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Chiral magnetic effect in the absence of Weyl node
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The nodal points in a Weyl semimetal are generally considered as the causes of the chiral anomaly and the
chiral magnetic effect (CME). Employing a linear-response analysis of a two-band lattice model, we show that
the Weyl nodes and thus the chirality are not required for the CME, while they remain crucial for the chiral
anomaly. Similar to the anomalous Hall effect, the CME results directly from the Berry curvature of energy
bands, even when there is no monopole source from the Weyl nodes. Therefore, the phenomenon of the CME
could be observed in a wider class of materials. Motivated by this result, we suggest that the nodeless CME may
appear in three-dimensional quantum anomalous Hall insulators, but after they become metallic due to the band
deformation caused by inversion symmetry breaking.
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I. INTRODUCTION

Materials with topologically nontrivial electronic structure
have recently been under intensive investigation. A particularly
interesting state of matter is the three-dimensional Weyl
semimetal [1–4], whose band structure contains isolated
band-touching points, called Weyl nodes. Such nodal points
behave as sources or drains of the Berry flux and carry
nonzero monopole charges Q, which is defined by the integral
of the Berry curvature �k over the surface enclosing the
node, Q = (1/2π )

∮
dSk · �k. The Weyl nodes are protected

topologically against perturbations. They would disappear
only if two nodes with opposite monopole charges merge and
annihilate with each other. Recently, TaAs and NbAs have been
experimentally confirmed to be Weyl semimetals [5–9]. This
progress paves the way for exploring novel effects in these
materials.

Due to the nontrivial topology in momentum space, such
nodal materials exhibit a wide variety of unusual electromag-
netic responses [10]. In a Weyl semimetal, electrons near each
Weyl node can be assigned a chirality by the monopole charge
of that node. Applying a pair of nonorthogonal electric and
magnetic fields, the charges can be transported between two
Weyl nodes with opposite chiralities. Therefore, the number
of electrons with a definite chirality is no longer conserved,
showing the so-called chiral anomaly [11]. By using a
semiclassical analysis, one can show that the anomalous
source term in the continuity equation of chiral charges is
proportional to the monopole charge [12]. Thus this exotic
phenomenon becomes more manifest for nodes with larger
Q’s. This anomaly is predicted to give an enhanced negative
magnetoresistance when the applied electric and magnetic
fields are parallel to each other [13,14]. Such a prediction
has just been confirmed by experiments in the Weyl semimetal
TaAs [15,16].

Besides the chiral anomaly, such nodal materials may show
the chiral magnetic effect (CME) when the energies of pairs
of Weyl nodes are different [12,17–20]. This effect gives a
dissipationless electric current J flowing along an applied
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magnetic field B, J = −αB. Employing a low-energy effective
theory with unbounded linear dispersion, the CME coefficient
α is shown to be proportional to the energy separation between
a pair of Weyl nodes. Since the CME can be related with
the chiral anomaly through the energy balance of chirality
generation [13,21], one may expect that, when there is no Weyl
node such that chiral fermions become ill defined, neither the
chiral anomaly nor the CME could exist.

However, most of the early investigations are based on
effective models with linear dispersions around Weyl nodes.
In a previous work, we find that, when going beyond the linear
regime such that the concept of chirality may no longer be
appropriate, the CME can still exist [22]. Our analysis shows
that this effect is better understood in terms of the Berry
curvature, rather than the chirality.

In this paper, we show that, in sharp contrast to the
chiral anomaly, Weyl nodes are in fact not vital for the
existence of the CME. As shown in Fig. 1, there are several
ways to realize a semimetal. In Figs. 1(a) and 1(b), when
the nodes carry nonzero monopole charges, chiral anomaly
and related transport phenomena are expected to emerge. In
contrast, since there is no nodal point in Fig. 1(c), chirality
becomes meaningless and the monopole charge density (i.e.,
the divergence of Berry curvature) vanishes throughout the
whole Brillouin zone. Therefore, there is no chiral anomaly in
this nodeless case. However, we find that for clean samples the
CME can exist even in this case with no Weyl node.

