ϕ(r) =
1

4πε0

∫
dv′

ρ(r′)

|r− r′|
. (4.1)

If the condition above is satisfied, r ≫ r′, then we can
use the binomial expansion to have

1

|r− r′|
≃ 1

r
+

r̂

r2
· r′ + 1

2r3
[
3(r̂ · r′)2 − |r′|2

]
. (4.2)

It follows that,

ϕ(r) ≃ 1

4πε0

[∫
dv′ρ(r′)

]
1

r
(4.3)

+
1

4πε0

[∫
dv′ρ(r′)r′

]
· r

r3

+
1

4πε0

[
1

2

∫
dv′ρ(r′)

(
3r′ir

′
j − r′2δij

)] rirj
r5

.

The Einstein summation convention has been used. In-
side the square brackets are electric monopole moment
(electric charge), electric dipole moment, and elec-



23

−

−

−

−

−

−

−

FIG. 29 From left to right, sets of point charges with electric
monopole, dipole, quadrupole, and octupole.

tric quadrupole moment,

Q =

∫
dv′ρ(r′), (4.4)

p =

∫
dv′ρ(r′)r′, (4.5)

Θij =
1

2

∫
dv′ρ(r′)

(
3r′ir

′
j − r′2δij

)
. (4.6)

Hence,

ϕ(r) ≃ 1

4πε0

(
Q

r
+

p · r
r3

+Θij
rirj
r5

)
. (4.7)

Note that Q, pi and Θij are simply sets of numbers, not
functions of r. Once these numbers are known for the
charge distribution of interest, then its potential every-
where can be easily obtained from Eq. (4.7). The poten-
tials of monopole, dipole, and quadrupole decrease with
distance as 1/r, 1/r2, and 1/r3. At large distance, higher
multipoles can be neglected.

The quadrupole moment Θij is a 3 × 3 matrix. It is
not difficult to see from Eq. (4.6) that

Θji = Θij (4.8)

tr Θij ≡ Θii = 0. (4.9)

That is, it is a traceless, symmetric matrix. Hence it has
only 5 independent matrix elements. Thus, the multipole
moments Q, pi and Θij have 1, 3, and 5 independent
components respectively.

For a set of point charges {qα, α = 1, · · · , , N}, their
charge density is (see Chap 2),

ρ(r) =

N∑
α=1

qαδ(r− rα). (4.10)

Substitute this to Eqs. (4.4), (4.5), and (4.6), we will get

Q =
∑
α

qα, (4.11)

pi =
∑
α

qαrα, (4.12)

Θij =
1

2

∑
α

qα
(
3rαirαj − r2αδij

)
(4.13)

See Fig. 2 for examples of multipoles with point charges.

FIG. 30 The electric field of an electric dipole.

B. Electric dipole

From the dipole potential,

ϕ(r) =
1

4πε0

p · r̂
r2

, (4.14)

we can derive its electric field,

E(r) = −∇ϕ =
1

4πε0

3r̂(r̂ · p)− p

r3
. (4.15)

The field weakens as 1/r3 and has the distribution shown
in Fig. 3.

Example:
Suppose there are charges ρ(r) inside a ball V with vol-
ume V , show that the average of the electric field over
the ball,

⟨E(r)⟩V ≡ 1

V

∫
V

dvE(r) = − 1

3ε0

p

V
, (4.16)

where p is the electric dipole moment due to the charges
(see Fig. 4(a)). On the other hand, if the charges ρ(r)
are outside V , then the averaged field is equal to the field
at the center of the sphere (Fig. 4(b)),

⟨E(r)⟩V = E(0). (4.17)

The latter is analogous to the mean value theorem of
electrostatic potential (Chap 3).
Pf: The Coulomb integral for electric field is

E(r) =
1

4πε0

∫
dv′ρ(r′)

r− r′

|r− r′|3
. (4.18)

Thus,

1

V

∫
V

dvE(r) =
1

V

∫
V

dv
1

4πε0

∫
ρ̸=0

dv′ρ(r′)
r− r′

|r− r′|3

= − 1

V

∫
ρ ̸=0

dv′ρ(r′)
1

4πε0

∫
V

dv
r′ − r

|r′ − r|3︸ ︷︷ ︸
=Ẽ(r′)

,

where Ẽ(r′) is the electric field of a fictitious ball V with
charge density ρ̃ = 1.
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FIG. 31 Charges are inside a sphere (a), and outside a sphere
(b). (Fig. from Jackson)

Note that r′ is inside V if all of the charges are inside
V . To get the electric field inside, choose a sphere S with
radius r′ and use ∫

S

ds · Ẽ =
Q̃(r′)

ε0
, (4.19)

→ Ẽ4πr′2 =
1

ε0

4

3
πr′3, (4.20)

→ Ẽ(r′) =
1

3ε0
r′. (4.21)

Thus,

⟨E⟩V = − 1

V

∫
dv′ρ(r′)

1

3ε0
r′ (4.22)

= − 1

3ε0

p

V
. (4.23)

Why there is a minus sign in front of p? From Fig. 4(a),
you can see that p points to the center, but most of the
field lines inside the sphere point away from the center.
This is why ⟨E⟩V is anti-parallel to p.

If ρ(r) is on the outside of the sphere V , then the first
two steps of the proof above are the same, but now Ẽ(r′)
is the field outside the uniformly charged ball. It follows
that

E(r′) =
V

4πε0

r′

r′3
(ρ̃ = 1). (4.24)

Thus,

⟨E⟩V = − 1

V

∫
dv′ρ(r′)

V

4πε0

r′

r′3
(4.25)

=
1

4πε0

∫
dv′ρ(r′)

0− r′

|0− r′|3
(4.26)

= E(0). (4.27)

QED.
In general, when there are charges both inside and out-

side of the sphere, then

⟨E(r)⟩V = − 1

3ε0

pin

V
+Eout(0), (4.28)

where pin is due to the charges inside, and Eout(0) is due
to the charges outside.

1. Point electric dipole

Consider the electric dipole shown in Fig. 3. The two
charges ±q/s are separated by sb and has an electric
dipole moment p = qb. In the limit s → 0, it becomes
a point electric dipole, but the dipole moment is not
changed. Thus, the dipole field remains the same,

E(r) =
1

4πε0

3r̂(r̂ · p)− p

r3
. (4.29)

As we have explained at the beginning of this chapter,
the multipole expansion is valid when r ≫ r′. For a point
dipole, r′ → 0, thus the range of validity of the dipole
field above extends down to the region close to the point
r → 0.

However, if you integrate the field in Eq. (4.29) over a
ball V centered at r = 0, then∫

V

dvE(r) =
1

4πε0

∫
V

dv
3r̂(r̂ · p)− p

r3
= 0. (4.30)

It is zero due to angular integration, no matter if the ball
is large or small. This contradicts the result in Eq. (4.16).

Eq. (4.29) is valid almost everywhere, except at r = 0,
where the field diverges. In order to resolve the contra-
diction and ensure that

1

V

∫
V

dvE(r) = − 1

3ε0

p

V
, (4.31)

we can add a delta function to Eq. (4.29), so that

E(r) =
1

4πε0

3r̂(r̂ · p)− p

r3
− p

3ε0
δ(r). (4.32)

The delta function can only be non-zero (in fact, infi-
nite) when r = 0. Now the equation is valid everywhere,
including the origin.

C. Electric quadrupole

Recall that the quadrupole moment is a traceless, sym-
metric matrix. Like the moment of inertia in classi-
cal mechanics, we can always find a coordinate so that
the matrix is diagonalized. Under this circumstance,
the coordinate axes are called principle axes. If the
charge distribution has certain symmetry, then the prin-
ciple axes are along the symmetry axes.

For example, for the ellipsoids in Fig. 5, the principle
axes are along the dotted lines. There is no distinction
between x-axis and y-axis, so we expect Θxx = Θyy. Fur-
thermore, since the quadrupole moment matrix is trace-
less,

Θxx +Θyy +Θzz = 0, (4.33)
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FIG. 32 From left to right, a prolate ellipsoid, a sphere, and
an oblate ellipsoid.

so it must be of the form

Θ =

 −Θzz/2 0 0
0 −Θzz/2 0
0 0 Θzz

 , (4.34)

where

Θzz =

∫
dvρ(r)(3z2 − r2) (4.35)

=

∫
dvρ(r)(2z2 − x2 − y2). (4.36)

If the prolate ellipsoid is uniformly charged, then it’s not
difficult to see that Θzz > 0. On the other hand, the
oblate ellipsoid has Θzz < 0. A uniformly charged ball
has no quadrupole moment, Θzz = 0.

D. Potential energy and force

The potential energy of a charge distribution ρ(r) in
an external potential ϕ(r) is,

VE =

∫
dvρ(r)ϕ(r). (4.37)

Assume that the potential varies smoothly compared to
the charge distribution, then we can expand it with re-
spect to a point 0 near the charges,

ϕ(r) ≃ ϕ(0) + r · ∇ϕ(0) + 1

2
(r · ∇)2ϕ(0) (4.38)

= ϕ(0)− r ·E(0)− 1

2
rirj

∂Ej

∂ri
(0). (4.39)

Since ∇ ·E = 0 for the external field near the charges,
we can add 1

6r
2∇ ·E(0) to the last term and get

ϕ(r) = ϕ(0)−r ·E(0)− 1

6

(
3rirj − r2δij

) ∂Ej

∂ri
(0). (4.40)

Thus, with Eqs. (4.4), (4.5), and (4.6), we have

VE = qϕ(0)− p ·E(0)− 1

3
Θij

∂Ej

∂ri
(0). (4.41)

It is composed of monopole energy, dipole energy, and
quadrupole energy (higher order terms are neglected).

