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We present a general theory for equilibrium-modulated phases of chiral and achiral bilayer membranes and
liquid crystal films. Both bulk smectics as well as freely suspended films are considered. For flexoelectric
systems, continuous structural phase transitions are predicted among square-lattice, hexagonal, and distorted
two-dimensional modulated phases as a function of the applied electric field. It is also shown that only uniform
flat phases are predicted for thin films. One-dimensional ripple phases and two-dimensional square-lattice
phases can occur with increasing film thickness.@S1063-651X~96!03205-9#

PACS number~s!: 61.30.Cz, 64.60.2i, 64.70.Md

I. INTRODUCTION

The study of two-dimensional surfaces is an important
subject in both physics and biology. In many ways, lipid
bilayer membranes provide experimental realization of ran-
dom surfaces and excellent model systems of cell mem-
branes. These membranes are composed of amphiphilic mol-
ecules which have charged or polar heads and one or two
hydrocarbon tails. When these molecules are dissolved in
water at sufficient concentration, they self-assemble into bi-
layer membranes in which their hydrophobic tails are
shielded from contact with the surrounding water. Under ap-
propriate conditions, lamellar phases consisting of periodi-
cally spaced parallel membranes separated by water are the
equilibrium phases. Membranes in lamellar phases as well as
isolated membranes~e.g., in closed vesicles! can exhibit
varying degrees of in-plane order. Above the chain-melting
temperature, the membranes form an equilibriumLa lamellar
phase in which the long axes of constituent molecules are on
average parallel to the membrane normal. This phase has the
same symmetry as the liquid crystalline smectic-A phase. At
low temperatures, the membranes develop molecular tilt
relative to the membrane normal. In thisLb8 phase, the tilt
orientational order is similar to the liquid crystalline smectic-
C phase. However theLb8 phase also exhibits bond orienta-
tional order@1#. In fact, three distinct hexatic phases have
been reported in this region. For a number of lipids with
saturated acyl chains, such as dimyristoyl phosphatidylcho-
line ~DMPC!, in addition to the tiltedLb8 phase, a modulated
Pb8 phase is observed in the hydrated lamellar systems. This
phase is characterized by a one-dimensional height modula-
tion of each membrane@1–6# in addition to a nonzero mo-
lecular tilt @2,3#. Such a structure thus exhibits broken trans-
lation invariance in one of the in-plane directions within each
membrane@7#.

Similar to lipid bilayer membranes, liquid crystal films
also exhibit a number of thermodynamically distinct phases,
including various modulated phases that result from compet-
ing interactions. For instance, chiral smectic liquid crystal
films and lyotropic lamellar phases have been shown to form
various striped modulated phases@1,2,8,9#. A similar striped
domain phase due to the surface polarization asymmetry has
also been seen in achiral films@10,11#. Furthermore, theories

predict hexagonal modulated phases in strongly chiral ther-
motropic films@12#. Although these hexagonal phases have
apparently not yet been observed experimentally, experi-
ments with freely suspended liquid crystal films have dem-
onstrated more than one square-lattice modulated phase@13#.
In addition to these square-lattice modulated phases, the
films studied in Ref.@13# showed one-dimensional modu-
lated phases similar to thePb8 phases of lipid bilayers, as
well as a number of uniform smectic phases with varying
degrees of in-plane orientational order. Such freely sus-
pended smectic liquid crystal films are also attractive sys-
tems for the study of two-dimensional surfaces. Uniform,
stable, large-area~10 cm2) films can be made which consist
of only two molecular layers (N52). Moreover, the film
thickness can be increased to study the evolution to three
dimensions. Various techniques including x-ray scattering
have been applied to study the intermolecular correlations
and phase transitions in the various smectic phases. A sche-
matic representation of the phase diagram for 4-
n-heptyloxybenzylidene-4-n-heptylaniline ~7O.7! @13# ob-
tained from x-ray scattering for varying temperature and
number of layers is shown in Fig. 1.

In this paper, we present and analyze a phenomenological
Landau model@14–16# for tilted bilayer membranes that in-
cludes coupling between tangent plane order and membrane
shape~or curvature! and chiral couplings present when con-
stituent molecules are chiral. This model is applicable to
both classes of membranes described above. This model pre-
dicts the existence of a number of distinct rippled phases
distinguished by height profiles of different symmetry and by
different tilt-order-parameter configurations relative to the
ripples. Finally, the model predicts the existence of phases
with two-dimensional rather than one-dimensional height
modulations.

In the following section, we will present our phenomeno-
logical model for both chiral and achiral membranes. In Sec.
III, we will study the effect of an applied electric field on
achiral membranes. A numerical approach and results from
this model will be discussed in Sec. IV. In Sec. V, we will
illustrate the effect of the confinement of a smectic domain
confined between walls. Finally, we will give a detailed
analysis for the phase diagrams in freely suspended films and
compare the experimental results with ours.