This conclusion may not be too surprising because, for
both cases in Figs. 1(b) and 1(c), energy bands are partially
filled with finite Fermi surfaces, and the system is metallic
in nature. Besides, in the semiclassical analysis [24], there
exists anomalous velocity induced by a Berry curvature: va =
−k̇ × �k, where �k̇ is the force experienced by the electron.
Under an external B field, the Lorentz force gives an anomalous
velocity (and thus current): va ∼ e

�
(v · �k)B, where v is the

group velocity of the Bloch electron. While this provides only
a heuristic picture [the complete expression is presented in
Eq. (5)], it does show that the Berry curvature could drive a
current along the direction of the B field, no matter whether
the Berry curvature emanates from a monopole or not.

Our observation is illustrated by using a two-band lattice
model. With suitable parameters, cases (a), (b), and (c) in
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FIG. 1. (Color online) Various types of semimetals. (a) Two
conical bands that touch at a nodal point. The Fermi surface is a point.
(b) Tilted cones (or type-II Weyl semimetal [23]). The Fermi surfaces
enclose an electron pocket and a hole pocket. (c) Overlapped bands
that do not touch with each other. Dashed lines denote the location of
the chemical potential.

Fig. 1 can all be realized. We find that, when two nodes
merge in momentum space [see Fig. 3(a)] and the resulting
node has zero total monopole charge, the CME would appear
as long as there are electron and hole pockets at the Fermi
level. That is, the energy separation between two nodes and
nonzero monopole charge of the nodes are not necessary
for the CME. This case is reminiscent of the type-II Weyl
semimetal in Fig. 1(b). Furthermore, for some parameters, the
point degeneracy between energy bands can be lifted, so that
there is no Weyl node. However, the CME still would appear
when the energy bands are partially filled [see Fig. 3(b)]. Our
results challenge the wisdom based on the studies of linearized
models, in which the chiral magnetic current arises from the
presence of Weyl nodes and is proportional to the energy
separation between Weyl nodes.

This paper is organized as follows: In Sec. II, we introduce
the two-band model under consideration. In Sec. III, the
dependence of the anomalous Hall conductivity and the CME
coefficient on various parameters is studied numerically. The
result of this work is summarized in Sec. IV.

II. TWO-BAND LATTICE MODEL FOR DOUBLE-WEYL
SEMIMETAL

Here we consider the case of double-Weyl semimetals
for illustration. Besides the usual linear Weyl nodes car-
rying monopole charges Q = ±1, there are nodal points
with nonlinear dispersions and higher monopole charges
[25–28]. Such nodes can be protected by crystallographic point
group symmetries. One example of the so-called double-Weyl
semimetal is HgCr2Se4, which contains nodes with Q = ±2.
The spectrum around each node disperses quadratically in
two directions. This material has recently been confirmed by
a transport experiment to be a semimetal [29]. It is predicted
that, in a double-Weyl semimetal, the quantum anomalous Hall
(QAH) conductivity, the coefficient of the chiral anomaly,
and the number of Fermi arcs for surface states could all
be doubled. The effect of electron interaction near such a
quadratic node could also be very different from that of a
linear node [30–32].

To study the CME of double-Weyl semimetals, we start with
a two-band lattice Hamiltonian motivated by the compound
HgCr2Se4 [27],

H0(k) = (
cos kx − cos ky

)
σx + sin kx sin kyσ

y

+ (
m − cos kx − cos ky − cos kz

)
σ z, (1)
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FIG. 2. (Color online) Phase diagram of the Hamiltonian in
Eq. (2) for a � 0. Here, a circled number (in blue) shows the number
of Weyl nodes in a particular phase. Doubly circled numbers indicate
that they are double-Weyl nodes (see the Appendix for more details).
This occurs when a = 0 and 1 < |m| < 3 (two red line segments).
Outside the colored regions, the system is a trivial phase without
node. The vertical dashed line indicates the path calculated in the
right panels of Fig. 4.

where σα (α = x, y, z) are the three Pauli matrices and k is the
Bloch wave vector. This model breaks time-reversal symmetry,
but has a combined C4-rotation and Mz-mirror symmetry. The
bulk energy gap of Eq. (1) closes and a pair of double-Weyl
nodes emerges if 1 < |m| < 3. When 1 < m < 3, the nodes
locate at k±

0 = (0,0, ± cos−1(m − 2)); while for −3 < m <

−1, they locate at k±
0 = (π,π,π ± cos−1(m + 2)). Notice that

the C4 symmetry protects the double-Weyl points, while the
Mz symmetry requires that the two double-Weyl points have
equal energy.