Note that the monopole energy depends on the poten-
tial, the dipole energy depends on the field, while the
quadrupole energy depends on the field gradient. Hence,
if the field is uniform, then there is no quadrupole energy.
In particular, a dipole p1 in the field of another dipole

p2 (see Eq. (4.15)) has the dipole-dipole interaction en-
ergy,

V12 = −p1 ·E2(r1) (4.42)

=
1

4πε0

p1 · p2 − 3(R̂ · p1)(R̂ · p2)

R3
, (4.43)

which can either be repulsive or attractive, and decreases
as 1/R3, R = r1 − r2.
The forces on the multipoles are given by the gradient

of potential energy. Thus,

F = −∇VE (4.44)

= qE(0)−∇(p ·E)− 1

3
Θij

∂2E

∂ri∂rj
. (4.45)

That is, you need a field gradient to have a dipole force,
and a non-zero second order derivative of field to have a
quadrupole force.

E. Macroscopic polarizable medium

Consider a polarizable medium that is composed of
polarizable atoms or molecules. If the dipole moment
of the i-th atom is pi, then we can define the electric
polarization as,

P(r′) =

∑
i in ∆V

pi

∆V
, (4.46)

where ∆V is a volume element around r′ (Fig. 6(a)). The
volume element is microscopically large but macroscop-
ically small (e.g., 1 µm in size), so that there are many
atoms in ∆V , but r′ remains a point from human’s point
of view.
Since the volume element ∆V has charge q = ρ∆V and

dipole p = P∆V , it produces a potential at r far away,

∆ϕ(r) ≃ 1

4πε0

(
q

R
+

p ·R
R3

)
, R = r− r′ (4.47)

=
1

4πε0

[
ρ(r′)∆V

|r− r′|
+

P(r′)∆V · (r− r′)

|r− r′|3

]
.

After integration, we have the total potential,

ϕ(r) =
1

4πε0

[∫
dv′

ρ(r′)

|r− r′|
+

∫
dv′

P(r′) · (r− r′)

|r− r′|3

]
.

(4.48)
Since (see Chap 1)

r− r′

|r− r′|3
= ∇′ 1

|r− r′|
, (4.49)
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FIG. 33 (a) A volume element with many dipoles in a polar-
izable medium. (b) A semi-infinite dielectric below the x− y
plane.

the second term of Eq. (4.48), after integration by parts,
can be written as∫

dv′P(r′)∇′ 1

|r− r′|
= −

∫
dv′∇′ ·P(r′)

1

|r− r′|
.

(4.50)
It follows that

ϕ(r) =
1

4πε0

∫
dv′

ρ(r′)−∇′ ·P(r′)

|r− r′|
. (4.51)

The numerator can be considered as an effective charge
density ρeff = ρ+ ρP , where

ρP (r) ≡ −∇ ·P(r) (4.52)

is the polarization charge density. Since the charge
density in the integral above directly links with the one
in Gauss’s law (see Chap 2), so we have

∇ ·E =
ρeff
ε0

=
1

ε0
(ρ−∇ ·P) . (4.53)

Define the electric displacement field,

D = ε0E+P, (4.54)

then ∇ ·D(r) = ρ(r). (4.55)

This is Gauss’s law in material (rather then in vacuum).
A side note: Maxwell coined the term displacement,

which might be based on his (now out-of-date) mechan-
ical model of ether. This field can be dispensed with,
since we can just use E and P instead. According to
Purcell, this quantity is sometimes treated “with more
respect than it deserves” (Purcell, 2004).

If the polarization is proportional to the electric field,

P(∝ E) = ε0χeE, (4.56)

then

D = ε0(1 + χe)E = εE, (4.57)

where χe is electric susceptibility, and ε ≡ ε0(1 + χe)
is electric permittivity.

1. Polarization charge

Non-uniform polarization generates effective charge,
ρP = −∇ · P. We’ll use a simple example to illustrate
this: In Fig. 6(b) there is a semi-infinite dielectric with
uniform polarization,

P = P0θ(−z)ẑ, (4.58)

in which θ is the step function. Its polarization charge
density is,

ρP = −∇ ·P = P0δ(z)ẑ. (4.59)

We can see from the figure that the bulk is charge-
neutral, and only the outer-most electrons can be ex-
posed. So its reasonable for the polarization charges to
reside on the surface of the dielectric.
Note that the polarization charges are bounded to

molecules. They cannot move away like free electrons
in metals.

F. Electrostatic energy

The electrostatic energy of a charge distribution equals
the total work required to assemble these charges, start-
ing from the initial state when every bit of charges are
far away from each other. Suppose we are in the middle
of the process of building up the charges, when a charge
distribution ρ(r) that produces a potential ϕ(r) has been
assembled. Then the work it takes to add δρ(r) to this
system is

δW =

∫
dvδρ(r)ϕ(r). (4.60)

The extra charges result in a change of δD(r), and

∇ · δD(r) = δρ(r). (4.61)

Thus,

δW =

∫
dv∇ · [δD(r)ϕ(r)] (4.62)

=

∫
dv∇ · (ϕδD)−

∫
dv∇ϕ · δD (4.63)

=

∫
dvE · δD. (4.64)

The first integral in the second line can be turned into
a surface integral at infinity. For localized charges this
surface integral vanishes.

Therefore, to build up the system from D = 0 to its
final state D, we need to do the work

W =

∫
dv

∫ D

0

E · δD, (4.65)
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FIG. 34 The local field Eloc at the red arrow is approximately
the sum of the field from the continuous medium with a hole,
plus the field from dipoles inside the hole.

which is also the electrostatic energy UE of this system.
If the medium is linear, then

E · δD =
1

2
δ(E ·D). (4.66)

Hence

UE =
1

2

∫
dvE ·D. (4.67)

The integrand is the energy density

uE(r) =
1

2
E ·D. (4.68)

For charges in vacuum, D = ε0E, and we are back to the
result in Chap 3, uE = ε0

2 |E|2.

G. Local field and electric permittivity

Apply an electric field Eex to a polarizable medium,
then the medium is polarized with P = ε0χeEloc. For a
rarefied medium, Eloc is just the applied field Eex. How-
ever, for a dense medium, it is the applied field plus the
induced field Ep due to polarization,

Eloc = Eex +Ep. (4.69)

An atom or a molecule inside the material is polarized
by the local field Eloc. Instead of adding up the dipolar
fields from other molecules, we use the following trick to
calculate Eloc: Divide the medium into two regions, a
spherical region with radius R and a region without the
sphere. The molecule (or atom) of interest is inside the
sphere that is macroscopically small but microscopically
large.

For the charge outside the sphere, we can adopt the
coarse-grained, macroscopic electric field E. Inside the
sphere near the molecule, the material is not treated as
a continuous spherical medium that produces Esph, but
as a collection of dipoles that produces Enear. Thus,

Eloc = E−Esph +Enear. (4.70)

That is, we remove the field Esph from E and fill in the
field Enear (see Fig. 7).
We can estimate Esph with Eq. (4.16),

Esph ≃ ⟨E⟩V = − 1

3ε0

pV

V
= − 1

3ε0
P, (4.71)

where pV is the total dipole moments inside V , pV =
PV . The field Enear depends on crystal symmetry. For
a regular lattice, or a random distribution of dipoles,
Enear ≃ 0 due to the cancellation from dipoles at sym-
metric positions. Thus,

Eloc = E+
P

3ε0
. (4.72)

This is the Lorentz relation.
The molecule is polarized by the local field,

p = ε0γmEloc, (4.73)

where γm is the molecular polarizability. If the den-
sity of the number of dipoles is n, then

P = np = nε0γm

(
E+

P

3ε0

)
, (4.74)

which gives

P = ε0
nγm

1− 1
3nγm

E = ε0χeE. (4.75)

The relativity permittivity εr ≡ ε/ε0 = 1 + χe.
Thus,

εr = 1 +
nγm

1− 1
3nγm

, (4.76)

or

εr − 1

εr + 2
=
γm
3
n. (4.77)

This is the Clausius-Mossotti relation, which links
the macroscopic quantity εr with the microscopic quan-
tity γm. We also see that, for a given material, (εr −
1)/(εr + 2) is proportional to the density of molecules.
For example, the molecular polarizability of methane

(CH4) is γm = 4π × 2.6 × 10−30 m3. At freezing point
and 1 atm, there are 2.8×1025 molecules per cubic meter,
hence

εr = 1.00091, (4.78)

which is close to the dielectric constant measured εr =
1.00088 (Purcell, 2004).
Note that according to Eq. (4.72), the local field

Eloc =
(
1 +

χe

3

)
E (4.79)

=
1

1− 1
3nγm

E =
εr + 2

3
E. (4.80)
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FIG. 35 The same charge distribution viewed from two dif-
ferent coordinates.

It is larger then the macroscopic field if εr > 1.
Problem:
1. From the third term of the binomial expansion in

Eq. (4.2), we get the quadrupole potential in Eq. (4.3).
Show that the quadrupole potential can also be written
as

ϕquad(r) =
1

4πε0
Qij

3rirj − δijr
2

r5
, (4.81)

where Qij ≡ 1

2

∫
dv′ρ(r′)r′ir

′
j . (4.82)

2. The magnitude of an electric charge is independent
of the choice of coordinate (Fig. 8). However, in general
pi and Θij do. Show that
(a) if a system is neutral (Q = 0), then p is independent
of the choice of coordinate.
(b) If both Q and p vanish, then Θij is independent of
the choice of coordinate.