PHYSICAL REVIEW E MAY 1996VOLUME 53, NUMBER 5

531063-651X/96/53~5!/4933~11!/$10.00 4933 © 1996 The American Physical Society



II. THE MODEL

In previous papers@14–16#, we have developed a phe-
nomenological Landau theory for molecular tilt and mem-
brane shape. This model was used to explain the possible
origin of the one-dimensional modulatedPb8 phase in lipid
bilayers, as well as the shape of the chiral stripe phases that
can result from the coupling of the molecular tilt to the mem-
brane curvature. In this paper, we focus primarily on possible
two-dimensional phases of lipid bilayers and liquid crystal
films. The latter have been shown to form such two-
dimensional modulated phases with square symmetry@13#.
These square-lattice phases, however, have only been ob-
served for thick films of more than approximately 200 layers.
Thus we have also extended our previous work to the case of
freely suspended films of finite thickness. Furthermore, in
order to elucidate the origin of these square-lattice phases
and the possibility of other structures, such as hexagonal
phases, we have examined the effect of the symmetry break-
ing fields, such as an applied electric field perpendicular to
the film. We find a sequence of structural phase transitions in
such films, in which, as a function of the applied field, the
square-lattice phase evolves continuously into a splay hex-
agonal phase with a distinct intermediate phase of lower
symmetry.

The molecular orientation can be determined by the pro-
jectionm of the local directorn onto the local tangent plane
to the membrane, as depicted schematically in Fig. 2. We
include the coupling of the molecular tilt to the membrane
curvature. This coupling results from steric interactions be-
tween neighboring molecules. A divergence ofm corre-
sponds to a varying tilt angle of the molecules relative to the
surface, which gives rise to aspontaneous curvatureof the
membrane. The model free energy is given by

f5 fm1 f bend, ~1!

where

fm5 1
2Ci~“•m!21 1

2C'~“3m!21 1
2D~¹2m!2

1 1
2 tumu21uumu4, ~2!

and

f bend5
1

2
k~¹2h!22g~¹2h!~“•m!. ~3!

Hereh(x,y) is the height of the membrane relative to some
flat plane with coordinates (x,y), and¹ i¹ jh(x,y) is the lin-
earized curvature tensor. The equilibrium membrane shape is
given by

¹2h5
g

k
~“•m!. ~4!

Whenh is replaced by this equilibrium value, we obtain the
effective free energy as given by

f5 1
2Ci8~“•m!21 1

2C'~“3m!2

1 1
2D~¹2m!21 1

2 tumu21uumu4, ~5!

with a reduced longitudinal elastic constantCi85Ci2g2/k.
WhenCi8.0, the equilibrium phases are spatially uniform;
whenCi8,0, modulated phases are possible with a charac-
teristic wave numberq05(2p/l)5AuCi8u/2D that tends to
zero atCi850.

Several one-dimensional modulated phases of this model
were examined previously@14,15#. A square-lattice phase
also occurs for the model in Eq.~5!. The structure is
sketched in Fig. 3~a!. In terms of the molecular orientation,
this phase can be characterized as a vortex-antivortex phase,
with two strength11 vortices located at two corners of the
unit cell and two strength21 vortices located at the other
corners.

In chiral membranes, since chiral molecules have no in-
version symmetry, additional chiral terms must be included

FIG. 1. The phase diagram of 7O.7 as a function of the tempera-
ture and number-of-layers (N), showing the square-lattice phase,
one-dimensional rippled phases, and several uniform flat phases.
The square-lattice phase occurs for the number of layers greater
than 200 and for temperatures between 55 °C and 62 °C.

FIG. 2. Smectic-C order within a liquid crystal film or lipid
bilayer membrane arises from a tilt of the constituent molecules
~represented by the solid oval and unit directorn). In the case of a
curved membrane, the orientation is defined with respect to the
neighboring molecules. Equivalently, the tilt is characterized rela-
tive to the local normalN to the membrane. The surface component
m5n2(N•n)N represents a two-dimensional vector order param-
eter.
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in Eq. ~5!. By symmetry, the lowest-order chiral coupling for
a bilayer is umu2(“3m) @12,17,18#. So, the effective free
energy for chiral membranes becomes

f ch5
1
2Ci8~“•m!21 1

2C'~“3m!21 1
2D~¹2m!21 1

2 tumu2

1uumu41lbumu2~“3m!. ~6!

A coupling of tilt and shapeeki(¹ i¹ jh)mjmk is also possible
@19# in chiral membranes. However, to this order, its effect is
the same as the last term in Eq.~6! @15#. The chiral term
above lowers the symmetry of rippled phases and also leads
to additional chiral phases, such as the chiral stripe phase and
hexagonal phase of Refs.@12,20#. The appearance of these
modulated chiral phases is due to the fact that the chiral term
will effectively reduce the bend elastic constantC' , leading
to an instability of the flat membrane. Therefore forlb

greater than a critical valueA2uC', the equilibrium phase is
the bend stripe phase of Ref.@20#. Although it is character-
ized primarily by bend, this phase also exhibits a splay
modulation, i.e.,“•mÞ0. As a result of the coupling be-
tween splay and curvature in Eq.~3!, this phase also exhibits
a ripple structure. As is described in Ref.@15#, the shape of
this bend stripe phase can be obtained from Eq.~4!.

