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Theory of modulated phases in lipid bilayers and liquid crystal films

C.-M. Chen and F. C. MacKintosh
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We present a general theory for equilibrium-modulated phases of chiral and achiral bilayer membranes and
liquid crystal films. Both bulk smectics as well as freely suspended films are considered. For flexoelectric
systems, continuous structural phase transitions are predicted among square-lattice, hexagonal, and distorted
two-dimensional modulated phases as a function of the applied electric field. It is also shown that only uniform
flat phases are predicted for thin films. One-dimensional ripple phases and two-dimensional square-lattice
phases can occur with increasing film thicknd$:063-651X96)03205-9

PACS numbsgfs): 61.30.Cz, 64.60-i, 64.70.Md

I. INTRODUCTION predict hexagonal modulated phases in strongly chiral ther-
motropic films[12]. Although these hexagonal phases have
The study of two-dimensional surfaces is an importantapparently not yet been observed experimentally, experi-
subject in both physics and biology. In many ways, lipid ments with freely suspended liquid crystal films have dem-
bilayer membranes provide experimental realization of ranenstrated more than one square-lattice modulated gidse
dom surfaces and excellent model systems of cell mem addition to these square-lattice modulated phases, the
branes. These membranes are composed of amphiphilic mditms studied in Ref[13] showed one-dimensional modu-
ecules which have charged or polar heads and one or twiated phases similar to the,, phases of lipid bilayers, as
hydrocarbon tails. When these molecules are dissolved imell as a number of uniform smectic phases with varying
water at sufficient concentration, they self-assemble into bidegrees of in-plane orientational order. Such freely sus-
layer membranes in which their hydrophobic tails arepended smectic liquid crystal films are also attractive sys-
shielded from contact with the surrounding water. Under aptems for the study of two-dimensional surfaces. Uniform,
propriate conditions, lamellar phases consisting of periodistable, large-areél0 cnt) films can be made which consist
cally spaced parallel membranes separated by water are tio¢ only two molecular layersN=2). Moreover, the film
equilibrium phases. Membranes in lamellar phases as well agickness can be increased to study the evolution to three
isolated membranege.g., in closed vesiclg¢scan exhibit dimensions. Various techniques including x-ray scattering
varying degrees of in-plane order. Above the chain-meltinghave been applied to study the intermolecular correlations
temperature, the membranes form an equilibriugdamellar  and phase transitions in the various smectic phases. A sche-
phase in which the long axes of constituent molecules are omatic representation of the phase diagram for 4-
average parallel to the membrane normal. This phase has timeheptyloxybenzylidene-#-heptylaniline (70.7) [13] ob-
same symmetry as the liquid crystalline smeetiphase. At  tained from x-ray scattering for varying temperature and
low temperatures, the membranes develop molecular tilhumber of layers is shown in Fig. 1.
relative to the membrane normal. In thig, phase, the tilt In this paper, we present and analyze a phenomenological
orientational order is similar to the liquid crystalline smectic- Landau mode[14—1§ for tilted bilayer membranes that in-
C phase. However theg, phase also exhibits bond orienta- cludes coupling between tangent plane order and membrane
tional order[1]. In fact, three distinct hexatic phases haveshape(or curvature¢ and chiral couplings present when con-
been reported in this region. For a number of lipids withstituent molecules are chiral. This model is applicable to
saturated acyl chains, such as dimyristoyl phosphatidylchdsoth classes of membranes described above. This model pre-
line (DMPC), in addition to the tilted. ;- phase, a modulated dicts the existence of a number of distinct rippled phases
P4 phase is observed in the hydrated lamellar systems. Thidistinguished by height profiles of different symmetry and by
phase is characterized by a one-dimensional height modulalifferent tilt-order-parameter configurations relative to the
tion of each membrangl-6] in addition to a nonzero mo- ripples. Finally, the model predicts the existence of phases
lecular tilt[2,3]. Such a structure thus exhibits broken trans-with two-dimensional rather than one-dimensional height
lation invariance in one of the in-plane directions within eachmodulations.
membrand7]. In the following section, we will present our phenomeno-
Similar to lipid bilayer membranes, liquid crystal films logical model for both chiral and achiral membranes. In Sec.
also exhibit a number of thermodynamically distinct phasesl|ll, we will study the effect of an applied electric field on
including various modulated phases that result from competachiral membranes. A numerical approach and results from
ing interactions. For instance, chiral smectic liquid crystalthis model will be discussed in Sec. IV. In Sec. V, we will
films and lyotropic lamellar phases have been shown to fornillustrate the effect of the confinement of a smectic domain
various striped modulated phadéds2,8,9. A similar striped  confined between walls. Finally, we will give a detailed
domain phase due to the surface polarization asymmetry hanalysis for the phase diagrams in freely suspended films and
also been seen in achiral filnh$0,11]. Furthermore, theories compare the experimental results with ours.
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FIG. 1. The phase diagram of 70.7 as a function of the temperayhere
ture and number-of-layers\(, showing the square-lattice phase,