V. MAGNETOSTATICS

A. Introduction

There are several ways to find out a magnetic field.
Given a current distribution, we can always use the Biot-
Savart law,

B(r) =
µ0

4π

∫
V

dv′J(r′)× r− r′

|r− r′|3
, (5.1)

where µ0 = 4π × 10−7 N/A
2
. Alternatively, we can find

out the vector potential using

A(r) =
µ0

4π

∫
dv′

J(r′)

|r− r′|
, (5.2)

then take its curl to find the field, B = ∇×A.
Two of the Maxwell equations govern the magneto-

static field, ∫
S

ds ·B(r) = 0, (5.3)∮
C

dr ·B(r) = µ0I, (5.4)

2
( )B x

2

0
dB

dx
<

2

0
dB

dx
>

(a) (b)

p
p

2
B∇

S V

FIG. 36 (a) B2(x) and its slope in one dimension. (b) B2(r)
and its gradient in three dimension.

where I is the current flowing through loop C. If the
current distribution has certain symmetry, then it is con-
venient to find out B using the Ampère law in Eq. (5.4).

The differential form of the Maxwell equations are,

∇ ·B(r) = 0, (5.5)

∇×B(r) = µ0J. (5.6)

Since a field without divergence can be written as a curl,
the first equation implies B = ∇ × A. Substitute it
to the second equation, and recall that ∇ · A = 0 for
steady current (see Chap 2), we have the vector Pois-
sion equation,

∇2A(r) = −µ0J(r). (5.7)

It needs to be solved together with the boundary con-
dition. Again, as in electrostatics, we will not use this
approach in this course.

1. Magnetic force

A point charge q moving in a magnetic field B feels a
magnetic force, called the Lorentz force,

F = qv ×B. (5.8)

For a thin wire carrying a current I, each line element dr
feels a Lorentz force,

dF = Idr×B. (5.9)

For the whole wire, just integrate to have the total force,

F = I

∫
C

dr×B(r). (5.10)

For a general current distribution J(r), just replace Idr
with J(r)dv, so that

F =

∫
dvJ(r)×B(r). (5.11)

Note that the field B in the equation is an external one,
not including the field produced by J itself.
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FIG. 37 (a) A ring with radius a and current I. (b) Distri-
bution of magnetic field near a ring.

2. Thomson’s theorem

In a region V without any current, a magnetic field
|B(r)| can have local minimum, but not local maximum.

Pf: We’ll prove this by contradiction. Suppose |B(r)|, or
B2(r), has local maximum at a point p, then near the
point, ∇B2 points toward p (Fig. 36). Therefore, if we
integrate it over a spherical surface S surrounding p, then∫

S

ds · ∇B2 < 0. (5.12)

Using the divergence theorem,∫
S

ds ·V =

∫
V

dv∇ ·V, (5.13)

we have ∫
S

ds · ∇B2 =

∫
S

dv∇2B2 (5.14)

=

∫
V

∇i∇iBjBj . (5.15)

The integrand

∇i (∇iBjBj) = ∇i [2Bj(∇iBj)] (5.16)

= 2(∇iBj)
2 + 2Bj(∇2Bj). (5.17)

The integral of the second term is zero (proved later),
thus ∫

S

ds · ∇2B2 =

∫
V

dv2(∇iBj)
2 > 0. (5.18)

This contradicts with Eq. (5.12). Thus the premise that
|B(r)| has local maximum can’t be valid. QED.

We now prove that the integral of the second term in
Eq. (5.17) is zero. First, since there is no current inside
V , ∇×B = 0, thus

∇iBj = ∇jBi. (5.19)

x

x

a

d

FIG. 38 The magnetic field at the center of a Helmholtz coil
is nearly uniform. Fig. from Zangwill, 2013.

It follows that∫
V

dvBj(∇2Bj) =

∫
V

dvBj∇i ∇iBj︸ ︷︷ ︸
=∇jBi

(5.20)

=

∫
V

dvBj∇j(∇ ·B) (5.21)

= 0. (5.22)

B. Biot-Savart law

Let’s start with a classic example:
Find out the magnetic field along the central axis of a
circular wire with radius a and current I.
Sol’n:
According to the Biot-Savart law, a line element Idr′

generates

dB(r) =
µ0

4π
Idr′ × r− r′

|r− r′|3
(5.23)

=
µ0

4π
Idr′

1

|r− r′|2
along dB. (5.24)

Note that dr′ ⊥ r− r′, and dB is shown in Fig. 37(a).
When one integrates over the circle, the horizontal

component of dB vanishes, but dBz = dB cosα survives.
Therefore,

Bz(z) =
µ0

4π

∮
C

Idr′
cosα

z2 + a2
, cosα =

a√
z2 + a2

=
µ0I

2

a2

(z2 + a2)3/2
, (5.25)

and B(z) = Bz(z)ẑ. The field decreases as 1/z3 at
large distance. The distribution of field lines is shown
in Fig. 37(b).
A Helmholtz coil consists of two rings with the same

radius, and the same magnitude and direction of current
(Fig. 38). Along the central axis,

Bz(z) =
µ0

2

{
Ia2

[(z − d/2)2 + a2]3/2
+

Ia2

[(z + d/2)2 + a2]3/2

}
.

(5.26)
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FIG. 39 (a) A solenoid with finite length. (b) The magnetic
field along the central axis of the solenoid.

It can be shown that dBz(z)/dz = 0 at the center
(z = 0). Actually, from the symmetry of the Helmholtz
coil, one can argue that the derivatives of odd orders
at z = 0 should be zero. It is left as an exercise to
show that when the separation between rings d = a, then
d2Bz(z)/dz

2|z=0 = 0. Thus, the first non-zero derivative
is of the fourth order, d4Bz(z)/dz

4. As a result, the mag-
netic field is nearly uniform at the center of the Helmholtz
coil with d = a.

1. Solenoid

Consider a solenoid with finite length L (Fig. 39(a)).
It has a uniform surface current density (current per
unit length) K = nI, where n is the number of coils
per unit length. Let’s find out the magnetic field B(z)
along the central axis inside the solenoid. The observa-
tion point is set as the origin of the coordinate. A slice of
the solenoid with width dz has current dI = Kdz, which
produces a magnetic field at the origin (see Eq. (5.25)),

dBz =
µ0

2
Kdz

a2

(z2 + a2)3/2
. (5.27)

Let z = a cot θ, then dz = −a csc2 θdθ. Integrate over
the whole solenoid to get,

Bz(z = 0) =
µ0

2
Ka2

∫ z2

z1

dz

(z2 + a2)3/2
(5.28)

= −µ0

2
K

∫ θ2

π−θ1
sin θdθ (5.29)

=
µ0

2
K(cos θ1 + cos θ2). (5.30)

The dependence of Bz on z is shown in Fig. 39(b). If the
solenoid has infinite length, then θ1, θ2 → 0, and

Bz(z) = µ0K = µ0nI, (5.31)

where n is the density of coils per unit length.

(b)
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…
…
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C1C2

B

L

…
…

FIG. 40 (a) A solenoid with infinite length. (b) An infinite
solenoid with a non-circular cross section that is uniform along
its length.

For the infinite solenoid, due to the translation sym-
metry along the z-axis, we expect the magnetic field to
be uniform along z and directs along the z-direction,
B(r) = Bz(ρ)ẑ, both inside and outside the solenoid.
We can find out the magnetic field easily using Ampère’s
law. First, choose the loop C1 in Fig. 40(a). Since there
is no current flowing through C1, hence∮

C1

dr ·B(r) = 0. (5.32)

Because the choice of C1 is arbitrary (as long as it is
outside), the magnetic field outside must be a constant
and can only be zero.

Next choose the loop C2, then∮
C2

dr ·B(r) = Bz(ρ)L = µ0I. (5.33)

Thus, Bz(ρ) = µ0K is independent of ρ inside the
solenoid. Note that the derivation that leads to Eq. (5.31)
applies only to the magnetic field along the central axis,
while the derivation here applies to any location inside
the solenoid.

2. Solenoid with non-circular cross section

Consider a solenoid with infinite length but arbitrary
cross section, as shown in Fig. 40(b). The cross section
is uniform along its length. The surface current density
K(r) is uniform and flows horizontally. Consider a point
r outside or inside the solenoid. From the Biot-Savart
law,

dB(r) =
µ0

4π
Kdzdr′ × R

R3
, R = r− r′ (5.34)
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in which we have replaced Idr′ with (Kdz)dr′. From the
geometry in Fig. 40(b), we can see that

dr′ = dℓ, (5.35)

R+ ℓ = −zẑ, (5.36)

and R2 = z2 + ℓ2. (5.37)

Thus,

dr′ × R

R3
= −dℓ× ℓ

R3
− dℓ× zẑ

R3
. (5.38)

After integration,

B(r) = −µ0

4π
K

∫ ∞
−∞

dz

∮ (
ℓ× dℓ

R3
+
zẑ× dℓ

R3

)
(5.39)

= −µ0

4π
K

∮ (
ℓ× dℓ

∫ ∞
−∞

dz

R3
+ ẑ× dℓ

∫ ∞
−∞

dz
z

R3

)
.

The second integral is zero; the first integral equals 2/ℓ2.
Thus,

B(r) = −µ0

2π
K

∮
ℓ× dℓ

ℓ2
. (5.40)

Note that

|ℓ× dℓ| = ℓdℓ sinα, (5.41)

and

dℓ sinα = |ℓ+ dℓ| sin dβ ≃ ℓdβ. (5.42)

Hence,

B(r) =
µ0

2π
K

∮
dβ ẑ (5.43)

=

{
µ0Kẑ inside the solenoid

0 outside the solenoid
(5.44)

Note that in a real solenoid, the current cannot be
purely azimuthal since as a whole it needs to flow for-
ward along the central axis. When we take this into ac-
count, the magnetic field would have certain azimuthal
component Bϕ.