Since we are interested in studying the CME, a Mz-breaking
term, t1 sin kz, is added to split the energy of the two double-
Weyl nodes. Besides, in order to split a double-Weyl node into
two single-Weyl nodes, a C4-breaking term, a σx , is added.
Therefore, the lattice model under consideration becomes

H (k) = H0(k) + a σx + t1 sin kz

= d(k) · σ + t1 sin kz , (2)

where we have written H in the standard d-vector notation.
The energy spectra are invariant under the combined transfor-
mation of a → −a, and kx ↔ ky . Therefore, it is sufficient to
study the case with a � 0.

The phase diagram in the parameter space of (m,a) is shown
in Fig. 2. The t1 term only tilts the band structure, but does
not change the number of nodes in a phase. When a = 0, as
mentioned above, the system belongs to the semimetallic phase
with a pair of double-Weyl nodes for 1 < |m| < 3. If 1 < m <

3, and a �= 0, then each of the double-Weyl node would split
to two nodes along the kx direction. The resulting phase has
four linear Weyl nodes within the colored parallelogram in
Fig. 2. Similarly, if −3 < m < −1, then a positive a would
split a double-Weyl node to two nodes along the ky direction,
and we have another Weyl semimetal phase with four nodes.
These two four-node phases would overlap to form a phase
with eight nodes at larger a’s.

On the other hand, if |m| < 1 and a is small (the upright
triangular region in Fig. 2), then there exists no node. When
t1 = 0 and the chemical potential μ = 0, the system becomes
a three-dimensional QAH insulator with a quantized Hall
conductivity |σH | = 2e2/h (here the lattice constant is set to
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FIG. 3. (Color online) Band energies as functions of kz (kx =
ky). The parameters are (a) m = 1 (a single merged node with zero
topological charge) and (b) m = 0.8 (nontouching energy bands).
Here a = 0 and t1 = 1.

be unity) [25,30]. The coefficient of two can be traced back
to the fact that the monopole charge of a double-Weyl node is
two times larger.

By choosing suitable parameters, both cases of tilted cones
and overlapped bands in Figs. 1(b) and 1(c) can be realized
in the present model. For example, when a = 0 and m = 1,
two (would-be) double-Weyl nodes merge at k±

0 = (0,0,π ).
Notice that the merged node carries no monopole charge. For
a nonzero t1 with a fixed chemical potential μ = 0, electron
and hole pockets appear at the Fermi energy, as shown in
Fig. 3(a). This resembles the type-II Weyl semimetal discussed
in Ref. [23]. On the other hand, there is no node when the
parameters (m,a) lie within the upright triangular region in
Fig. 2. Turning on a nonzero t1, the energy bands are distorted
so that the chemical potential μ = 0 intersects with both bands.
A typical example is displayed in Fig. 3(b).

III. ANOMALOUS HALL EFFECT AND CHIRAL
MAGNETIC EFFECT

Within the linear-response theory, both the Hall conductiv-
ity and the CME coefficient can be calculated from the retarded
current-current correlation function at finite frequency and
wavevector, followed by an appropriate limiting process [22].