one-dimensional rippled phases, and several uniform flat phases. fm=%C||(V~m)2+%CL(VXm)Z+%D(V2m)2
The square-lattice phase occurs for the number of layers greater L 5 4
than 200 and for temperatures between 55 °C and 62 °C. +zt[m|*+ulm|?, (2
and
Il. THE MODEL
In previous paper$14—16, we have developed a phe- fbenf%K(Vzh)z—y(Vzh)(V-m). 3

nomenological Landau theory for molecular tilt and mem-

brf”“.‘e sfhf;]pe. Th'j. modgl WTS uzetlj tto expLaln theIPQSSIbﬁereh(x,y) is the height of the membrane relative to some
origin of the one-dimensional modulatét}, phase in lipi flat plane with coordinatesx(y), andV;V;h(x,y) is the lin-

bilayers, as well as the s_hape of the chiral Stf'pe phases thé rized curvature tensor. The equilibrium membrane shape is
can result from the coupling of the molecular tilt to the mem'given by

brane curvature. In this paper, we focus primarily on possible

two-dimensional phases of lipid bilayers and liquid crystal o Y

films. The latter have been shown to form such two- Veh=—(V-m). 4

dimensional modulated phases with square symniétgy.

These square-lattice phases, however, have only been oWhenh is replaced by this equilibrium value, we obtain the

served for thick films of more than approximately 200 layers.effective free energy as given by

Thus we have also extended our previous work to the case of

freely suspended films of finite thickness. Furthermore, in f=3C[(V-m)?+3C (Vxm)?

order to elucidate the origin of these square-lattice phases

and the possibility of other structures, such as hexagonal

ip;]ha?els, we have exammeq the effeqt Of. the symmet_ry breab\?ith a reduced longitudinal elastic constafﬁ]‘i: C— Y2l k.
g fields, such as an applied electric field perpendicular t

the film. We find a sequence of structural phase transitions ;S{\/hen C)i>0’ the equilibrium phases are spatially uniform;
such films, in which, as a function of the applied field, theWhen Cj <0, modulated phases are possible with a charac-
square-lattice phase evolves continuously into a splay hexeristic wave numbego=(27/\)=/|C||/2D that tends to
agonal phase with a distinct intermediate phase of loweeero atC|i=O.
symmetry. Several one-dimensional modulated phases of this model
The molecular orientation can be determined by the prowere examined previouslj14,15. A square-lattice phase
jectionm of the local directon onto the local tangent plane also occurs for the model in Eq5). The structure is
to the membrane, as depicted schematically in Fig. 2. Weketched in Fig. @&. In terms of the molecular orientation,
include the coupling of the molecular tilt to the membranethis phase can be characterized as a vortex-antivortex phase,
curvature. This coupling results from steric interactions bewith two strength+1 vortices located at two corners of the
tween neighboring molecules. A divergence mf corre-  unit cell and two strength-1 vortices located at the other
sponds to a varying tilt angle of the molecules relative to thecorners.
surface, which gives rise to spontaneous curvaturef the In chiral membranes, since chiral molecules have no in-
membrane. The model free energy is given by version symmetry, additional chiral terms must be included