C. Ampère’s law

If the distribution of current has a simple symmetry,
then we can use the integral form of the Ampère’s law to
find out the magnetic field.

Example:
Suppose there is a straight wire with infinite length lying
along the z-axis. It has a cylindrical shape with radius a
and carries a uniform current I. Find out the magnetic
field generated by this wire.
Sol’n:

z

ρ

I

C

a

(a) (b)

ρ

B(ρ)

a

0

2

I

a

µ

π

FIG. 41 (a) A cylindrical wire along the z-axis. (b) The
magnetic field inside and outside the wire.

Let’s choose the cylindrical coordinate. The system is
invariant if you rotate around z-axis, or translate along
z-axis, so the magnetic field cannot depend on ϕ, z. It
follows that,

B(r) = B(ρ) = Bρ(ρ)ρ̂+Bϕ(ρ)ϕ̂+Bz(ρ)ẑ. (5.45)

From Ampère’s right-hand rule, we expect the magnetic
field to be along ϕ̂, so

B(r) = Bϕ(ρ)ϕ̂. (5.46)

You may reach the same conclusion with a more detailed
analysis of the Biot-Savart integral.
Choose a loop C with radius ρ around the wire

(Fig. 41(a)), then∮
C

dr ·B(r) = µ0I(ρ), (5.47)

→ 2πρBϕ(ρ) = µ0I(ρ), (5.48)

where I(ρ) is the current passing through the circle C,

I(ρ) =

 I ρ2

a2 if ρ < a

I if ρ > a

. (5.49)

Thus (Fig. 41(b)),

B(r) =


µ0I
2πa

ρ
a ϕ̂ if ρ < a

µ0I
2πρ ϕ̂ if ρ > a

(5.50)

Example:
In Fig. 42(a), a hollow cylindrical can with radius R and
height L has a wire at its center. A current I flows up the
wire, spreads out, flows down, converges at the bottom
of the wire and flows up again.
(a) Using cylindrical coordinate, argue that the magnetic
field has the following form everywhere, both inside and
outside the can,

B(r) = B(ρ, z)ϕ̂. (5.51)
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FIG. 42 (a) A hollow can with a wire inside along its central
axis. (b) A toroidal solenoid.

(b) Find out B(ρ, z).
Sol’n:
(a) Since the system is invariant with respect to the

rotation around the wire (z-axis), so the magnetic field
cannot depend on ϕ,

B(r) = B(ρ, z) (5.52)

= Bρ(ρ, z)ρ̂+Bϕ(ρ, z)ϕ̂+Bz(ρ, z)ẑ. (5.53)

There is no obvious reason to rule out certain component
of B. But from a detailed analysis of the Biot-Savart law,
we can show that the field B is circular and has only the
ϕ̂ component:
First, align the x-axis with the direction of observa-

tion point p, which can be inside or outside the can
(Fig. 42(a)). In general,

J(r′) = Jxx̂+ Jyŷ + Jz ẑ, (5.54)

r− r′ = (x− x′)x̂+ (0− y′)ŷ + (z − z′)ẑ. (5.55)

The distribution of current has a mirror symmetry with
respect to the x-z plane. So for a current element
J(r′)dv′, there is a mirror counterpart J̃(r̃′)dv′, with

J̃ = (Jx,−Jy, Jz), and r̃′ = (x′,−y′, z′). (5.56)

The magnetic field produced by this pair of current ele-
ments is

dB ∼ J× (r− r′) + J̃× (r− r̃′) (5.57)

=

∣∣∣∣∣∣
x̂ ŷ ẑ
Jx Jy Jz

x− x′ −y′ z − z′

∣∣∣∣∣∣+
∣∣∣∣∣∣

x̂ ŷ ẑ
Jx −Jy Jz

x− x′ +y′ z − z′

∣∣∣∣∣∣
=

∣∣∣∣∣∣
x̂ 2ŷ ẑ
Jx 0 Jz

x− x′ 0 z − z′

∣∣∣∣∣∣ ∼ ŷ. (5.58)

Thus, after integration, B ∼ ŷ = ϕ̂.
(b) After the form of B(r) has been narrowed down, it’s
easy to evaluate the Ampère integral. Choose the path
C to be a horizontal circle with radius ρ, then∮

C

dr ·B = 2πρB(ρ, z) =

{
µ0I if C is inside the can
0 if C is outside the can

(5.59)
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FIG. 43 An infinite plate on the x-y plane with a uniform
sheet of current K = Kŷ.

Thus, inside the can,

B(r) =
µ0I

2πρ
ϕ̂. (5.60)

There is no magnetic field outside the can.

Note that the same argument applies to other systems
with azimuthal symmetry and radial current flow, and
their magnetic fields must be circular. For example, for
the toroidal solenoid in Fig. 42(b), the magnetic field
inside is

B(r) =
µ0NI

2πρ
ϕ̂, (5.61)

where N is the number of coils. There is no magnetic
field outside the solenoid.

Example:
There is a thin plate on the x-y plane with a uniform
current. Its current per unit length, or surface current
density K = Kŷ (Fig. 43). Find out the magnetic field
on both sides of the plate.
Sol’n:

Since the plate can be considered as a collection of
wires along y direction, according to Ampère’s right-hand
rule, we expect the magnetic field to be along the x-
axis (see Zangwill, 2013 for a detailed analysis based on
symmetry),

B(r) = B(z)x̂. (5.62)

Choose a small rectangular loop C with a surface normal
parallel to K, as shown in Fig. 43. The current passing
through C is I□ = K∆ℓ. Thus, the circulation∮

C

dr ·B = B+ ·∆ℓ+B− · (−∆ℓ) = µ0I□, (5.63)

where B+ (B−) is the field above (below) the plane. We
expect B− = −B+, thus

B+ = +
µ0

2
Kx̂ or

µ0

2
K× n̂, K =

I□
∆ℓ

(5.64)

B− = −µ0

2
Kx̂ or − µ0

2
K× n̂, (5.65)

in which n̂ points up. The magnetic field is uniform and
does not decrease with distance z.
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D. Boundary condition for B

In general, the magnetic fields on opposite sides of a
current sheet are not the same. Their difference is caused
by the current on the surface. Suppose a surface has
surface current density K(r). At a point r on the surface,
the magnetic fields on opposite sides are B1(r) and B2(r)
(Fig. 44). What’s the relation between this two magnetic
fields?

First, divide the surface S into a small rectangle □ and
a surface S′ (S with □ removed),

S = □+ S′. (5.66)

The rectangle is microscopically large, but macroscopi-
cally small (say, with a size of 1 µm). It can be con-
sidered as flat since it is just a small part of the smooth
surface S. The field, B1(r) or B2(r), is the superposition
of the fields produced by □ and S′.
When one infinitesimally approaches the center of the

rectangle, the field is close to the field of an infinite plane,
B(r) = ±µ0

2 K×n̂, where n̂ points from region 1 to region
2. Suppose the field produced by S′ is BS , then

B1 = BS − µ0

2
K× n̂, (5.67)

B2 = BS +
µ0

2
K× n̂. (5.68)

Even though BS remains unknown, we can substrate the
field to get

B2(r)−B1(r) = µ0K(r)× n̂. (5.69)

This is the BC for fields near a current sheet. Sometimes
it is written as,

n̂ · (B2 −B1) = 0, (5.70)

n̂× (B2 −B1) = µ0K. (5.71)

1. Force on current sheet

To find out the magnetic force on a current sheet, di-
vide the surface S into □ and S′, as in previous section.
The rectangle exerts no force on itself. So the force is
due to the magnetic field produce by S′,

F□ = I□∆L×BS (5.72)

= (K∆ℓ)∆L×BS , (5.73)

where I□ is the current passing through □ (Fig. 44).
Since

BS =
1

2
(B1 +B2), (5.74)

so the force density (or pressure)

f□ ≡ F□

∆ℓ∆L
=

1

2
K× (B1 +B2). (5.75)

∆ℓ

L∆

K

r

12

S

n̂

FIG. 44 A surface S is divided into a small rectangle and a
surface without the rectangle, S′.

For example, for a long solenoid, the magnetic field
inside and outside are (see Eq. (5.44))

B1 = µ0Kẑ, B2 = 0. (5.76)

So the magnetic pressure on the wall of the solenoid is

f = µ0
K2

2
n̂, (5.77)

where n̂ points outward.
For example, for a solenoid with I = 0.1 A and coil den-

sity a = 103/m, its surface current densityK = 100 A/m.
The magnetic pressure on the wall f = 2π× 10−3 N/m2.

E. Vector potential

Assume that two vector potentials differ by a gradient
∇χ(r),

A′ = A+∇χ. (5.78)

Since ∇×∇χ(r) = 0 for any scalar function χ(r) without
singularity, so A′ and A yield the same magnetic field
B. That is, one magnetic field can have different vector
potentials. This is called gauge degree of freedom.
For example, given B(r) = B0ẑ, then its vector poten-

tial can be

A(r) = B0(0, x, 0), (5.79)

or A(r) =
B0

2
(−y, x, 0). (5.80)

They differ by the gradient in Eq. (5.78) with χ(r) =
−B0xy/2.
With the help of χ, one can demand the vector poten-

tial to satisfy the Coulomb gauge,

∇ ·A(r) = 0. (5.81)
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Pf: Suppose ∇ ·A ̸= 0, then we can choose a χ(r) such
that

∇ ·A′ = ∇ ·A+∇2χ = 0. (5.82)

What we need is a χ that satisfies

∇2χ(r) = −∇ ·A(r). (5.83)

The RHS is like the source term of the Poisson equation
in electrostatics, and in principle a solution χ(r) always
exists. Thus, we can always have ∇ ·A′ = 0. QED.
Usually, all we need to know is that χ exists. It is not
necessary to actually find out χ(r).