For a generic two-band model, the Hall conductivity σ ij in
the relation J i = ∑

j �=i σ ijEj (i,j = x, y, z) is given as

σ ij = −e2

�

∫
d3k

(2π )3

∑
t=±

��
k,t ft (k), (3)

where i,j,� are in the cyclic order of x,y,z. Here ft (k) is
the Fermi-Dirac distribution function for band t(= ±) at some
temperature T . The Berry curvatures �i

k,± are given by the
formula [33]

�i
k,± = ±

∑
j,�

εij� 1

4d3(k)
d(k) ·

[
∂d(k)

∂kj

× ∂d(k)

∂k�

]
. (4)

Since the Weyl nodes in our model are connected by Dirac
strings along the z axis, the only nonvanishing components
are σxy = −σyx ≡ −σH . The rest of the components are zero,
which has been confirmed by numerical calculations.

For a two-band model, following the steps described in
Ref. [22], one can show that the CME coefficient for the
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FIG. 4. (Color online) Hall conductivity σH (in units of e2/h)
and CME coefficient α (in units of e2/h2). Left panels: a = 0 and
m ∈ [0,3] (along the positive a axis in Fig. 2). Right panels: m = 0.5
and a ∈ [0,2] (along the vertical dashed line in Fig. 2). The parameter
t1 varies from 0 to 1 with step 0.25. Temperature T = 10−2 and the
chemical potential μ = 0. Phase boundaries at t1 = 0 are denoted by
the vertical dotted lines. The calculations are done with 6003 lattice
sites.

chiral magnetic current J i
CME = −αiBi under an applied B

field along direction i is [34]

αi = e2

�

∫
d3k

(2π )3

∑
t=±

[
vk,+ + vk,−

2
· �k,t ft (k)

−t d(k)
vk,t · �k,t − vi

k,t�
i
k,t

2

∂ft

∂Et

]
. (5)

Here vk,t = (1/�)∇kEt (k) are the group velocities, and Et (k)
are the band energies. Because the integrands of αi along
different directions differ only by a term containing vi

k,t�
i
k,t ,

the values of αi do not differ much. They are often of the same
order and show similar dependence on parameters. (This is true
also for the model considered in Ref. [22].) For simplicity, only
its averaged value, α = (αx + αy + αz)/3, is presented below.

The numerical results of σH and α for the two-band model
in Eq. (2) are displayed in Fig. 4. We start with the a = 0
case. When t1 = 0, the system is nodeless and belongs to
the QAH insulating phase with a quantized Hall conductivity
σH = −2e2/h if |m| < 1 [25]. As m increases from 1 to 3,
the two double-Weyl nodes approach each other, and thus the
magnitude of σH decreases to zero, when they annihilate each
other at m = 3. When t1 �= 0, such that the valence band is
not completely filled, σH is no longer quantized even when
|m| < 1. These results are summarized in Fig. 4(a) [35].

On the other hand, as seen from Fig. 4(b), the CME
coefficient α vanishes as long as t1 = 0. This is expected,
because the system is either in the insulating phase (|m| < 1)
or the nodes has no energy shift (1 < m < 3). Notably, when
t1 �= 0, α can be nonzero even if the system lies in the nodeless
region of |m| < 1. The finite value of α comes from the effect
of the Berry curvatures of the electron and hole pockets [see
Fig. 3(b)]. The value of α drops to zero at a smaller m (a
larger energy gap) as long as the chemical potential no longer
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intersects with the energy bands. Our results shows that the
Weyl node is not required for the CME.

Now we consider the effect of the C4-breaking term with
a �= 0. In Figs. 4(c) and 4(d), one follows the dashed line of
m = 0.5 in Fig. 2 that starts in the phase with nontouching
bands when a = 0, enters the four-node phase when a = 0.5,
and reaches the eight-node phase when a = 1.5. At t1 = 0,
there are kinks in the slope of the σH curve at phase boundaries
in Fig. 4(c) [35]. The curves become smooth when t1 �= 0.
Interestingly, as seen in Fig. 4(d), α behaves smoothly and
nonmonotonically when t1 �= 0. Due to the same reason
mentioned in the previous paragraph, α = 0 as long as t1 = 0.
On the two ends of a = 0 and a = 2, σH and α can be nonzero
at nonzero t1, because the valence band is not completely filled.
Most importantly, again the CME coefficient is obviously not
zero in the nodeless region when a < 0.5.