+3D(V?m)2+ 3t|m|2+u|m|*, (5)
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FIG. 3. A representation of the membrane
shape and the tilt fieldh in the two-dimensional
modulated phases(a) the square-lattice phase
and (b) the splay hexagonal phase. Note that the
square-lattice phase maintains an inversion sym-
metry of the film. This symmetry is not present in

(b).
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in Eq. (5). By symmetry, the lowest-order chiral coupling for applied field along the axis, this coupling gives two terms:
a bilayer is|m|?(Vxm) [12,17,18. So, the effective free —e;E,(V-m), which is a total derivative, and

energy for chiral membranes becomes e,E,m?(V-m). Therefore the free energy of a membrane in
L _— . o1 ) the presence of an applied electric field along ztexis can
+ulm|*+ x| m|3(V xXm). (6)

fe=3C[(V-m)?+3C, (VXm)?+3D(V?m)*+ 5t|m|?
A coupling of tilt and shape,;(V;V;h)m;m, is also possible 4 )
[19] in chiral membranes. However, to this order, its effect is +ulm[*+ N m[*(V-m), ®)
the same as the last term in E@&) [15]. The chiral term
above lowers the symmetry of rippled phases and also leadghere the splay coupling constani=e;aE, anda is the
to additional chiral phases, such as the chiral stripe phase argerage layer spacing. This model is also formally similar to
hexagonal phase of Refgl2,20. The appearance of these that of Refs[12,2( for chiral smecticc* films. In particu-
modulated chiral phases is due to the fact that the chiral ternar, for ferroelectrics, the polarization vecter Nx n is per-
will effectively reduce the bend elastic constéht, leading  pendicular tom above. For such systems, the model in terms
to an instability of the flat membrane. Therefore foy  of the polarizatiorP is similar to Eq.(8) with m replaced by
greater than a critical valug2uC, , the equilibrium phase is P [20]. These models of smect@* films predict bend hex-
the bend stripe phase of R¢R20]. Although it is character- agonal phases that differ from the modulated phases consid-
ized primarily by bend, this phase also exhibits a splayered here in that they involve bend rather than splay.
modulation, i.e.,V-m#0. As a result of the coupling be- This coupling can be understood within a simple picture
tween splay and curvature in E@), this phase also exhibits due to Meye(f21] for molecules with both a permanent elec-
a ripple structure. As is described in Rgt5], the shape of tric dipole and a shape asymmetgndern— —n). For such

this bend stripe phase can be obtained from (&j. a system, a splay of the molecules in a nematic or a smectic
phase leads to an electric polarization. For strong shape
IIl. THE EFFECT OF AN APPLIED ELECTRIC FIELD asymmetry, the coupling coefficient, which has units of elec-

) . tric charge per length, is expected to be of the ordéd?,

For systems with lower symmetry, additional phases arghere 4 is the electric dipole and is the size of the mol-
possible. For example, lipid monolayers at the air-water ingcyjeq17]. It has also been shown that a quadrupolar model
terface do not maintain the up-down symmetry. The lack 0f2 >3 |eads to a flexoelectric coupling of the same magni-
up-down symmetry can lead to new phases. One example §fige, even for symmetric molecules. This is consistent with
a continuously variablesymmetry breaking field is an elec- {he experimental observation that a wide variety of systems
tric field applied parallel to the layer normal. For flexoelec- ranging from symmetric to highly asymmetric molecules

tric systemg 17,2124, we show that such an applied elec- paye 5 very similar coupling coefficiert, in the range of
tric field can be used to study structural phase transitions; -4 esu/cm[24].

including the evolution of square-lattice phases such as those
of Ref.[13] to possible hexagonal modulated phases.
Consider a smectié:layer parallel to thex-y plane in the

For lyotropic systems, this coupling can also be under-
stood as the modification of the dipole-dipole interaction
, Hel within a bilayer in the presence of an applied electric field
presence of an applied _electrlc fleEd T_he lowest-order cou- along thez axis, provided that the head groups have a per-
pling of the molecular il to the field i517,21] manent dipole moment. The splay coupling constagt
—e,E-A(V ) 7) above can be estimated by calculating the dipole-dipole in-
! ' teraction energy. As shown in Fig. 4, the dipole momgnt
of each molecule under the electric field of stren@ths