Note: In Chap 2, we have shown that Eq. (5.81) is
always valid for steady current. But its validity extends
to dynamic field, as we will show in a later chapter.

We can write Ampère’s law in terms of the vector po-
tential,

∇×B = µ0J, B = ∇×A,(5.84)

→ ∇(∇ ·A)−∇2A = µ0J. (5.85)

With the Coulomb gauge∇·A(r) = 0, we have the vector
Poisson equation,

∇2A(r) = −µ0J(r). (5.86)

Each component of Eq. (5.86) is a scalar Poisson equa-
tion. Thus, it has the formal solution,

Ai =
µ0

4π

∫
dv′

Ji(r
′)

|r− r′|
, i = x, y, z (5.87)

or A(r) =
µ0

4π

∫
dv′

J(r′)

|r− r′|
, (5.88)

which is consistent with Eq. (5.2). For a thin wire, just
replace dv′J with Idr′, and

A(r) =
µ0

4π
I

∫
dr′

|r− r′|
. (5.89)

Example:
Find out the vector potential of a wire that is straight,
infinite, and carries a current I.
Sol’n:

Adopt the cylindrical coordinate, and lay the wire
along z-axis (Fig. 45(a)). In the integral,

A(r) =
µ0

4π
I

∫
dr′

|r− r′|
, (5.90)

dr′ = dzẑ, thus A(r) ∥ ẑ.

With the help of∫
dx√
x2 + a2

= ln
(
2x+ 2

√
x2 + a2

)
, (5.91)

a

I

(a) (b)I

ρ

z

dr’

o
r

FIG. 45 (a) A thin wire with a current. (b) A cylindrical wire
with a uniform current inside.

for a wire with length 2L, we have

Az(ρ) =
µ0I

4π

∫ L

−L

dz√
z2 + ρ2

(5.92)

=
µ0I

4π
ln

√
1 + (ρ/L)2 + 1√
1 + (ρ/L)2 − 1

. (5.93)

If L≫ ρ, then

ln

√
1 + (ρ/L)2 + 1√
1 + (ρ/L)2 − 1

≃ ln 4− 2 ln
ρ

L
, (5.94)

hence

Az(ρ) ≃ −µ0I

2π
ln ρ+ const. (5.95)

It diverges when ρ→ 0 (and at infinity). Finally, it’s not
difficult to show that,

B = ∇×A =
µ0I

2π

1

ρ
ϕ̂. (5.96)

Example:
Find out the vector potential of a straight, infinite cylin-
drical wire with radius a (Fig. 45(b)). The wire carries a
uniform current I.
Sol’n:
When the wire has a finite radius, the divergence of

A as ρ → 0 can be avoided. However, it’s no longer
convenient to use the integral formula in Eq. (5.88). Thus
we will use the vector Poisson equation instead.
First, since J(r) = J0ẑ, where J0 = I/πa2 is a con-

stant, Eq. (5.88) tells us that A(r) = Az(r)ẑ. Further-
more, we expect Az(r) = Az(ρ), thus ∇ ·A = 0 is auto-
matically satisfied, and

∇2A(r) = −µ0J(r). (5.97)

Since

∇2Az(r) =
1

ρ

∂

∂ρ

(
ρ
∂Az

∂ρ

)
+

1

ρ2
∂2Az

∂ϕ2
+
∂2Az

∂z2
, (5.98)

it follows that

1

ρ

d

dρ

(
ρ
dAz

dρ

)
= −µ0J0. (5.99)
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Direct integration gives

Az(ρ) = −µ0

4
J0ρ

2 + C ln ρ+ constant (5.100)

=

 −µ0

4 J0ρ
2 +D for ρ ≤ a,

+C ln ρ+D′ for ρ ≥ a.
(5.101)

Some terms have been dropped to avoid unphysical di-
vergence.

The vector potential needs be continuous at ρ = a
(otherwise the magnetic field would diverge there). This
gives

Az(ρ) =

 −µ0

4 J0ρ
2 +D for ρ ≤ a,

−µ0

4 J0a
2 + C ln ρ

a +D for ρ ≥ a.
(5.102)

We can ignore the constant D, but C is still unknown.
To find C, we require that the curl of A be continuous

across the boundary. That is,

Bout −Bin = 0. (5.103)

This so because the surface current density is zero, K =
0, for a boundary layer that is infinitely thin. Now

B(r) = ∇×A(r) = −dAz

dρ
ϕ̂. (5.104)

Match Bin and Bout at the boundary to get C =
−µ0

2 J0a
2.

Finally, drop D to get

Az(ρ) =

 −µ0

4 J0ρ
2 for ρ ≤ a,

−µ0

4 J0a
2 [1 + 2 ln(ρ/a)] for ρ ≥ a.

(5.105)
It’s not difficult to see that

Bϕ(ρ) =


µ0I
2π

ρ
a2 for ρ ≤ a,

µ0I
2πρ for ρ ≥ a.

(5.106)

This agrees with the result in Eq. (5.50), which was ob-
tained by a simpler approach.

F. Magnetic scalar potential

Since a vector field with zero curl can be written as
a gradient, for a static magnetic field in vacuum with
∇×B = 0, one can write

B(r) = −∇ψ(r), (5.107)

where ψ is the magnetic scalar potential. Combined with
the equation ∇ ·B = 0, we have

∇2ψ(r) = 0. (5.108)

Unlike the vector potential, the magnetic scalar potential
is not applicable to dynamic magnetic field.

1. Potential of a current loop

Suppose a magnetic field is generated from a loop of
thin wire C with current I. From Biot-Savart law,

B(r) =
µ0

4π
I

∮
C

dr′ × r− r′

|r− r′|3
. (5.109)

With the help of the identity,∮
C

dr′ ×V =

∫
S

dsk∇Vk −
∫
S

ds∇ ·V, (5.110)

where C is the boundary of S, we can write

B(r) =
µ0I

4π

∫
S

dsk∇′
(r− r′)k
|r− r′|3

− µ0I

4π

∫
S

ds∇′ · r− r′

|r− r′|3
.

(5.111)
The integrand of the second term,

∇′ · r− r′

|r− r′|3
= ∇′ · ∇′ 1

|r− r′|
(5.112)

= −4πδ(r− r′). (5.113)

Thus the second term is zero as long as the observation
point r is not on the surface S. For the first term, switch
∇′ to ∇ (getting a minus sign), then

B(r) = −µ0I

4π
∇
∫
S

ds · r− r′

|r− r′|3︸ ︷︷ ︸
=−dΩS

(5.114)

=
µ0I

4π
∇ΩS(r), (5.115)

where ΩS(r) is the solid angle of S with respect to the
observation point r. Therefore, the magnetic scalar po-
tential

ψ(r) = −µ0I

4π
ΩS(r). (5.116)

Take the ring in Fig. 37(a) as an example. Note that
the current flows counter-clockwise, hence the normal
vector of S points up, instead of pointing down, away
from the observation point. As a result, there is an extra
minus sign in ΩS , and

ΩS = −2π
[
1− cos

(π
2
− α

)]
, sinα =

z√
z2 + a2

= −2π

(
1− z√

z2 + a2

)
(5.117)

Taking the gradient of ΩS to obtain

B(r) =
µ0I

4π

d

dz
ΩS(z)ẑ =

µ0I

2

a2

(z2 + a2)3/2
ẑ. (5.118)

This agrees with the result in Eq. (5.25).
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1,2

FIG. 46 A current pierces through a surface S bounded by
C. Fig. from Zangwill, 2013

2. Multi-valuedness of ψ

It is known that for static electric field,∮
C

dr ·E(r) = 0. (5.119)

This implies that the potential difference,

ψ(r2)− ψ(r1) = −
∫ 2

1

dr ·E(r), (5.120)

is independent of the path of the integral from point-1 to
point-2.

For a static magnetic field, however, the loop integral
of B may not be zero. Thus, if one moves from r1 to r2 =
r1 around a loop C that encloses a current I (Fig. 46),
then

ψ(r2)− ψ(r1) = −
∮
C

dr ·B(r) = ±µ0I. (5.121)

That is, ψ is not single-valued. To prevent it from having
multiple values at the same location, we can refrain the
path C from crossing the surface bounded by the current
loop (Zangwill, 2013).

Problem:
1. Along the central axis of a Helmholtz coils (Fig. 38),

Bz(z) =
µ0

2

{
Ia2

[(z − d/2)2 + a2]3/2
+

Ia2

[(z + d/2)2 + a2]3/2

}
.

(a) Show that dBz(z)/dz = 0 at the center (z = 0).
(b) Argue that the derivatives of odd orders at z = 0
should be zero.
(c) Show that when the separation between rings d = a,
d2Bz(z)/dz

2|z=0 = 0.

