Basics of topological insulator

Ming-Che Chang Dept of Physics, NTNU

A brief history of insulators

2D TI is also called QSHI

• Gauss-Bonnet theorem for a 2D surface with boundary

$$\int_{M} da \ G + \int_{\partial M} ds \ k_{g} = 2\pi \ \chi(M, \partial M)$$

Quantum Hall effect (2D lattice fermion in magnetic field)

$$\int_{2DRZ} d^2k \, \Omega_Z = 2\pi C_1 \qquad \sigma_H = C_1 \frac{e^2}{h}$$

2D Lattice fermion with time reversal symmetry (TRS)

- Without B field, Chern number $C_1 = 0$
- Bloch states at *k*, -*k* are not independent

- EBZ is a cylinder, not a closed torus.
- ... No obvious quantization.

Moore and Balents PRB 07

- C₁ of closed surface may depend on caps
- C₁ of the EBZ (mod 2) is independent of caps

(topological insulator, TI)

→ 2 types of insulator, the "0-type", and the "1-type"

• <u>2D</u> TI characterized by a Z₂ number (Fu and Kane 2006)

$$\nu = \frac{1}{2\pi} \left[\int_{EBZ} d^2k \, \Omega - \oint_{\partial(EBZ)} dk \, A \right] \mod 2$$

~ Gauss-Bonnet theorem with edge

How can one get a TI?

: band inversion due to SO coupling

Bulk-edge correspondence

Semiclassical (adiabatic) picture: energy levels must cross (otherwise topology won't change).

→ gapless states bound to the interface, which are protected by topology.

Topological Goldstone theorem?

Bulk-edge correspondence in TI

(2-fold degeneracy at TRIM due to Kramer's degeneracy)

helical edge states

Topological insulators in real life

SO coupling only 10⁻³ meV

```
• Graphene (Kane and Mele, PRLs 2005)

• HgTe/CdTe QW (Bernevig, Hughes, and Zhang, Science 2006)

• Bi bilayer (Murakami, PRL 2006)
            • Bi_{1-x}Sb_x, \alpha -Sn ... (Fu, Kane, Mele, PRL, PRB 2007)
• Bi_2Te_3 (0.165 eV), Bi_2Se_3 (0.3 eV) ... (Zhang, Nature Phys 2009)
            • The half Heusler compounds (LuPtBi, YPtBi ...) (Lin, Nature Material 2010)
• thallium-based III-V-VI<sub>2</sub> chalcogenides (TIBiSe<sub>2</sub> ...) (Lin, PRL 2010)
• Ge<sub>n</sub>Bi<sub>2m</sub>Te<sub>3m+n</sub> family (GeBi<sub>2</sub>Te<sub>4</sub> ...)
```

- strong spin-orbit coupling
- band inversion

3 TI indices

3D TI: 3 weak TI indices:

Eg., (x_0, y_0, z_0)

1 strong TI index: ν_0

$$\nu_0 = Z_+ - Z_0$$

(= $y_+ - y_0 = x_+ - x_0$)

difference between two 2D TI indices

Fu, Kane, and Mele PRL 07 Moore and Balents PRB 07 Roy, PRB 09

Weak TI index

Screw dislocation of TI

- not localized by disorder
- half of a regular quantum wire

Ran Y et al, Nature Phys 2009

A stack of 2D TI

From Vishwanath's slides

Band inversion, parity change, spin-momentum locking (helical Dirac cone)

S.Y. Xu et al Science 2011

Dirac point:

Graphene vs. Topological insulator

Even number Odd number (on one side)

located at Fermi energy not located at E_F half integer QHE (x4) half integer QHE (if E_F is located at DP)

Spin is not locked with k spin is locked with k

can be opened by substrate cannot be opened

Electromagnetic response Axion electrodynamics

First, a heuristic argument:

- Hall current $J_H = \frac{e^2}{2h}E$
- Induced magnetization $M = \frac{e^2}{2h} h$

"magneto-electric" coupling

Effective Lagrangian for EM wave

$$L_{EM} = L_0 + L_{axion}$$

$$L_0 = \frac{1}{8\pi^2} \left(\frac{E^2}{c^2} - B^2 \right)$$
 "axion" coupling

$$L_{axion} = \frac{e^2}{2h} \frac{1}{c} \vec{E} \cdot \vec{B} = \alpha \frac{\Theta}{4\pi^2} \vec{E} \cdot \vec{B}$$

note:
$$\alpha = \frac{4\pi}{c} \frac{e^2}{2h} = \frac{e^2}{\hbar c} \sim \frac{1}{137}$$

For systems with time-reversal symmetry, Θ can only be 0 (usual insulator) or π (TI)

 Cr_2O_3 : $\theta \sim \pi$ /24 (TRS is broken)

Maxwell eqs with axion coupling

$$\nabla \cdot \left(\vec{E} + \alpha \frac{\Theta}{\pi} \vec{B} \right) = 4\pi \rho$$

$$\nabla \times \left(\vec{B} - \alpha \frac{\Theta}{\pi} \vec{E} \right) = \frac{4\pi}{c} \vec{J} + \frac{\partial}{c \partial t} \left(\vec{E} + \alpha \frac{\Theta}{\pi} \vec{B} \right)$$

$$\nabla \cdot \vec{B} = 0$$

$$\nabla \times \vec{E} = -\frac{\partial}{c \partial t} \vec{B}$$

Effective charge and effective current

$$\nabla \cdot \vec{E} = 4\pi \left(\rho + \rho_{\Theta} \right)$$

$$\rho_{\Theta} = -\frac{\alpha}{4\pi^{2}} \nabla \cdot \left(\Theta \vec{B} \right)$$

$$\nabla \times \vec{B} = \frac{4\pi}{c} \left(\vec{J} + \vec{J}_{\Theta} \right) + \frac{1}{c} \frac{\partial \vec{E}}{\partial t}$$

$$\vec{J}_{\Theta} = \frac{c\alpha}{4\pi^{2}} \nabla \times \left(\Theta \vec{E} \right) + \frac{\alpha}{4\pi^{2}} \frac{\partial}{\partial t} \left(\Theta \vec{B} \right)$$