A 1 2\5 i i i jecti
=(1-3 +
wheren=(1— 3 m“)z+m is the directorm is the projection expressed as

of the molecular tilt in thex-y plane, ande; is the flexoelec-
tric coefficient. The typical values @&; in thermotropic lig- .
uid crystals are in the range of 16 esu/cm[24]. For an Pi=p+aE,coq6;)=pu+aE,(1-3m7), 9)
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FIG. 4. A schematic representation of the dipole-dipole interac- -1 >
tion of a bilayer membrane in a unit cell in the presence of an C||
applied electric field along the axis. p; and 6; denote the dipole

moment and orientation of each molecule, respectively. FIG. 5. The mean-field phase diagram of the chiral membranes

) ) ) ) as a function ofC| and\,, for C, =0.2 andt=—1.5. The bend
where ¢ is the dipole orientation of each molecule amds  stripe phase is favored at a large chirality and the bend hexagonal
the molecular polarizability. Considering only nearest-phase is favored at large asymmethys C{—C, . In the region of
neighbor interaction, the dipole-dipole interaction energy pepositiveC, the dotted line distinguishes two regions with different
unit area for the upper layer is topological winding numbers 0 or 1. The solid line indicates a

second-order transition, while the dashed lines indicate first-order
transitions. The units of length and energy are 100 A and3erg,
(10) respectively.

1 & Po-Pi—3(Fi-po)(Fi-py)
_zzpop (3po( p

er-i=1 ri

Hada= )
o\ J[fedxdy

wherer; is the distance from the central dipole to thé (fe)= J[dxdy

dipole andr is the distance between two neighboring mol-

ecules. Including the contribution from the lower layer, the :2 E{C’|k av+kob |2+C |k,b—k,a |2

splay chiral term in Eq(10) is found to be T 2 VTR LIk Ty

48dauE +[D(K;+ k) +t1(|a?+ b))}
=— 5 —Im/*(V-m). (1)
+ kl%,k3 u{ay, ay,ay A, + b, by bi, b,

S

Therefore we obtain the splay chiral coupling constant as .

48da uE,
)\52—5- (12) " n "
er —Kjax )+ 2 Ao (akaw +biby) (Kiae + Kb},
k,k’
The above bilayer dimensions can be determined definitively (13

by x-ray diffraction [25]. Typical values for phospholipid
bilayers are?~40 A?andd~30 A. The permanent dipole wherea, andb, are the corresponding complex coefficients
momentu has been suggested to be 20 de[®®27. The  of the Fourier expansion ofm, and my, kg=—ki—k;
dielectric constant of_ water is about 89. Fmal]y, t_h.e mo- ., K'=—k—k', Ke=Mdy+nd,, andk,=ngs for any
lecular polarizability includes electronic polarizability and integersm, n. To find the ground state of this free energy,
orientatianaI polarizabili_ty. A theoretical _estimation gives we can numerically minimize E413) in a multidimensional
a~10 A . Correspondingly, for lyotropic systems, the gpace of amplitude&a,,by}. In addition, we consider vari-
flexoelectric coefficiene, is also of order 10* esu/cm. able basis vectors of the reciprocal spacey,@) and
(d2,03). A combination of simulated annealing and conju-
IV. NUMERICAL APPROACH AND RESULTS gate gradient minimizatic_)n was emp_loyed to f_ind the ground
state for the system. This combination effectively improved
To determine the mean-field phase diagram, we numerithe speed in searching for the ground state over simulated
cally minimize the free energy in Eq&) and(8) in which  annealing alone.
the order parameter is represented by its Fourier series in The phase diagram of chiral membranes®@r=0.2 and
two-dimensionak space. The general form of the free en-t=—1.5 is shown in Fig. 5. As was found analytically in
ergy ink space is Refs.[14,15, in this phase diagram, at zero chirality, we
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A lated structure. The height profile of the bend hexagonal
A phase is essentially flat because the source term for the cur-
vature in Eq(4) is approximately zero. However the tilt field

of this phase displays a nontrivial hexagonal structure. As in
Ref.[20], we define the asymmetry between splay and bend
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~
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-
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Ny splay stripe phase elastic constants b;&zCH’ —C, . Our results from the nu-
S e i merical calculations are consistent with Rgfk2,2(Q in that
splay hexagonal | . the bend hexagonal phase is favored at large asymmetry.