Lately, SrSi2 is found to be a double-Weyl semimetal with
pairs of nodes located at different energies [28]. Thus it could
be a natural candidate for testing the CME.

IV. CONCLUSION AND DISCUSSION

Even though the CME originates from the theory of chiral
fermions in high-energy physics, in condensed matter it exists
even in the absence of Weyl node and the chirality becomes
ill defined. Our analysis shows that the CME comes directly
from the distribution of the Berry curvature in energy bands.
Whether there are monopoles (sources or drains of the Berry
flux) in the Brillouin zone is not crucial.

It worths emphasizing that the existence of the CME in a
type-II Weyl semimetal or a nodeless phase is not restricted
to the systems containing double-Weyl nodes. The same
phenomena are found to exist (not shown here) also in a lattice
model (an extended version of the one in Ref. [22]) with only
linear Weyl nodes. Because the CME coefficient is odd under
space inversion, only the materials without inversion symmetry
can exhibit the CME. Inspired by the present work, a candidate
for realizing the nodeless CME could be a three-dimensional
QAH insulator, after its energy bands being distorted by, e.g.,
inversion symmetry breaking, so that the valence (conduction)
band is not completely filled (empty).

Recently, the chiral anomaly in a Weyl semimetal has
been confirmed indirectly through the measurement of the
negative longitudinal magnetoresistence (NLMR) [15,16]. In
the experimental setup, one applies electric and magnetic fields
to a Weyl semimetal. Because of the chiral anomaly, charges
are pumped between Weyl nodes with opposite chiralities
at a rate proportional to E · B, which leads to a difference
in chemical potentials between these Weyl nodes. Since the
CME coefficient is proportional to such difference of chemical
potentials, the electric conductivity is thus proportional to B2,
resulting in the NLMR. However, in this paper, we are studying
the CME in an equilibrium state without an electric field. That

is, the electric current is driven only by a magnetic field. Thus
there is no connection between the CME here in an equilibrium
state and the NLMR. In the case of nodeless CME, even if an
additional electric field is applied, since there is no node, no
chiral anomaly, and thus no charge pumping, one does not
expect to see the NLMR either.

Finally, we emphasize that the present linear-response
analysis is done with a two-band model in a clean and infinite
system. Real samples always have disorders and are finite in
size. An important issue is how these factors would change
the value of the CME coefficient. For example, the spin Hall
conductivity for a clean Rashba system is first predicted to
be nonzero, but later found to vanish with the inclusion of
disorders [36]. Similar qualitative alteration to the CME due
to realistic factors cannot be completely ruled out. In any case,
the conclusion in this paper should still hold in the conservative
range of ωτ 	 1, where ω is the driving frequency and τ is
the relaxation time. Generalization to more realistic systems
remains to be explored in future investigations.
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APPENDIX: CALCULATING THE MONOPOLE CHARGE
OF A WEYL NODE

The energy dispersion near a Weyl node determines its
monopole charge. As discussed in Ref. [37], the monopole
charge Q (or the winding number of the mapping f : k → d)
of a given Weyl node can be calculated by a simple formula:

Q =
N∑

�=1

sgn

(∣∣∣∣ ∂di

∂kj

∣∣∣∣
k=k(�)

)
. (A1)

Here one sums over the k points with d(k(�)) = d0, which
is fixed, assuming that the Jacobian |∂di/∂kj | �= 0 at these k
points.

For example, for a = 0 and m = 2 in our model, there
are nodes at k±

0 = (0,0, ± π/2). Expanding the momentum
around the node, k = k±

0 + q, one has

d(q) 

(

q2
y

2
− q2

x

2
,qxqy, ± qz

)
, (A2)

and the Jacobian is ∣∣∣∣ ∂di

∂qj

∣∣∣∣ = ∓(
q2

x + q2
y

)
. (A3)

Choosing d0 = (1/2,0,0), then there are two q points, q(1) =
(0,1,0) and q(2) = (0, − 1,0). They contribute to Q = ∓2 in
total.
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