III. THE EFFECT OF AN APPLIED ELECTRIC FIELD

For systems with lower symmetry, additional phases are
possible. For example, lipid monolayers at the air-water in-
terface do not maintain the up-down symmetry. The lack of
up-down symmetry can lead to new phases. One example of
a continuously variablesymmetry breaking field is an elec-
tric field applied parallel to the layer normal. For flexoelec-
tric systems@17,21–24#, we show that such an applied elec-
tric field can be used to study structural phase transitions,
including the evolution of square-lattice phases such as those
of Ref. @13# to possible hexagonal modulated phases.

Consider a smectic-A layer parallel to thex-y plane in the
presence of an applied electric fieldE. The lowest-order cou-
pling of the molecular tilt to the field is@17,21#

2e1E•n̂~“•n̂!, ~7!

wheren̂>(12 1
2 m

2) ẑ1m is the director,m is the projection
of the molecular tilt in thex-y plane, ande1 is the flexoelec-
tric coefficient. The typical values ofe1 in thermotropic liq-
uid crystals are in the range of 1024 esu/cm@24#. For an

applied field along thez axis, this coupling gives two terms:
2e1Ez(“•m), which is a total derivative, and
e1Ezm

2(“•m). Therefore the free energy of a membrane in
the presence of an applied electric field along thez axis can
be expressed as

f E5 1
2Ci8~“•m!21 1

2C'~“3m!21 1
2D~¹2m!21 1

2 tumu2

1uumu41lsumu2~“•m!, ~8!

where the splay coupling constantls5e1aEz and a is the
average layer spacing. This model is also formally similar to
that of Refs.@12,20# for chiral smectic-C* films. In particu-
lar, for ferroelectrics, the polarization vectorP;N3n is per-
pendicular tom above. For such systems, the model in terms
of the polarizationP is similar to Eq.~8! with m replaced by
P @20#. These models of smectic-C* films predict bend hex-
agonal phases that differ from the modulated phases consid-
ered here in that they involve bend rather than splay.

This coupling can be understood within a simple picture
due to Meyer@21# for molecules with both a permanent elec-
tric dipole and a shape asymmetry~undern→2n). For such
a system, a splay of the molecules in a nematic or a smectic
phase leads to an electric polarization. For strong shape
asymmetry, the coupling coefficient, which has units of elec-
tric charge per length, is expected to be of the orderm/d2,
wherem is the electric dipole andd is the size of the mol-
ecules@17#. It has also been shown that a quadrupolar model
@22,23# leads to a flexoelectric coupling of the same magni-
tude, even for symmetric molecules. This is consistent with
the experimental observation that a wide variety of systems
ranging from symmetric to highly asymmetric molecules
have a very similar coupling coefficiente1 in the range of
1024 esu/cm@24#.

For lyotropic systems, this coupling can also be under-
stood as the modification of the dipole-dipole interaction
within a bilayer in the presence of an applied electric field
along thez axis, provided that the head groups have a per-
manent dipole moment. The splay coupling constantls
above can be estimated by calculating the dipole-dipole in-
teraction energy. As shown in Fig. 4, the dipole momentpi
of each molecule under the electric field of strengthE is
expressed as

pi5m1aEzcos~u i !5m1aEz~12 1
2mi

2!, ~9!

FIG. 3. A representation of the membrane
shape and the tilt fieldm in the two-dimensional
modulated phases:~a! the square-lattice phase
and ~b! the splay hexagonal phase. Note that the
square-lattice phase maintains an inversion sym-
metry of the film. This symmetry is not present in
~b!.
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whereu i is the dipole orientation of each molecule anda is
the molecular polarizability. Considering only nearest-
neighbor interaction, the dipole-dipole interaction energy per
unit area for the upper layer is

Hdd5
1

er 2(i51

4 p0•pi23~ r̂ i•p0!~ r̂ i•pi !

r i
3 , ~10!

where r i is the distance from the central dipole to thei th
dipole andr is the distance between two neighboring mol-
ecules. Including the contribution from the lower layer, the
splay chiral term in Eq.~10! is found to be

f s5
48damEz

er 5
umu2~“•m!. ~11!

Therefore we obtain the splay chiral coupling constant as

ls5
48damEz

er 5
. ~12!

The above bilayer dimensions can be determined definitively
by x-ray diffraction @25#. Typical values for phospholipid
bilayers arer 2;40 Å2 andd;30 Å. The permanent dipole
momentm has been suggested to be 20 debye@26,27#. The
dielectric constante of water is about 80. Finally, the mo-
lecular polarizability includes electronic polarizability and
orientational polarizability. A theoretical estimation gives
a;10 Å3. Correspondingly, for lyotropic systems, the
flexoelectric coefficiente1 is also of order 1024 esu/cm.