N However the bend hexagonal phase becomes unstable for

_____/’ '.,.-'::1 Ly large chirality, and the bend stripe phase appears. Therefore
’ the competition between chirality and asymmetydeter-

> mines the phase boundary between the bend stripe phase and

-1 c’ the bend hexagonal phase.

In Fig. 6, we plot the phase diagram for the model in Eg.

FIG. 6. The mean-field phase diagram of the achiral membrane@) as a fU!’]CtIOI’l OfC_:H, and 7‘5_' At zero elec_mc f'el(_j’ the
as a function oC{ and for C, =0.2 andt=—1.5. A is propor- L g phase is stable in the region of the posit®e. With a
tional to the applied electric fiel. The solid lines indicate the Nnonzero field, the 5» phase is destabilized due to the pres-
second-order transitions, while the dashed lines indicate the firsence offm|?(V - m) term which favors splay. Therefore there
order transitions. The dotted line distinguishes two regions withis a transition from thé ;. phase to the splay stripe phase for
different topological winding numbers 0 or 1. For the zero ﬂeld'7\5>‘/2UCH’- We note that this splay stripe phase has the
only three phases occufi) the L phase;(ii) the splay stripe  same symmetry as the splay domain phase proposed by
phase; andiii) the square-lattice phase. For the nonzero electriqyieyer and Pershafil]. However, our splay stripe phase is
field, the latter distorts continuously to become the “distortedexpected to exist over a wide range of temperatures for thin
phase” illustrated in Fig. ®). Thus a continuous evolution from  fms of smecticE because there are no disclination lines in
the square-lattice phase to the splay hexagonal phase is predicteddfy -a5e An estimation of the critical field strength for the
the region of negativé:H’. The units of length and energy are 100 A induced splay stripe phase givEs- 10f—10° V/em. In the

12 H
and 10° erg, respectively. region of negativé:ﬁ, there is a two-dimensional modulated

haveL 4, P PO and the square-lattice phase along thesquare-lattice phase at zero electric field. The square-lattice
C| axis. (We retain the notation for the various one- phase_ posses_seG4 _and reﬂe(_:tlon symmetry. The corre-
dimensional modulated phases in Refs#,15.) For chiral sponding configuration of the tilt order parameter is shown in

systems ,#0), the symmetries of the 5 phase and the Fig. 7(a). For a nonzero electric field, the symmetry of the

square-lattice phase are the same, while the symmetries gfiudre-lattice phase is reduced. The in-plane symmetry

(1) (3) . group isC,, and the system is no longer symmetric under
the P and Py phases are changed. The resulting one reflections through the average plane of the membrane. The