Static:

Magnetic monopole in TI

Qi, Hughes, and Zhang, Science 2009

Dynamic:

Optical signatures of TI?

axion effect on

- Snell's law
- Fresnel formulas
- Brewster angle
- Goos-Hänchen effect

Longitudinal shift of reflected beam (total reflection)

Chang and Yang, PRB 2009
(Magnetic overlayer not included)

Dimensional reduction

Topological field theory

2D quantum Hall effect

1D charge pump

Laughlin's argument (1981):

compactification

Berry curvature:

$$f_{ij} = \partial_i a_j - \partial_j a_i$$

Berry connection:

$$a_{k} = i \langle u | \partial_{k} | u \rangle$$

$$C_1 = \frac{1}{2\pi} \int d^2k f_{xy}(\vec{k})$$

 $A_y(x,t) \sim \theta(x,t)$, a parameter polarization

$$P(\theta) = \frac{1}{2\pi} \int dk_x a_x$$

$$S_{CS} = \frac{C_1}{4\pi} \int d^2x dt \varepsilon^{\mu\nu\tau} A_{\mu} \partial_{\nu} A_{\tau} \longrightarrow$$

$$j^{\mu} = \frac{\delta S_{CS}}{\delta A_{\mu}} = \frac{C_1}{2\pi} \varepsilon^{\mu\nu\tau} \partial_{\nu} A_{\tau}$$

$$\widetilde{S} = \int dx dt \mathbf{P} \varepsilon^{\alpha\beta} \partial_{\alpha} A_{\beta}$$

$$j_{\alpha} = -\varepsilon_{\alpha\beta} \partial_{\beta} P$$

4D quantum Hall effect

3D topological insulator

$$S = \frac{C_2}{24\pi^2} \int d^4x dt \varepsilon^{\mu\nu\rho\sigma\tau} A_{\mu} \partial_{\nu} A_{\rho} \partial_{\sigma} A_{\tau} \longrightarrow \tilde{S} = \frac{1}{8\pi^2} \int d^3x dt \Theta \varepsilon^{\alpha\beta\gamma\delta} \partial_{\alpha} A_{\beta} \partial_{\gamma} A_{\delta}$$

$$i^{\mu} = \frac{C_2}{2\pi^2} e^{\mu\nu\rho\sigma\tau} \partial_{\alpha} A_{\beta} \partial_{\alpha} A_{\delta} \partial_{\alpha} \partial_{\alpha} A_{\delta} \partial_{\alpha} A_{\delta} \partial_{\alpha} A_{\delta} \partial_{\alpha} \partial_{\alpha} A_{\delta} \partial_{\alpha} \partial_{\alpha} A_{\delta} \partial_{\alpha} A_{\delta} \partial_{\alpha} A_{\delta} \partial_{\alpha} \partial_{\alpha}$$

$$j^{\mu} = \frac{C_2}{8\pi^2} \varepsilon^{\mu\nu\rho\sigma\tau} \partial_{\nu} A_{\rho} \partial_{\sigma} A_{\tau}$$
 nonlinear response.

$$\tilde{S} = \frac{1}{8\pi^2} \int d^3x dt \Theta \varepsilon^{\alpha\beta\gamma\delta} \partial_{\alpha} A_{\beta} \partial_{\gamma} A_{\delta}$$
$$j^{\alpha} = \frac{1}{4\pi^2} \varepsilon^{\alpha\beta\gamma\delta} \partial_{\beta} \Theta \partial_{\gamma} A_{\delta}$$

$$C_{2} = \frac{1}{32\pi^{2}} \int d^{4}k \varepsilon^{ijkl} \operatorname{tr}\left(f_{ij} f_{kl}\right)$$

$$f_{ij} = \partial_{i} a_{j} - \partial_{j} a_{i} - i[a_{i}, a_{j}]$$

$$a_{k}^{mn} = i \langle u_{m} | \partial_{k} | u_{n} \rangle$$

$$\Theta = \frac{1}{8\pi} \int_{BZ} d^3k \varepsilon^{ijk} \operatorname{tr} \left(\underline{a}_i f_{jk} + \frac{i}{3} \underline{a}_i \left[\underline{a}_j, \underline{a}_k \right] \right)$$

Alternative derivations of Θ

- 1. Semiclassical approach (Xiao Di et al, PRL 2009)
- 2. $\frac{\partial P_i}{\partial B_j}$ A. Essin et al, PRB 2010
- 3. $\frac{\partial M_j}{\partial E_i}$ A. Malashevich et al, New J. Phys. 2010

$$\frac{\partial P_i}{\partial B_j} = \frac{\partial M_j}{\partial E_i} = \alpha_{ij} = \tilde{\alpha}_{ij} + \alpha_{\theta} \delta_{ij}$$
$$\alpha_{\theta} = \frac{\Theta}{2\pi} \frac{e^2}{h}$$

Explicit proof of $\Theta = \pi$ for strong TI:

• Z. Wang et al, New J. Phys. 2010

Physics related to the Z_2 invariant

Thank you!