IV. NUMERICAL APPROACH AND RESULTS

To determine the mean-field phase diagram, we numeri-
cally minimize the free energy in Eqs.~6! and ~8! in which
the order parameter is represented by its Fourier series in
two-dimensionalk space. The general form of the free en-
ergy in k space is

^ f E&[
** f Edxdy

**dxdy

5(
k

1

2
$Ci8ukxak1kybku21C'ukxbk2kyaku2

1@D~kx
21ky

2!21t#~ uaku21ubku2!%

1 (
k1 ,k2 ,k3

u$ak1ak2ak3ak41bk1bk2bk3bk4

12ak1ak2bk3bk4%1 (
k,k8

lb$~akak81bkbk8!~kx9bk8

2ky9ak8!%1(
k,k8

ls$~akak81bkbk8!~kx9ak81ky9bk8!%,

~13!

whereak andbk are the corresponding complex coefficients
of the Fourier expansion ofmx and my , k452k12k2
2k3 , k952k2k8, kx5mq11nq2 , and ky5nq3 for any
integersm, n. To find the ground state of this free energy,
we can numerically minimize Eq.~13! in a multidimensional
space of amplitudes$ak ,bk%. In addition, we consider vari-
able basis vectors of the reciprocal space, (q1,0) and
(q2 ,q3). A combination of simulated annealing and conju-
gate gradient minimization was employed to find the ground
state for the system. This combination effectively improved
the speed in searching for the ground state over simulated
annealing alone.

The phase diagram of chiral membranes forC'50.2 and
t521.5 is shown in Fig. 5. As was found analytically in
Refs. @14,15#, in this phase diagram, at zero chirality, we

FIG. 4. A schematic representation of the dipole-dipole interac-
tion of a bilayer membrane in a unit cell in the presence of an
applied electric field along thez axis. pi andu i denote the dipole
moment and orientation of each molecule, respectively. FIG. 5. The mean-field phase diagram of the chiral membranes

as a function ofCi8 and lb for C'50.2 andt521.5. The bend
stripe phase is favored at a large chirality and the bend hexagonal
phase is favored at large asymmetry,D5Ci82C' . In the region of
positiveCi8, the dotted line distinguishes two regions with different
topological winding numbers 0 or 1. The solid line indicates a
second-order transition, while the dashed lines indicate first-order
transitions. The units of length and energy are 100 Å and 10212 erg,
respectively.
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haveLb8, Pb8
(1) , Pb8

(3) , and the square-lattice phase along the
Ci8 axis. ~We retain the notation for the various one-
dimensional modulated phases in Refs.@14,15#.! For chiral
systems (lbÞ0), the symmetries of theLb8 phase and the
square-lattice phase are the same, while the symmetries of
the Pb8

(1) and Pb8
(3) phases are changed. The resulting one-

dimensional ripple phases are a splay stripe phase and a bend
stripe phase, respectively. In the region of negativeCi8 ,
since the chiral term tends to favor bend, the splay stripe and
square-lattice phases eventually become unstable aslb in-
creases. On the other hand, the bend stripe phase is favored
by this chiral term. Therefore both the splay stripe phase and
the square-lattice phase give away to the bend stripe phase at
a large chirality. In the region of the positiveCi8, the Lb8
phase becomes unstable to the bend stripe phase for
lb.A2uC'. This bend stripe phase, as mentioned in Sec. II,
is similar to the chiral stripe phase observed in smectic-C*
films. It is interesting to note that the dotted line in the region
of the bend stripe phase distinguishes two regions with the
same symmetry but different topological winding numbers of
the order parameter. The bend stripe phase originating from
Pb8
(3) has a winding number 1, while the one originating from

Lb8 has a winding number 0. This phenomenon can happen
in the absence ofD in our model, i.e., for the model consid-
ered in Ref.@20#. However, such a model is unstable at large
chirality. SinceA2uC' is independent ofCi8, the phase
boundary betweenLb8 and the bend stripe phase is a hori-
zontal line in theCi8-lb phase diagram. There is also a bend
hexagonal phase observed in this region. This result is con-
sistent with the results of Refs.@12,20#.

In Fig. 5 the stripe phases are one-dimensional ripples,
while the square-lattice phase has a two-dimensional modu-

lated structure. The height profile of the bend hexagonal
phase is essentially flat because the source term for the cur-
vature in Eq.~4! is approximately zero. However the tilt field
of this phase displays a nontrivial hexagonal structure. As in
Ref. @20#, we define the asymmetry between splay and bend
elastic constants byD5Ci82C' . Our results from the nu-
merical calculations are consistent with Refs.@12,20# in that
the bend hexagonal phase is favored at large asymmetry.
However the bend hexagonal phase becomes unstable for
large chirality, and the bend stripe phase appears. Therefore
the competition between chirality and asymmetryD deter-
mines the phase boundary between the bend stripe phase and
the bend hexagonal phase.