dimensional ripple phases are a splay stripe phase and a begfl ¢ field tends to favor one 1 vortex over the other. In
sf[rlpe phasg, respectively. In the region of negalﬁ{p, other words, the hills in Fig. (8) are favored over the val-
since the chiral term tends to favor bend, the splay stripe anghys. with increasing electric field strength, the disfavored
square-lattice phases eventually become unstable, @8- syrength+ 1 vortex elongates to become two strengtid
creases. On the other hand, the bend stripe phase is favorggiices and one-1 vortex. As the field strength increases
by this chiral term. Therefore both the splay stripe phase ang|; iher, the distorted vortex phase becomes the splay hexago-
the square_—lat_tice phase giv_e away to the l:_)_end stripe phase @, phase shown in Figs(I3 and 7c). The symmetry group
a large chirality. In the region of the positv@|, theLs  of the splay hexagonal phase ®. For the increasing
phase becomes unstable to the bend stripe phase f@zﬁ/cﬁ , the phase boundarglashed ling of this region in
Ap>+2uC, . This bend stripe phase, as mentioned in Sec. ”Fig. 6 will be shifted toward the region of positiv@H’.
is similar to the chiral stripe phase observed in smeCtic- Therefore for sufficiently largeC, , the splay hexagonal
films. It is interesting to note that the dotted line in the region hase can exist in the region of the posit(vp This agrees
of the bend stripe phase distinguishes two regions with th ith the results of Jacobs, Goldner, and Mukafi2e].
same symmetry but different topolqgical winding r_1um_bers of We note that the evolu,tion from1the square-lattice phase
thg order parameter. The bend stripe phase originating fror{b the splay hexagonal phase izantinuousprocess. This
P%') has a winding number 1, while the one originating from go|ytion of the membrane structure from square-lattice
L g has a winding number 0. This phenomenon can happephase to splay hexagonal phase therefore involves two suc-
in the absence dd in our model, i.e., for the model consid- cessive second-order structural phase transitions instead of
ered in Ref[20]. However, such a model is unstable at largeone first-order structural reconstruction. We estimate that the
chirality. Since y2uC, is independent ofCj, the phase critical field strength for the transition to the splay hexagonal
boundary betweeh ;. and the bend stripe phase is a hori- phase is of ordeE~ 10°— 10° V/cm. However depending on
zontal line in theC{ -\, phase diagram. There is also a bendthe material parameters, it could be significantly lower. In
hexagonal phase observed in this region. This result is corany case, for thin film systems such as those studied in Ref.
sistent with the results of Refgl2,2(Q. [13], we expect that the square-lattice phase will become a
In Fig. 5 the stripe phases are one-dimensional ripplesskewed two-dimensional modulated phase for any nonzero
while the square-lattice phase has a two-dimensional modwpplied electric field perpendicular to the layers.

distorted phase el
12




4938 C.-M. CHEN AND F. C. MACKINTOSH 53

L EANNNNNN YL

YNNG ‘o ~et
AN A AN $ § 177 piozo szt
Ol I ANSNNNN [ s oL L AN e PSS L AR DN A
et et A T e o o e B s PR RS e e R e qmeAemen e o s st oo et
[N PR P S R e PP R > RN we '}:\s:::t{ll;;-——-;'lf'
KRN 7 AARR 7NN e e AAP AN [nu ~\\\[fu£ 7;451
NNV 2222272 ANAN ——— 1 222 IR RIS ELAA LS
N\AL 2277277 TIARN SN 222727 PINNN saeiis = ISTIi T
NNNTIZZZ22PINAN NN 2ZZ27 AR [;;;;::ﬁﬁtsttt’iitt
AN S R 713 S NN 1P NS
;:;;;:::::;;;:: \\\\y—-o-.ss~orrr ::x::::::: :::m::

NSNS s s SsSNN\ VIS ANV L2t v enmpy
L ANNNNN YN LA ——— AN { NSRS ETLAAR LS
P22 R3S S I INNNNNN § 1277 h”:&*!fﬁ:iff”i

(@) (b) (©

FIG. 7. A continuous evolution of the tilt field from the square-lattice phase to the splay hexagonal phase. In the absence of an applied
field, the equilibrium phase exhibits a perfect square latt@eand inversion symmetry as shown in Figa@ The symmetry group is
C,, corresponding to the four-fold rotations in the plane of the film. For the nonzero applied field, the structure distorts as &hoWhen
symmetry group isC,. Also, the inversion symmetry of the film is broken. Above a critical field strength, the film exhibits a six-fold
symmetry Cg) in (c). Here the scale has been somewhat reduced from the) @fnd (b) in order to show the structure of the splay
hexagonal phase.

V. CONFINEMENT OF A SMECTIC DOMAIN Again, this is an energy per unit volume. Similarly, the

In the previous sections, we have given a detailed study o';‘nOdel free energy of the tilt fieldh becomes

the two-dimensional free membranes. These results are also

applicable to three-dimensional lamellar systems in which fm=2—[CH(V-m)2+ C,(VXm)2+D(V?m)?
the boundary effect can be neglected. However for a lamellar a
system of finite thickness, the boundary effect plays an im- +t|m|2+2u|m|*]. (16)

portant role. For example, the surface tension in freely sus-
pended films will tend to suppress the modulated phases. For a stack of membranes confined between hard walls at
Therefore we extend our study from two-dimensional freez=+L/2, a modulation ofi(x,y,z) must satisfy the bound-
membranes to three-dimensional lamellar systems with norary conditionsu(x,y,z)=0 atz= *L/2. For thin films, we
vanishing boundary effects. This analysis is particularly im-assume a single undulation mode of the form