VI. MAGNETIC MULTIPOLES

A. Multipole expansion

Recall that in Chap 4, given an electric potential,

ϕ(r) =
1

4πε0

∫
dv′

ρ(r′)

|r− r′|
, (6.1)

J(r’)

B(r)

FIG. 47 An observation point is far away from a localized
current distribution.

if r ≫ r′, then we can expand

1

|r− r′|
≃ 1

r
+

r̂

r2
· r′ + 1

2r3
[
3(r̂ · r′)2 − |r′|2

]
. (6.2)

Each term contributes to the potential of a certain elec-
tric multipole.
Similar approximation can be applied to the vector po-

tential,

A(r) =
µ0

4π

∫
dv′

J(r′)

|r− r′|
. (6.3)

If r ≫ r′, that is, the current source is localized and
the observer is far away (Fig. 1), then we can use the
expansion in Eq. (6.2) and keep terms to the first order
to get

A(r) ≃ µ0

4πr

∫
dv′J(r′) +

µ0

4πr3
r · r′

∫
dv′J(r′) (6.4)

≃ 0 +
µ0

4π

m× r

r3
, (6.5)

where m is the magnetic dipole moment. The magnetic
quadrupole potential from the second-order term is not
considered here.
We now explain how Eq. (6.5) is obtained. First, two

identities are required. For a steady, localized current
distribution, ∫

dv′Ji(r
′) = 0, i = x, y, z (6.6)∫

dv′
[
r′iJj(r

′) + r′jJi(r
′)
]
= 0. (6.7)

Pf: From the equation of continuity, for a steady current,

∇ · J = 0, (6.8)

∇ · (riJ) = Ji + ri���∇ · J , (6.9)

∇ · (rirjJ) = riJj + rjJi + rirj���∇ · J . (6.10)

The integration of Eq. (6.9) over the whole space gives,∫
dv′Ji =

∫
dv′∇′ · (r′iJ) (6.11)

=

∫
ds′ · (r′iJ) = 0. (6.12)
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FIG. 48 A planar loop with current I.

The integral is zero since the current is localized while the
surface of integration is at infinity. Thus, the monopole
term in Eq. (6.4) vanishes.

The integration of Eq. (6.10) over the whole space
gives,∫

dv′(r′iJj + r′jJi) =

∫
ds′ · (r′ir′jJ) = 0. (6.13)

Thus, we can write the integral of the dipole term in
Eq. (6.4) as,

ri

∫
dv′r′iJj =

ri
2

∫
dv′ (r′iJj − r′jJi)︸ ︷︷ ︸

=ϵijk(r′×J)k

(6.14)

=
1

2

∫
dv′ [(r′ × J)× r]j (6.15)

= (m× r)j , (6.16)

where

m ≡ 1

2

∫
dv′r′ × J(r′). (6.17)

Hence, up to the first order,

A(r) =
µ0

4π

m× r

r3
. (6.18)

Eq. (6.17) is the most general form of the magnetic
dipole moment. It reduces to other forms under special
circumstances:

1. Thin wire:
For the current carried by a thin wire of loop C, just
replace dv′J with Idr′ to get

m ≡ I

2

∮
C

r′ × dr′. (6.19)

If furthermore, C is a planar loop, then (see Fig. 2),

1

2
r′ × dr′ = ds′. (6.20)

Hence, after integration,

m = I

∮
ds′ = IS. (6.21)

(a) (b)

FIG. 49 The fields from (a) an electric dipole and (b) a cur-
rent loop.

The magnetic moment is proportional to the surface area
of the loop. The direction of S is determined by the right-
hand rule.
2. Point charges:

A set of moving charges has the current density,

J(r) =

N∑
k=1

qkvkδ(r− rk). (6.22)

Substitute it to Eq. (6.17) and get

m =

N∑
k=1

qk
2

∫
dv′r′ × vkδ(r

′ − rk) (6.23)

=
1

2

∑
k

qk(rk × vk) (6.24)

=
∑
k

qk
2mk

Lk, Lk ≡ mkrk × vk. (6.25)

If qk/mk is a constant, then the orbital magnetic mo-
ment

m =
q

2m
L, (6.26)

where L is the total angular momentum of these charges.

B. Magnetic dipole

From the vector potential of a magnetic dipole (valid
for r ≫ r′),

A(r) =
µ0

4π

m× r

r3
, (6.27)

we can calculate its magnetic field,

B(r) = ∇×
(
µ0

4π

m× r

r3

)
(6.28)

· · · =
µ0

4π

3r̂(r̂ ·m)−m

r3
. (6.29)

The field decreases as 1/r3 and has the distribution
shown in Fig. 3, which is similar to the electric dipole
field (Chap 4) when r ≫ r′.
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J(r’)

B(r)

FIG. 50 The current is confined within a sphere.

Example:
Suppose current distribution J(r) flows inside a ball V
with volume V , show that the average of the magnetic
field over the ball,

⟨B(r)⟩V ≡ 1

V

∫
V

dvB(r) =
2µ0

3

m

V
, (6.30)

where m is the magnetic dipole moment due to the cur-
rent (see Fig. 4).
Pf: Start from the Biot-Savart law,

B(r) =
µ0

4π

∫
J ̸=0

dv′J(r′)× r− r′

|r− r′|3
, (6.31)

then∫
V

dvB(r) =
µ0

4π

∫
V

dv

∫
J ̸=0

dv′J(r′)× r− r′

|r− r′|3

= −µ0

4π

∫
J ̸=0

dv′J(r′)×
∫
V

dv
r′ − r

|r′ − r|3︸ ︷︷ ︸
=Ẽ(r′)

,

where Ẽ(r′) is the fictitious “electric” field of a ball V
with charge density ρ̃ = 4πε0. According to the analysis
in Chap 4,

Ẽ(r′) =
4π

3
r′. (6.32)

Thus,

⟨B⟩V = −µ0

V

∫
dv′J(r′)× 1

3
r′ (6.33)

= +
2µ0

3

m

V
. (6.34)

Similar to the case of the electric dipole, if the current is
outside of the sphere, then

⟨B(r)⟩V = B(0). (6.35)

Its proof is similar to the case of electric dipole and will
not be repeated here.

1. Point magnetic dipole

When a magnetic dipole is produced by the current in
a tiny region (say a nucleus), we have a point magnetic

dipole. The formula in Eq. (6.29) remains valid as long
as r ̸= 0.
However, if you integrate the field in Eq. (6.29) over a

ball V centered at r = 0, then∫
V

dvB(r) =
µ0

4π

∫
V

dv
3r̂(r̂ ·m)−m

r3
= 0. (6.36)

It is zero due to angular integration, no matter if the ball
is large or small. This contradicts the result in Eq. (6.34).
To fix this discrepancy, we can add a delta function to
Eq. (6.29), so that

B(r) =
µ0

4π

3r̂(r̂ ·m)−m

r3
+

2µ0

3
mδ(r). (6.37)

The added term is important in the calculation of hyper-
fine structure (more later).

2. Magnetic dipole layer

In Fig. 5(a), there is a continuous distribution of mag-
netic dipoles on surface S. Suppose these dipole moments
are from orbital motion of charges (not from electron
spins), and are perpendicular to the surface. If S is an
open surface, then the magnetic field from these dipoles is
equal to the B field produced by a current flowing around
the boundary C of S. This Ampère’s theorem.
Pf: Each magnetic dipole is produced by a small current
loop,

dm = Ids, (6.38)

where ds is an area element. The dipole at r′ on the
surface generates a vector potential,

dA(r) =
µ0

4π
dm× r− r′

|r− r′|3
. (6.39)

Using the identity,∫
S

ds×∇f(r) =
∮
C

drf(r), (6.40)

where C is the boundary of surface S, one then has

A(r) =
µ0

4π

∫
dm× r− r′

|r− r′|3︸ ︷︷ ︸
=∇′ 1

|r−r′|

(6.41)

=
µ0

4π
I

∫
S

ds′ ×∇′ 1

|r− r′|
(6.42)

=
µ0

4π
I

∮
C

dr′
1

|r− r′|
. (6.43)

The line integral above equals the vector potential pro-
duced by a loop C carrying current I. QED.
If you’re familiar with Stoke’s theorem, then Ampère’s

theorem is simply a variant of Stokes theorem: The sum
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FIG. 51 (a) Magnetic dipole moments are standing on an
open surface. (b) A magnetic tape on the x-y plane.

of the circulation of current loops packed together equals
the circulation around the outer boundary of these loops
(Fig. 5(a)).

Example:
A long magnetic tape with width d is lying along the x-
axis, as shown in Fig. 5(b). The magnetic dipoles on the
tape stand straight up, and the magnetic moment per
unit area is M . Find out the magnetic field around this
magnetic tape.
Sol’n: According to Ampère’s theorem, we only need
to calculate the B field produced by the current flow-
ing along the boundary of the tape. Since dm = Ids,
so

I =
dm

ds
=M. (6.44)

We need to calculate the magnetic field of two long
straight wires with current I.

If the wire is lying on the x-axis, then for a point r on
y-z plane,

B(r) =
µ0

2π

I

ρ
ϕ̂, (6.45)

where ρ and ϕ̂ = x̂× ρ̂ are shown in Fig. 5(b).

For a wire lying along y = −d/2,

B1 =
µ0I

2π

x̂× ρ̂1

ρ1
, (6.46)

where (Fig. 5(b))

ρ1 = ρ+
d

2
ŷ =

(
y +

d

2

)
ŷ + zẑ. (6.47)

Similarly, for the other wire with current flowing along
the opposite direction,

B2 = −µ0I

2π

x̂× ρ̂2

ρ2
, (6.48)

and

ρ2 = ρ− d

2
ŷ =

(
y − d

2

)
ŷ + zẑ. (6.49)

B

…

ρ

θ

dz’

z

(a) (b)
r

N

S

z’<0

FIG. 52 (a) The magnetic field of a solenoid. (b) A semi-
infinite solenoid along the negative z-axis.

Finally, the total magnetic field

B =
µ0I

2π

(
x̂× ρ1

ρ21
− x̂× ρ2

ρ22

)
(6.50)

or =
µ0I

2π

[(
y + d

2

)
ẑ− zŷ(

y + d
2

)2
+ z2

−
(
y − d

2

)
ẑ− zŷ(

y − d
2

)2
+ z2

]
.