In Fig. 6, we plot the phase diagram for the model in Eq.
~8! as a function ofCi8 and ls . At zero electric field, the
Lb8 phase is stable in the region of the positiveCi8. With a
nonzero field, theLb8 phase is destabilized due to the pres-
ence ofumu2(“•m) term which favors splay. Therefore there
is a transition from theLb8 phase to the splay stripe phase for
ls.A2uCi8. We note that this splay stripe phase has the
same symmetry as the splay domain phase proposed by
Meyer and Pershan@11#. However, our splay stripe phase is
expected to exist over a wide range of temperatures for thin
films of smectic-C because there are no disclination lines in
our case. An estimation of the critical field strength for the
induced splay stripe phase givesE'1042105 V/cm. In the
region of negativeCi8, there is a two-dimensional modulated
square-lattice phase at zero electric field. The square-lattice
phase possessesC4 and reflection symmetry. The corre-
sponding configuration of the tilt order parameter is shown in
Fig. 7~a!. For a nonzero electric field, the symmetry of the
square-lattice phase is reduced. The in-plane symmetry
group isC2 , and the system is no longer symmetric under
reflections through the average plane of the membrane. The
electric field tends to favor one11 vortex over the other. In
other words, the hills in Fig. 3~a! are favored over the val-
leys. With increasing electric field strength, the disfavored
strength11 vortex elongates to become two strength11
vortices and one21 vortex. As the field strength increases
further, the distorted vortex phase becomes the splay hexago-
nal phase shown in Figs. 3~b! and 7~c!. The symmetry group
of the splay hexagonal phase isC6 . For the increasing
C' /Ci8 , the phase boundary~dashed line! of this region in
Fig. 6 will be shifted toward the region of positiveCi8.
Therefore for sufficiently largeC' , the splay hexagonal
phase can exist in the region of the positiveCi8. This agrees
with the results of Jacobs, Goldner, and Mukamel@20#.

We note that the evolution from the square-lattice phase
to the splay hexagonal phase is acontinuousprocess. This
evolution of the membrane structure from square-lattice
phase to splay hexagonal phase therefore involves two suc-
cessive second-order structural phase transitions instead of
one first-order structural reconstruction. We estimate that the
critical field strength for the transition to the splay hexagonal
phase is of orderE'1052106 V/cm. However depending on
the material parameters, it could be significantly lower. In
any case, for thin film systems such as those studied in Ref.
@13#, we expect that the square-lattice phase will become a
skewed two-dimensional modulated phase for any nonzero
applied electric field perpendicular to the layers.

FIG. 6. The mean-field phase diagram of the achiral membranes
as a function ofCi8 andls for C'50.2 andt521.5. ls is propor-
tional to the applied electric fieldE. The solid lines indicate the
second-order transitions, while the dashed lines indicate the first-
order transitions. The dotted line distinguishes two regions with
different topological winding numbers 0 or 1. For the zero field,
only three phases occur:~i! the Lb8 phase;~ii ! the splay stripe
phase; and~iii ! the square-lattice phase. For the nonzero electric
field, the latter distorts continuously to become the ‘‘distorted
phase’’ illustrated in Fig. 7~b!. Thus a continuous evolution from
the square-lattice phase to the splay hexagonal phase is predicted in
the region of negativeCi8. The units of length and energy are 100 Å
and 10212 erg, respectively.
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V. CONFINEMENT OF A SMECTIC DOMAIN

In the previous sections, we have given a detailed study of
the two-dimensional free membranes. These results are also
applicable to three-dimensional lamellar systems in which
the boundary effect can be neglected. However for a lamellar
system of finite thickness, the boundary effect plays an im-
portant role. For example, the surface tension in freely sus-
pended films will tend to suppress the modulated phases.
Therefore we extend our study from two-dimensional free
membranes to three-dimensional lamellar systems with non-
vanishing boundary effects. This analysis is particularly im-
portant in understanding the results from experiments of
freely suspended films. As an illustration of the boundary
effects, we consider the case of a smectic domain confined
between walls. The smectic domain is characterized by a
stack of parallel membranes equally spaced in the direction
perpendicular to the individual sheets. This defines thez di-
rection. Thus the membranes are parallel to thex-y plane. As
shown in Fig. 8, the confinement tends to suppress all modu-
lated phases since the undulation of membranes must vanish
at both boundaries. In this case, the phase diagrams will ap-
proximate those of aligned bulk systems. The undulation of
membranes can be described by the local displacement field
u(x,y,z), which represents the vertical displacement of a
membrane at (x,y,z) away from its average height (z). The
elastic energy of distortions per unit volume can be described
in terms of gradients ofu(x,y,z) @17#

f bulk5
1

2
K~¹2u!21

1

2
B̄S ]u

]zD
2

, ~14!

whereK5k/a. The first term represents the curvature en-
ergy of the membranes at (x,y,z), while the second term
represents the compression energy of the stack. The phenom-
enological coupling of the curvature to the molecular tilt
becomes

f g52
g

a
~¹2u!~“•m!. ~15!

Again, this is an energy per unit volume. Similarly, the
model free energy of the tilt fieldm becomes

f m5
1

2a
@Ci~“•m!21C'~“3m!21D~¹2m!2

1tumu212uumu4#. ~16!

For a stack of membranes confined between hard walls at
z56L/2, a modulation ofu(x,y,z) must satisfy the bound-
ary conditionsu(x,y,z)50 at z56L/2. For thin films, we
assume a single undulation mode of the form

u~x,y,z!5cos~zp/L !u~x,y!. ~17!

The accompanying modulation of the tilt fieldm can be ex-
pressed as

m~x,y,z!5cos~zp/L !m~x,y!. ~18!