portant in understanding the results from experiments of

freely suspended films. As an illustration of the boundary u(x,y,z)=cogzm/L)u(x,y). 17
effects, we consider the case of a smectic domain confined ] ] o

between walls. The smectic domain is characterized by dhe accompanying modulation of the tilt fietd can be ex-
stack of parallel membranes equally spaced in the directioRressed as
perpendicular to the individual sheets. This definesztloe

rection. Thus the membranes are parallel toxtyeplane. As

shown in Fig. 8, the confinement tends to suppress all modu-

lated phases since the undulation of membranes must vanish z
at both boundaries. In this case, the phase diagrams will ap- t
proximate those of aligned bulk systems. The undulation of
membranes can be described by the local displacement field L2

u(x,y,z), which represents the vertical displacement of a W'&
membrane atx,y,z) away from its average height). The \/\/
elastic energy of distortions per unit volume can be described W

m(x,y,z)=cogznw/L)m(X,y). (18

in terms of gradients ofi(x,y,z) [17] 0 A“(fo)
X
oy (V20580 3| 14 N AaAZ
bulk= 5 (Veu) +3Bl 57/ (14 \/\/
\—/\/
whereK=k/a. The first term represents the curvature en- L2

ergy of the membranes ak,fy,z), while the second term
represents the compression energy of the stack. The phenom-

enological coupling of the curvature to the molecular tilt £ g A schematic illustration of the membrane shape of a
becomes smectic domain confined between walls. The amplitude of undula-
tion u(z) is uniform nearz=0. Due to the boundary effecty(z)
Y i i i -
fy: _ —(Vzu)(V-m). (15) decrgases to zero near the boupdary in a region of thickness ap
a proximately equal to the penetration degth
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Here we have also assumed a single undulation mode for v2q*
u(x,y) andm(x,y). In general, for confined films of finite C(a)=Cj— —= > L (25
thickness, it is expected that the fialdz) is a maximum at [a(Bm/L°+Kq")]

the center of the filmZ=0), and thau(z) decreases to zero
at the boundariesz& = L/2). For thick films, this vanishing
of u(z) occurs only in a finite region of thickness the
penetration depthl7]. Thus, in general, there are effectively
two regions in the film(1) a bulk region near the center of '’ i 1
the film in which the displacement(z) is constant; and¢2)  difficult to find F,=0 andF ;= —LAt%/16ua. In the P;’)
boundary regions nea==L/2 only which the displace- Phase, the free energy is

ment vanishes. Near the transition from a uniform phase to a LA/T2 2
modulated phase with increasing film thickness, we expect Fi=— (Z‘;Jr FS)’
and find that the film thickneds and penetration depthare
comparable. This corresponds to our single-mode approXiyith Fq:CH(Q)q2+ Dg*, providedI',=<0. The wave vector
mation in Eq.(l?). The general case for thicker films will be q will be determined numerica”y by minimizingq over
considered below, where we determine the penetration depij In the square-lattice phase, the free energy is

¢ self-consistently. In the vicinity of the poirtt=Cj =0,

The phase diagram near the potnt C|]=O can be deter-

mined by comparing the free energy lof, L/, P(ﬁl,), and
the square-lattice phase, denotedfy, Fg, F1, andF,,

respectively, within the mean-field approximation. It is not

Ua (26)