C. Magnetic monopole

We have shown in Sec. A that the monopole potential
of a localized current distribution is zero. Also, no mag-
netic monopole has been observed so far. Nevertheless,
theory itself does not forbid the existence of magnetic
monopole, as we’ll show now.
The magnetic field produced by a finite solenoid is sim-

ilar to that of a bar of magnetic (Fig. 6(a)). If a solenoid
is very long, then its N -pole and S-pole are far away from
each other. For a semi-infinite solenoid that extends from
the origin to z = −∞ (Fig. 6(b)), its S-pole is pushed to
infinity and all of the magnetic field emanates from the
N -pole — the opening at the origin. We can use it to
simulate a magnetic monopole.
Example:

A semi-infinite solenoid along negative z-axis carries a
current I. The cross section area is s, and the number of
coils per unit length is n. Find out its vector potential
and magnetic field.
Sol’n:
First, the vector potential of a current loop on the x-y
plane with magnetic moment m = Isẑ is,

A(r) =
µ0

4π

m× r

r3
, r = ρρ̂+ zẑ (6.51)

=
µ0

4π
m

ρ

(ρ2 + z2)3/2
ϕ̂. (6.52)

Now, the number of loops within dz′ at position z′ (< 0)
is ndz′. Its vector potential,

dA(r) =
µ0

4π
m(ndz′)

ρ

[ρ2 + (z − z′)2]
3/2

ϕ̂. (6.53)
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After integration,

A(r) =
µ0

4π
mn

∫ 0

−∞
dz′

ρ

[ρ2 + (z − z′)2]
3/2

ϕ̂

=
µ0

4π
g

∫ −z
−∞

dz′
ρ

(ρ2 + z′2)3/2︸ ︷︷ ︸
≡I(z)

ϕ̂, g ≡ mn.(6.54)

Let z′ = −ρ tanφ, then dz′ = −ρ sec2 φdφ, the integral
becomes

I(z) =

∫ π
2

tan−1 z
ρ

dφ
1

ρ secφ
(6.55)

=
1

ρ
sinφ

∣∣∣∣π2
tan−1 z

ρ

(6.56)

=
1

ρ

(
1− z√

z2 + ρ2

)
. (6.57)

If we choose spherical coordinate (ρ = r sin θ), then

A(r) =
µ0

4π

g

r

1− cos θ

sin θ
ϕ̂. (6.58)

Its magnetic field,

B(r) = ∇×A =
1

r sin θ

∂

∂θ
(sin θAϕ)r̂+ · · ·

=
µ0g

4π

r̂

r2
. (6.59)

This is valid as long as r is away from the solenoid. Fi-
nally, let s→ 0, and n→ ∞, such that g = Isn remains
fixed. Then Eqs. (6.58) and (6.59) are valid everywhere,
except along the negative z-axis.

The monopole field B(r) is the same as the Coulomb
field for a point charge and decreases as 1/r2. If magnetic
monopole exists, then the divergence of B is no longer
zero, but (for the example above)

∇ ·B(r) = µ0gδ(r). (6.60)

Recall that the divergence of curl is always zero, so how
can ∇·∇×A(r) be non-zero here? In fact, ∇·∇×V(r) =
0 is valid only if V(r) has no singularity, which is not the
case for the A(r) here. The vector potential is singular
along the negative z-axis, when θ = π.
This string of singularity, called Dirac string, is an

artifact of theory and cannot be detected in experiment
if the monopole charge is quantized (Jackson, 1998). It’s
possible to simulate a monopole using a semi-infinite
solenoid along the positive z-axis (or other places), then

A′(r) = −µ0

4π

g

r

1 + cos θ

sin θ
ϕ̂, (6.61)

which produces the same monopole field B(r). In this
case, the Dirac string is along the positive z-axis. You
may check that A and A′ differ by a gauge transforma-
tion. That is, the position of the Dirac string is gauge
dependent.

D. Force and energy

Consider a distribution of current in an external mag-
netic field B(r). Suppose the current is “rigid”. That is,
the external magnetic field cannot alter the distribution
of current, then it feels a force,

F =

∫
dvJ(r)×B(r). (6.62)

Assume the magnetic field varies slowly across the cur-
rent, then we can expand it with respect to a point 0 near
the current,

B(r) = B(0) + (r · ∇)B(0) + · · · . (6.63)

Thus,

F ≃
(∫

dvJ(r)

)
︸ ︷︷ ︸

=0

×B(0)+

∫
dvJ(r)×(r·∇)B(0). (6.64)

The first integral is zero, as has been shown in Eq. (6.12).
When written in components, one has

Fi = ϵijk

∫
dvJjrℓ∇ℓBk. (6.65)

Before moving on, recall that (Chap 1)

(u× v)j = ϵjklukvl, (6.66)

ϵkljϵkmn =

∣∣∣∣ δlm δln
δjm δjn

∣∣∣∣ . (6.67)

Also, for an arbitrary vector w,

wℓ

∫
dvrℓJj =

1

2

∫
dv [(r× J)×w]j . (6.68)

Pf:

∫
dv [(r× J)×w]j =

∫
dvϵjkl(r× J)kwl (6.69)

=

∫
dv ϵjklϵkmn︸ ︷︷ ︸

=δlmδjn−δlnδjm

rmJnwl

=

∫
dv(rlJjwl − rjJlwl) (6.70)

= 2

∫
dvwlrlJj , (6.71)

where we have switched the subscripts of rjJl in the sec-
ond term and used Eq. (6.13). Hence Eq. (6.68) follows.
QED.
Replace wl by ∇lBk (with a fixed k), then

∇ℓBk

∫
dvrℓJj =

1

2

∫
dv [(r× J)×∇Bk]j

= (m×∇)jBk. (6.72)
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Thus Eq. (6.65) becomes

F = (m×∇)×B. (6.73)

With the help of

∇(a · b) = a∇ · b+ b∇ · a
+ (a×∇)× b+ (b×∇)× a, (6.74)

we have

F = ∇(m ·B) (6.75)

= −∇U, (6.76)

where

U ≡ −m ·B (6.77)

is the magnetic dipole energy.

1. Hyperfine structure

In an atom, such as the hydrogen atom, from the point
of view of an orbiting electron, the nucleus is nearly a
point since it is about 105 times smaller than the radius
of the electron orbital. The magnetic field produced by
the nucleus magnetic dipole moment mN is (Eq. (6.37)),

BN (r) =
µ0

4π

3r̂(r̂ ·mN )−mN

r3
+

2µ0

3
mNδ(r). (6.78)

An electron with dipole moment me would interact with
BN . The Hamiltonian of the interaction is,

HHFS = −me ·BN (r) (6.79)

= −µ0

4π

3(r̂ ·me)(r̂ ·mN )−me ·mN

r3

−2µ0

3
me ·mNδ(r). (6.80)

The first term is the typical dipole-dipole interaction, and
the second term is a contact interaction.
For an s-orbital ψ(r), which is non-zero at the origin

(not so for a p-orbital or other non-s-orbitals, which van-
ishes at the origin), the second term causes an energy
shift,

∆EHFS = ⟨ψ|HHFS |ψ⟩ (6.81)

= −2µ0

3
me ·mN |ψ(0)|2. (6.82)

The expectation of the first term in HHFS is zero since
s-orbital is spherical. As a result of this contact interac-
tion, spin-up and spin-down electrons have slightly dif-
ferent energy levels (Fig. 7(a)). This is the hyperfine
structure in atomic spectroscopy.

For an electron in the 1s orbital of H atom, ∆EHFS ≃
5.89× 10−6 eV. The electron transition between this two

(a)

(b)

FIG. 53 (a) The hyperfine structure in hydrogen spectrum.
(b) The global structure of the Galaxy determined by the 21
cm line. Fig. from Unknown, 1958.

energy levels emits a radio wave with wavelength 21 cm.
This is the famous 21-centimeter line in astrophysics
that can help scientists mapping out the structure of the
Galaxy (Fig. 7(b)).

In early times, some scientists thought that the mag-
netic moments in magnetic materials could be due to
point magnetic charges, instead of tiny current loops
(see Fig. 8). If so, then instead of magnetization current
around the side surface, we should have magnetic charges
on top and bottom surfaces, as in electric polarization.

However, from the calculation of hyperfine structure,
we know that if the magnetic dipole is due to point
charges, then the contact term should be −µ0

3 mNδ(r),

as in the case of electric dipole, instead of + 2µ0

3 mNδ(r).
This would leads to a hyperfine splitting half of the
present value, and in turn produces 42-cm hydrogen line
(which is not observed). Thus, there are no magnetic
monopoles hidden inside tiny magnetic dipoles.
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FIG. 54 Two possible scenarios of magnetic dipoles. Fig.
from Kitano, 2006.

E. Macroscopic magnetizable medium

Consider a magnetic medium that is composed of small
current loops. If the magnetic moment of the i-th element
is mi, then we can define the magnetization as,

M(r′) =

∑
i in ∆V

mi

∆V
, (6.83)

where ∆V is a volume element around r′. The volume el-
ement is microscopically large but macroscopically small,
so that there are many elements in ∆V , but it remains a
point from human’s point of view.

A volume element ∆V has magnetic moment m =
M∆V and produces a vector potential,

∆A(r) ≃ µ0

4π

[
J(r′)∆V

|r− r′|
+

M(r′)∆V × (r− r′)

|r− r′|3

]
.

After integration, we have

A(r) =
µ0

4π

[∫
V

dv′
J(r′)

|r− r′|
+

∫
V

dv′
M(r′)× (r− r′)

|r− r′|3

]
,

(6.84)
where V is the volume of the material. Write

r− r′

|r− r′|3
= ∇′ 1

|r− r′|
, (6.85)

use

∇× (fv) = ∇f × v + f∇× v, (6.86)

and integrate by parts, the second integral can be written
as∫

V

dv′M(r′)×∇′ 1

|r− r′|
=

∫
V

dv′
∇′ ×M(r′)

|r− r′|

−
∫
V

dv′∇′ ×
(

M(r′)

|r− r′|

)
.

