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A typical example of antiferromagnet : MnO

AF Heisenberg model

Because of the positive exchange coupling, nearby

spins prefer     to lower the energy
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“Frustrated” antiferromagnet

Ø Triangular lattice (LaCuO2)

 ? “><” frustrated

Ø Square lattice with NN and NNN interactions

R. Melzi et al, Phys. Rev. Lett. 85, 1318 (2000);
R. Melzi et al, Phys. Rev. B 64, 024409 (2001).



Ø Shastry-Sutherland lattice (Physica, 1981)

j < 0.7j’ dimerized state (Bose’s review 0107399)

j > 0.7j’ square Heisenberg with Neel-order

   SrCu2(BO3)2

    



Magnetization plateaus in SrCu2(BO3)2

H.Kageyama et al., Phys. Rev. Lett. 82, 3168 (1999)

K.Onizuka, H.Kageyama et al., J. Phys. Soc. Jpn (2000)

Other examples of the magnetization plateaus

CsCuCl3 (a stack of triangular lattices), M/Ms=1/3

NH4CuCl3 (coupled zigzag spin ladders), M/Ms=1/4,3/4



Plateaus for a classical magnet

(C. Lhullier and G. Misguich, cond/mat 0109146)

Classical ground state for a triangular lattice

Collinearity criterion

plateau  saturation

The three vectors represent the three sublattice

magnetizations. A plateau at M/Msat=1/3 is present

for magnetic field between B1 and B2

 B



Spin configuration within a plateau

uud structure (M/Ms=1/3)

uuud structure (M/Ms=1/2)

Plateaus for a quantum magnet

1D: Oshikawa, Yamanaka, and Affleck (’97)

n(S-Sz) ∈ Z

n: period of the unit cell

S: spin per site

Probably true in 2D as well



Magnetization of the Shastry-Sutherland lattice

G. Misguich, Th. Jolicoeur, and S. M. Girvin,

Phys. Rev. Lett. 87, 097203 (2001)

Comparison between the magnetization curve measured

by Onizuka et al. (dashed line) and

the mean-field result (solid line).

⇒ close theoretical connection with

the Hofstadter spectrum!



Hofstadter spectrum: (D.R. Hofstadter, PRB 1976)

The band structure of an electron subjects to both a

lattice potential V(x,y) and a magnetic field B

B

A plaquette

¨ Can be studied using either the nearly free

electron model or the tight-binding model

¨ Surprisingly complex spectrum!

Split of energy band depends on flux/plaquette

If Φplaq/Φ0= p/q, where p, q are co-prime integers,

then a Bloch band splits to q subbands (for TBM)

¨ The tricky part:

q=3 à q=29 upon a small change of B!

Also, when B à 0, q can be very large!

1

3
1

10

10
29

1
3

1
87−

= = +



Hofstadter’s butterfly

A fractal spectrum with self-similarity structure

Bà0 near band button, evenly-spaced LLs

Self-similarity

² The total band width for an irrational q is of

measure zero (as in a Cantor set)



Distribution of the Hall conductances

Each filled band carries an integer Hall

conductance σxy (TKNdN paper, 1982)

D.Osadchy and J.Avron, J. Math. Phys. 46, 5225 (2001)

The figure shows the gaps, color coded according to the

Hall conductance (determined by the Diophantine eq.). The

warm colors represent positive values of Hall conductance,

and the cold colors represent negative values.



GS of J1-J2 Heisenberg model on a square lattice

Neel order vs collinear order: semiclassical picture
A. Honecker, Can. J. Phys. 79, 1557 (2001)

Magnon dispersion for the FM state

J2 < J1/2: energy minimum at (π, π)

Neel order with SU(2) symmetry

J2 > J1/2: minima at (π, 0) or (0, π)

Collinear order (superlattice structure)

Both phases have gapless magnon excitations
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Beyond semiclassical

Spin-disordered phase near J2 = J1/2 (0.38 < J2/J1 < 0.6)

Spin liquid RVB (Caprioti, PRL 2001 using projected BCS)

 
Melzi et al., PRL 85,1318 (2000)