FIG. 7. A continuous evolution of the tilt field from the square-lattice phase to the splay hexagonal phase. In the absence of an applied
field, the equilibrium phase exhibits a perfect square lattice~a!, and inversion symmetry as shown in Fig. 3~a!. The symmetry group is
C4 , corresponding to the four-fold rotations in the plane of the film. For the nonzero applied field, the structure distorts as shown in~b!. The
symmetry group isC2 . Also, the inversion symmetry of the film is broken. Above a critical field strength, the film exhibits a six-fold
symmetry (C6) in ~c!. Here the scale has been somewhat reduced from that of~a! and ~b! in order to show the structure of the splay
hexagonal phase.

FIG. 8. A schematic illustration of the membrane shape of a
smectic domain confined between walls. The amplitude of undula-
tion u(z) is uniform nearz50. Due to the boundary effect,u(z)
decreases to zero near the boundary in a region of thickness ap-
proximately equal to the penetration depthj.
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Here we have also assumed a single undulation mode for
u(x,y) andm(x,y). In general, for confined films of finite
thickness, it is expected that the fieldu(z) is a maximum at
the center of the film (z50), and thatu(z) decreases to zero
at the boundaries (z56L/2). For thick films, this vanishing
of u(z) occurs only in a finite region of thicknessj, the
penetration depth@17#. Thus, in general, there are effectively
two regions in the film:~1! a bulk region near the center of
the film in which the displacementu(z) is constant; and~2!
boundary regions nearz56L/2 only which the displace-
ment vanishes. Near the transition from a uniform phase to a
modulated phase with increasing film thickness, we expect
and find that the film thicknessL and penetration depthj are
comparable. This corresponds to our single-mode approxi-
mation in Eq.~17!. The general case for thicker films will be
considered below, where we determine the penetration depth
j self-consistently. In the vicinity of the pointt5Ci850,
there are just two equilibrium modulated phases given by

mx~x,y!5m1cos~qx!, ~19!

my~x,y!5m0 , ~20!

and

mx~x,y!5m1cos~qx!, ~21!

my~x,y!5m1cos~qy!. ~22!

In keeping with our previous notation, we shall refer to these
as thePb8

(1) and the square-lattice phase. For films of finite
thickness neart5Ci850, we also find only these two modu-
lated phases in addition to the uniformLa andLb8 phases.
Note that thePb8

(1) phase has a nonzero average tilt of they
componentmy(x,y,z)5m0 which is independent ofz.
Within this single-mode approximation, Eqs.~14! and ~15!
can be expressed as

E dz~ f bulk1 f g!5
L

4 SKq41B̄
p2

L2 Du2~x,y!

1
g

2a
Lq2@“•m~x,y!#u~x,y!.

~23!

After replacingu(x,y) by its equilibrium value, the inte-
grated total free energy is given by

F5E E E dxdydz~ f bulk1 f g1 f m!

5
L

4aE E dxdy$Ci~q!@“•m~x,y!#2

1C'@“3m~x,y!#21D@¹2m~x,y!#2%

1
1

2aE E E dxdydz@ tumu212uumu4#, ~24!

where

Ci~q!5Ci2
g2q4

@a~B̄p2/L21Kq4!#
. ~25!

The phase diagram near the pointt5Ci850 can be deter-
mined by comparing the free energy ofLa , Lb8, Pb8

(1) , and
the square-lattice phase, denoted byFa , Fb , F1 , andF4 ,
respectively, within the mean-field approximation. It is not
difficult to find Fa50 andFb52LAt2/16ua. In the Pb8

(1)

phase, the free energy is

F152
LA

ua S Gq
2

20
1

t2

16D , ~26!

with Gq5Ci(q)q
21Dq4, providedGq<0. The wave vector

q will be determined numerically by minimizingGq over
q. In the square-lattice phase, the free energy is

F452
LA

30ua
~Gq1t !2, ~27!

providedGq<0.
For thicker films, the inner layers are not affected by the

boundary constraints. Therefore the local displacement field
can be expressed as

u~x,y,z!5u~z!u~x,y!, ~28!

whereu(z) is uniform nearz50, and goes to zero near the
boundary in a region of thickness approximately equal to the
penetration depthj. Thus we let

u~z!55
sinS p~L/21z!

2j D for 2
L

2
<z<2

L

2
1j

1 for 2
L

2
1j<z<

L

2
2j

sinS p~L/22z!

2j D for
L

2
2j<z<

L

2
.

~29!

The accompanying modulation of the tilt fieldm is given by

m~x,y,z!5u~z!m~x,y!. ~30!

Again, my(x,y,z)5m0 for the Pb8
(1) phase. Within this ap-

proximation, the free energy in Eq.~24! can be minimized
over q and j and the phase diagram can be studied for a
range of film thickness.