We then use ∫
V

dv∇× v =

∫
S

ds× v, (6.87)

where S is the boundary of V , and write∫
V

dv′∇′ ×
(

M(r′)

|r− r′|

)
=

∫
S

ds′ × M(r′)

|r− r′|
. (6.88)

If follows that,

A(r) =
µ0

4π

∫
V

dv′
J(r′) +∇′ ×M(r′)

|r− r′|

+
µ0

4π

∫
S

ds′
M(r′)× n̂

|r− r′|
. (6.89)

The numerator of the first integral can be considered as
an effective current density Jeff = J+ Jm, where

Jm(r) ≡ ∇×M(r) (6.90)

is themagnetization current density. The numerator
of the second integral is the magnetization surface
current density,

Km(r) ≡ M(r)× n̂, (6.91)

where r is located on the surface.
Note that instead of integrating over the material body

V , we can also integrate over the whole space, then S is
the surface at infinity, and the surface integral vanishes
since M = 0 at infinity. These two choices of V give the
same result of A, since in the second choice, Jm would
automatically pick up the surface current on boundary
(see next subsection). In what follows, we prefer to in-
tegrate over the whole space, so that the surface integral
in Eq. (6.89) can be dispensed with.
Now, since the current density in the volume integral

above directly links with the one in Ampère’s law (see
Chap 2), we have

∇×B = µ0Jeff = µ0 (J+∇×M) . (6.92)

Introduce an H field,

H =
1

µ0
B−M, (6.93)

then ∇×H(r) = J(r). (6.94)

This is Ampère’s law in material. The official term for B
is magnetic flux density, which is in units of Tesla (N
s/C m). The H field is called magnetic field strength,
which is in units of A/m. For simplicity, we’ll call them
B field and H field, or simply magnetic field (for both)
if the context is clear.
Note that

B = µ0(H+M). (6.95)

We call a magnet simple if it is isotropic and linear. That
is, its M is proportional to and aligns with H,

M = χmH, (6.96)

and

B = µ0(1 + χm)H = µH, (6.97)
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FIG. 55 Distribution of magnetic dipoles in the half-space
y < 0.

where χm is the magnetic susceptibility, and µ the
magnetic permeability of material.
For paramagnetic material ,

M ∥ H, and χm > 0. (6.98)

For diamagnetic material,

M ∥ −H, and χm < 0. (6.99)

The magnitude of χm is typically of the order of 10−5. A
simple magnet such as soft iron can have χm ∼ 104. The
χm of hard ferromagnet materials can be as large as 106,
but they are not simple magnets.

1. Magnetization current

Non-uniform magnetization generates effective cur-
rent, Jm = ∇ × M. We’ll use a simple example to il-
lustrate this: In Fig. 9 there is a semi-infinite magnet
with uniform magnetization,

M =M0θ(−y)ẑ. (6.100)

Its magnetization current density is,

Jm = ∇×M = −M0δ(y)x̂. (6.101)

That is, magnetization current flows only on the surface
of the magnet. In the figure, molecular currents generate
magnetic dipoles. Near the interface between neighbor-
ing current loops, the currents flow along opposite direc-
tions. Thus, there is no current inside the bulk, and only
the outer-most current exposed.

Note that the magnetization currents in the example
are bounded to molecules. They cannot flow away like
conduction current in metals.

Since the magnetization current flows on a surface, we
can describe it with surface current density Km,

Km =

∫
dyJm = −

∫
dyM0δ(y)x̂ (6.102)

= −M0x̂ = Ms × n̂, (6.103)

where Ms is the magnetization on the surface.

2. Boundary condition

In previous chapter, we have learned about the bound-
ary condition for magnetic field,

n̂ · (B2 −B1) = 0, (6.104)

n̂× (B2 −B1) = µ0K. (6.105)

In the presence of magnetic materials, the boundary con-
dition would depend on magnetization and needs be re-
derived. Let’s start from the integral form of the Maxwell
equations, ∫

S

ds ·B = 0, (6.106)∮
C

dr ·H = I, (6.107)

where I is the current flowing through C, not including
the magnetization current.
As shown in Fig. 10(a), near the boundary surface, we

can choose the S in Eq. (6.106) to be a small pillar box
with area ds and nearly zero thickness, then∫

S

ds ·B ≃ B1 · ds(−n̂) +B2 · dsn̂ = 0, (6.108)

where n̂ points from region 1 to region 2. Hence, the
normal components

n̂ · (B2 −B1) = 0, (6.109)

which is the same as Eq. (6.104).
Choose the C in Eq. (6.107) to be a small rectangular

loop perpendicular to the current flow. Suppose the loop
has width d and nearly zero height, then∮

C

dr ·H ≃ H1 · (−d) +H2 · d = I, (6.110)

where d = dd̂ and d̂ = Ĵ× n̂, as shown in figure. Hence

(H2 −H1) · d̂ = K, (6.111)

or n̂× (H2 −H1) = K, (6.112)

which replaces Eq. (6.105).

F. Magnetostatic energy

The magnetostatic energy of a current distribution
equals the total work required to assemble the current,
starting from the state when there is no current. The in-
crease of current leads to the increase of magnetic field,
which induces an electric field E that interacts with the
current.
For the reason above, even though we are discussing

magnetostatic energy, Faraday’s law needs be used,

∇×E = −∂B
∂t
. (6.113)
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FIG. 56 (a) Gaussian surface for the flux of B. (b) Ampère
loop for the circulation of H. Fig. from Lorrain and Corson,
1970.

It is assumed that the current builds up slowly so the
process is quasi-static. The electromagnetic energy in a
dynamic system will be discussed in Chap 15.

Suppose charge ρ∆V is displaced by ∆r due to fields,
the mechanical work done by electromagnetic field on
charged particles is,

∆wm = ρ∆V (E+ v ×B) ·∆r. (6.114)

The rate of total work done is

dWm

dt
=

∫
dvρ(E+ v ×B) · v (6.115)

=

∫
dvJ ·E, J = ρv. (6.116)

Note that the magnetic force does no work.

According to Lenz’s law, the induced field E opposes
the increase of current. To build up the current, an ex-
ternal agent must provide Wext to work against Wm. It
is this external work that increases the energy UB of the
system.

For simplicity, consider a thin wire of loop C. Replace
dvJ with Idr, then

dWm

dt
= I

∮
C

dr ·E = IE , (6.117)

where E is the electromotive force around C. The rate

of external work is,

dWext

dt
= −I

∫
C

dr ·E (6.118)

= −I
∫
S

ds · ∇ ×E (6.119)

= I

∫
S

ds · ∂B
∂t

(6.120)

= I
dΦ

dt
, (6.121)

where S is a surface (not moving) bounded by C, and Φ
is the magnetic flux through S. Finally, in a time δt,

δWext =
dWext

dt
δt = IδΦ, (6.122)

hence

δUB = δWext = IδΦ. (6.123)

This is the first form of δUB .
With Stoke’s theorem, the magnetic flux can be writ-

ten as,

Φ =

∫
S

ds · ∇ ×A =

∮
C

dr ·A. (6.124)

The current is held fixed in δt, hence

δUB = I

∮
C

dr · δA. (6.125)

For a general current distribution, replace Idr with dvJ,
then

δUB =

∫
dvJ · δA. (6.126)

This is the second form of δUB .
We can also write UB in terms of magnetic field. Recall

that ∇ × H equals J (not including the magnetization
current), thus

δUB =

∫
dv(∇×H) · δA. (6.127)

Using

∇ · (u× v) = (∇× u) · v − (∇× v) · u, (6.128)

then

δUB =

∫
dv(∇× δA) ·H+

∫
dv∇ · (H× δA)

=

∫
dv δB ·H. (6.129)

The second integral can be converted to an integral over
a boundary surface at infinity and vanishes when the field
distribution is localized. This is the third form of δUB .
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Back to the first form of δUB . Suppose the current
(flux) increases from 0 to a final value I (Φ). In an in-
termediate state,

I(λ) = λI, and δΦ(λ) = δλΦ (0 ≤ λ ≤ 1), (6.130)

then

UB =

∫
I(λ)δΦ(λ) (6.131)

=

∫ 1

0

dλλ IΦ (6.132)

=
1

2
IΦ. (6.133)

Similarly, the second form also has the factor 1/2,

UB =
1

2

∫
dvJ ·A. (6.134)

For the third form, in a simple magnet (such as a para-
magnetic or a diamagnetic material), B is proportional
to H, and we can also have

UB =
1

2

∫
dvB ·H. (6.135)

The integrand is the energy density for magnetic field,

uB =
1

2
B ·H =

µ

2
H2. (6.136)

However, for non-simple magnet (such as a ferromagnet),
the original form in Eq. (6.129) needs be used to compute
the change of energy step by step.
Problem:
1. Suppose a current distribution outside a sphere with
volume V produces a magnetic field B(r). Show that

the magnetic field averaged over the sphere (which has
no current inside) equals the field at the center of the
sphere,

⟨B(r)⟩V ≡ 1

V

∫
V

dvB(r) = B(0).

2. A point magnetic dipole at the origin produces a mag-
netic field,

B(r) =
µ0

4π

3r̂(r̂ ·m)−m

r3
, r > 0.

Suppose m = mẑ. Show that the field averaged over a
sphere centered at the origin is zero,∫

V

dvB(r) =
µ0

4π

∫
V

dv
3r̂(r̂ ·m)−m

r3
= 0.
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