Gapful excitations within the disordered phase

J2/J1

0.3 0.4 0.5 0.6
 Kotov et al. PRB 1999



Magnetization of the frustrated Heisenberg model

on a square lattice

Weak B: No spin gap for Neel or collinear phase

M ∝ B linear

Intermediate B:

Possibility of magnetization plateau

l Gapful magnetic excitation,

M doesn’t change with B

l Vanishing magnetic susceptibility χ=∂M/∂B

l Discontinuity of ∂E/∂M

Strong B: all three phases are saturated by the B

         field and become FM



Chern-Simons mean field approach

1. Spins as interacting bosons on the lattice

Si
– = bi

Si
+ = bi

+

Si
z = bi

+bi–1/2

Plus hard-core constraint (bi
+bi = 0,1)

2. Chern-Simons transformation in 2D

    a boson   = a fermion

 attached with a flux quantum Φ0

  hard-core constraint automatically satisfied

3. Static mean-field approximation for the CS field

l <fi
+fi> = <ni> = Φ/ Φ0 (Φ0=2π if h=1)

l M = <Sz> = <n> – 1/2

à lattice fermions in an uniform CS gauge field



spin

boson

 

fermion

 n-1/2 = M (per site)

    Φ/ Φ0 = n = M+1/2

à E(M)=Exy(M)+Ez(M)

 minimize F(M)= E(M) – BM to get the M-B curve
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l Kinetic energy Exy:

Hofstadter spectrum on a square lattice J2/J1 = 0.2

  M=0 gauge flux Φ/ Φ0=p/q        M=Msat

   Each subband admits N/q states

   à N(p/q) fermions fill p subbands

l Ising energy Ez (Hartree approximation)

   Ez = 2NsJ1(n-1/2)2+2NsJ2(n-1/2)2

Total energy per site

Exy/J1
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e(M) and magnetization curve (Lhuillier and Misguich)

Spin gap

Standard

paramagnet

1st order

transition

plateau

B=∂E/∂M



Magnetization curves J2/J1 = 1/2 :

(for J2/J1 < 1/2),  Bsat/J1 = 4

fake spin gap (An artifact of the mean field approx.)

l plateau at 1/3 from J2/J1 > 0.26795 (σT = –2)

l plateau at 1/2 from J2/J1 > 0.38268 (σT = –3)

Topological nature of the quantized Hall conductance

protects the plateaus from quantum fluctuations

Y.R. Yang, Warman, and S.M. Girvin, Phys. Rev. Lett. 70, 2641 (1993).

1/2

1/3

Honecker et al:
Finite-size
calculation
0.5<J2/J1<0.65

J2/J1=0.0
J2/J1=0.2
J2/J1=0.3
J2/J1=0.4



J2/J1 = 1/2 :

(for J2/J1 = 1/2),  Bsat/J1 = 2+4J2/J1

J2/J1 = 0.5: a series of plateaus at M/Msat = n/(n+2)

(no longer so in nonuniform mean field calculation)

J2/J1 = 0.7 and J2/J1 = 1.0:

l Irregular plateau structure, more studies using

non-uniform mean field approx. are needed

l Main plateaus with simple fractions of M/Msat

might survive

M/Msat

J2/J1=0
J2/J1=0.5
J2/J1=0.7
J2/J1=1.0



 Magnetization plateau <-> Touch of energy bands

J2/J1 = 0.2

bands touch somewhere near J2/J1 = 0.268

J2/J1 = 0.3

à discontinuity of the fermi energy w.r.t. flux change

à a jump for B = ∂E/∂M



Jump of integer-valued Hall conductance induced by

band-crossing “ <-> Transport” of a subband
M.Y. Lee, M.C. Chang, and T.M. Hong, Phys. Rev. B57, 11895 (1998)

p/q=40/59

p/q=2/3



Summary (M.C. Chang and M.F. Yang, Phys. Rev. B, 2002)

Chern-Simons mean field result

l Saturation field Bsat coincides with exact result

l emergence of the M/Msat = 1/2 plateau consistent

with Neel/disorder phase boundary(J2/J1=0.3826)

l 1/3 plateau may indicate a phase transition for

J2/J1 < 0.38. (validity of the mean field approx.?)

l irregular plateaus at J2/J1 > 0.5

Still there in the nonuniform (collinear and Neel

ordered) mean field calculations

l awaiting experimental confirmation