The phase diagram for a smectic domain confined be-
tween walls is qualitatively similar to that of the freely sus-
pended films as shown in Fig. 9. In both cases, the undulated
phases are suppressed by the boundary constraints. For a
confined smectic domain, in the limit of thick samples
(L@j), the phase diagram can be shown to be similar to that
of a free membrane as described in Refs.@14,15#. For finite
sample thickness (L'j), the square-lattice phase is unstable
to thePb8

(1) phase because the hard-wall boundary effect dis-
favors the two-dimensional modulated phase. For a sample
thickness less than the penetration depth, all modulated
phases are unstable. In the next section, we will extend the
consideration to freely suspended films and compare our pre-
dictions with experimental results.
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VI. FREELY SUSPENDED FILMS

In Sec. V, we have derived the phase diagram for an
oriented smectic domain confined between hard walls. A
similar analysis can be done for a freely suspended film. In
this case, instead of the hard-wall boundary conditions, there
is an excess free energy proportional to the area of the top
and bottom layers of the film due to the surface tension. This
excess free energy can be expressed as

Ft5tE E dxdy
1

2
~¹u!2, ~31!

where the integrand extends over the top and bottom sur-
faces. As in the case of the hard-wall boundary conditions,
the surface tension also has the effect of suppressing undu-
lations of the membranes. For thinner films, both experimen-
tal and theoretical results have indicated that the amplitude
of the modulation at the surface relative to that at the center
of the film decreases as the film thicknessL is increased@28,
29#. Therefore we assume a single undulation mode of the
form

u~x,y,z!5cos~zp/L8!u~x,y!. ~32!

The accompanying modulation of the tilt fieldm is of the
form

m~x,y,z!5cos~zp/L8!m~x,y!. ~33!

Here L8 characterizes the decay in thez direction. This is
essentially a penetration depth. We letL5aL8, where
0<a<1. Herea50 corresponds to a film that is uniform in
thez direction. This is expected for either very thin films or
for vanishing surface tension. On the other hand,a51 cor-
responds to a complete vanishing of the modulation at the
surfacesz56L/2. This is expected for thick films or for
high surface tensions. The total free energy of the film can be
calculated as

F tot5Ft1F5
L8

2ap Fap

2
1cosS ap

2 D sinS ap

2 D G
3E E dxdy$Ci~q!@“•m~x,y!#2

1C'@“3m~x,y!#21D@¹2m~x,y!#2%

1
1

2aE E E dxdydz~ tumu212uumu4!, ~34!

with

Ci~q!5Ci2

g2q4L8Fap

2
1cosS ap

2 D sinS ap

2 D G
@ap~gB1gK1gt!#

, ~35!

where

gB5
B̄p

L8 Fap

2
2cosS ap

2 D sinS ap

2 D G , ~36!

gK5
KL8q4

p Fap

2
1cosS ap

2 D sinS ap

2 D G , ~37!

and

gt52tq2cos2S ap

2 D . ~38!

In the limit of thin films,a is small and the undulation of
the film becomes

u~x,y,z!5u~x,y!, ~39!

FIG. 9. The mean-field phase diagram of freely suspended films
as a function oft andN. All modulated phases are suppressed by
surface tension forN less than 80. The square-lattice phase occurs
for N greater than 80 and fort between20.1 and 0.05. The two flat
phases areLa ~or Sm-A) andLb8 ~or Sm-C). The typical param-
eters areK51026 dyne, B̄52.53107 dyne/cm2, t520 dyne/cm,
a5331027 cm, g52.5310213 erg, Ci510213 erg, and D
55310226erg/cm2.

FIG. 10. The mean-field phase boundary of the square-lattice
phase and the uniform flat phase (La) as a function of the number-
of-layers (N) and surface tension (t) at t50. Above the data
points, the square-lattice phase is stable, while the stable phase is
the flat phase below the data points. The parameters for this figure
are the following: K51026 dyne, B̄52.53107 dyne/cm2,
a5331027 cm,g52.5310213 erg,Ci510213 erg,t50 dyne/cm,
andD55310226 erg/cm2.
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which is independent ofz. The total free energy then be-
comes

F tot5
L

2aE E dxdy$Ci~q!@“•m~x,y!#21C'@“3m~x,y!#2

1D@¹2m~x,y!#21tum~x,y!u212uum~x,y!u4% ~40!

with

Ci~q!5Ci2g2q4/@a~2tq2/L1Kq4!#. ~41!

For large surface tensiont, it can be shown that there are no
stable modulated phases in thin films because the surface
energy dominates the free energy. However, for small sur-
face tensions, the transition from the uniform flat phase to
modulated phases occurs whenN.N158Dtg2/(a2K2Ci8

2)
for t>0.

For thicker films, within the above approximation, we cal-
culate the free energy for various modulated phases. In the
Pb8
(1) phase, the free energy is given by

F152
LA

16uaH F11
2

ap
cosS ap

2 D sinS ap

2 D G2Gq
2

H 941
3

ap
cosS ap

2 D sinS ap

2 D Fcos2S ap

2 D1
3

2G J 2F11
2

ap
cosS ap

2 D sinS ap

2 D G2 1t2J , ~42!

providedGq<0. In the square-lattice phase, the free energy is given by

F452
LA

40ua

F11
2

ap
cosS ap

2 D sinS ap

2 D G2~Gq1t !2

F341
1

ap
cos3S ap

2 D sinS ap

2 D1
3

2ap
cosS ap

2 D sinS ap

2 D G , ~43!

providedGq<0.
In general, the phase diagram can be calculated using the

free energy in Eqs.~42! and ~43! together with suitable
boundary conditions. In the presence of nonvanishing curva-
tures and finite surface tension at the boundaries, the stress of
the layers must balance the Laplace pressure@17#. This
boundary condition can be expressed as

B̄S ]u

]zD5t¹2u. ~44!

After substitution of Eq.~32! into Eq. ~44!, the boundary
condition becomes

ap

2
tanS ap

2 D5
Lq2t

2B̄
. ~45!

We note that the above boundary condition is equivalent
to minimizing the free energy in Eq.~34! with respect to
a. The phase diagram in Fig. 9 is obtained using the follow-
ing representative parameters:K5k/a51026 dyne, B̄
52.53107 dyne/cm2, t520 dyne/cm,a5331027 cm, g
52.5310213 erg, andCi510213 erg. These values corre-
spond to the smectic phase that is unstable to modulation in
the bulk neart50. We have choseng'Ci'k5Ka as ex-
pected@30#. We further chooseD55310226 erg/cm2 in or-
der to obtainq'106 cm21 as observed in the modulated
phases of Ref.@13#.

We compare our results with experimental data for the
liquid crystal 4-n-heptyloxybenzylidene-4-n-heptylaniline
~7O.7!. The phase diagram of 7O.7 as a function of tempera-
ture and film thickness has been thoroughly studied@13,31#.

For the above parameters, we estimate that the transition
from a uniform flat phase to the square-lattice phase occurs
at about 10–100 layers with a undulation wave vectorq of
about 106 cm21. The square-lattice phase exists in a region
of temperature range of order a few degrees C. These results
agree qualitatively with the experimental data from Ref.
@13#.

Furthermore, we calculate the dependence of the phase
boundary between the uniform flat phase and the square-
lattice phase on surface tension (t) and compression modu-
lus (B̄) at t>0. This is done numerically for the square-
lattice phase and the uniform flat phase with the above
parameters. The phase boundary is given by the condition
Gq50. In Fig. 10, we plot the phase boundary as a function
of N and surface tensiont. As shown in Fig. 10, for small
surface tensions,N grows linearly ast increases. For large
surface tensions, however, the phase boundary is indepen-
dent of t. This is due to the suppression of the surface un-
dulation by the large surface tension, and therefore the com-
petition between compression energy and undulation energy
will determine the ground state. For large surface tensions,
the phase boundary is approximately given byL;j, where

j.q22AB̄/K is the penetration depth for a mode of the
wave vectorq in thex-y plane. Thus the number of layers at
the phase boundary for the small compression modulus is

found to scale asN;AB̄. Assuming that the number of lay-
ersN at the transition can be characterized by a single com-
bination of B̄ andt, we write

N;tg~B̄t2x!, ~46!
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whereg is a scaling function. From the limit above, we find
that g(y);Ay for small y, and g(y); constant for large
y. Thus we expectx52 and

N;tg~B̄/t2!. ~47!

In Fig. 11 we plotN/t vs B̄/t2 and find a simple scaling
curve for various values oft.

VII. DISCUSSION

In this paper, we have examined the effects of boundaries
on modulated phases of liquid crystal films and lipid bilayer
membranes. For freely suspended films, we find that our
model is consistent with the experimental observation of the
phase transitions from uniform to square-lattice modulated
structures for films thicker than approximately 100 layers
@13#. We note, however, that our model treats only the ori-

entational~tilt ! order within the films. The systems studied in
Ref. @13# exhibit not only smectic-C phases, but also crys-
talline phases. However, to the extent that the characteristic
wavelengths of the various modulated phases are large com-
pared with the molecular size, we expect that our results can
be applied to understand the modulated phases.

Our model is a phenomenological one. Thus a direct com-
parison of the phase diagram in Fig. 9 with the experiments
of Ref. @13# is not possible. In particular, we note that the
observation of the square-lattice phase between a high-
temperature one-dimensional rippled phase and a low-
temperature flat crystalline phase is not accounted for by our
model. Nevertheless our model can help to explain the ap-
pearance of a square-lattice modulated phase rather than a
hexagonal phase. The square-lattice phase is a possible stable
equilibrium phase that maintains the inversion symmetry of
the film.

This inversion symmetry can be broken by, among other
things, an applied electric field perpendicular to the plane of
the film. In this case we find that for strong fields an equi-
librium hexagonal phase is predicted. However we also find
an interesting result that the transition from the square-lattice
phase to the hexagonal phase occurs continuously, rather
than via a first-order reconstruction. Between the square-
lattice phase and the hexagonal phase is an intermediate
phase of lower symmetry than either of the other two. This
situation is analogous to what happens in certain uniform
tilted smectics. Between the smectic-I and smectic-F phases,
both of which are achiral, an intermediate smectic-L phase
can occur, which is chiral@1,32#. The transitions are second
order. It should be possible to observe at least the continuous
distortion of the square-lattice phase in films such as those
studied in Ref.@13# in the presence of a transverse electric
field. Depending on the strength of the flexoelectric effect in
such systems, the continuous transition to the hexagonal
phase at high fields may also be possible.
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