. I ! A
there are just two equilibrium modulated phases given by F,=— 30ua(Fq+t)2’ (27)
My(X,y) =mycodgx), (19 providedI';=<0.
For thicker films, the inner layers are not affected by the
my(X,y) =M, (200 poundary constraints. Therefore the local displacement field
can be expressed as
and
u(x,y,z)=u(z)u(x,y), (28)
My(X,y) =My Co4qXx), @D whereu(z) is uniform nearz=0, and goes to zero near the
boundary in a region of thickness approximately equal to the
my(X,y) =m;cogqy). (22)  penetration deptl§. Thus we let
In keeping with our previous notation, we shall refer to these [ [#(Li2+2) L L
(1) . . . sinl ——=——| for —s<zs—-+¢
as theP;/ and the square-lattice phase. For films of finite 2§ 2 2
thickness near= C|i =0, we also find only these two modu- . L
lated phases |?1)add|t|on to the uniforim), and L 5/ phases. uz)={ 1 for — —+é<z<——¢
Note that thePB, phase has a nonzero average tilt of yhe 2 2
componentmy(X,y,z)=mg which is independent ofz.
Within this single-mode approximation, Eqd.4) and (15) m(L/2-2) ¢ L.t
can be expressed as \ sin 2¢ oryTész=3.
(29)
L —ar? . . e e
f dz(fpupt )= 7 Kg*+ BF u?(x,y) The accompanying modulation of the tilt fiehd is given by
m(x,y,z) =u(z)m(x,y). (30)
Y42
+og LAV -mx.y)Ju(xy). Again, my(x,y,z)=my for the P%l,) phase. Within this ap-

proximation, the free energy in Eq24) can be minimized
over q and ¢ and the phase diagram can be studied for a
range of film thickness.

The phase diagram for a smectic domain confined be-
tween walls is qualitatively similar to that of the freely sus-
pended films as shown in Fig. 9. In both cases, the undulated

F:j f fdxdydszulk+fy+fm) phases are suppressed by the boundary constraints. For a
confined smectic domain, in the limit of thick samples

(23

After replacingu(x,y) by its equilibrium value, the inte-
grated total free energy is given by

(L>¢), the phase diagram can be shown to be similar to that

L

= —f f dxdy{C||((;1)[V~m(x,y)]2 of a free membrane as described in Ré1<l,15. For finite
4a sample thicknesslL(= £), the square-lattice phase is unstable
+C,[VXm(x,y)]?+D[V2m(x,y)]?} to the P(Bl,) phase because the hard-wall boundary effect dis-

1 favors the two-dimensional modulated phase. For a sample
n _f f f dxdydZt|m|2+2u|m|*], (24) thickness less than the penetratlon.depth, a_II modulated
2a phases are unstable. In the next section, we will extend the
consideration to freely suspended films and compare our pre-
where dictions with experimental results.
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N where the integrand extends over the top and bottom sur-
A faces. As in the case of the hard-wall boundary conditions,

the surface tension also has the effect of suppressing undu-
lations of the membranes. For thinner films, both experimen-

tal and theoretical results have indicated that the amplitude
of the modulation at the surface relative to that at the center
of the film decreases as the film thicknésg increased?28,

29]. Therefore we assume a single undulation mode of the

form

square latticelphase

splay stripe phase u(x,y,z)y=cogq zz/L")u(x,y). (32

The accompanying modulation of the tilt field is of the

F form

\

m(x,y,z)=cogznw/L")m(Xx,y). (33

FIG. 9. The mean-field phase diagram of freely suspended ﬁlmﬂere L’ characterizes the decay in tiedirection. This is

as a function ot andN. All modulated phases are suppressed by . . ,
surface tension foN less than 80. The square-lattice phase occursessentlally a penetration depth. We let=al’, where

for N greater than 80 and farbetween—0.1 and 0.05. The two flat 0~ @<= 1. Herea=0 corresponds to a film that is uniform in
phases aré, (or SmA) andL (or SmC). The typical param- the z direction. This is expected for either very thin films or
eters areK =10° dyne, B=2.5x 107 dyne/cni, =20 dyne/cm, fOF vanishing surface tension. On the other hame;1 cor-
a=3x10"7 cm, y=2.5x10 ¥ erg, C;=10 * erg, and D responds to a complete vanishing of the modulation at the

=5x10"erg/cn?. surfacesz= *L/2. This is expected for thick films or for
high surface tensions. The total free energy of the film can be
VI. FREELY SUSPENDED FILMS calculated as
In Sec. V, we have derived the phase diagram for an L' [aw am\ [(am
oriented smectic domain confined between hard walls. A Fioi=F,+F=-—|—+cog ——|sin —-
e . : 2am| 2 2 2
similar analysis can be done for a freely suspended film. In
this case, instead of the hard-wall boundary conditions, there )
is an excess free energy proportional to the area of the top XJ f dxdy{Cy(a)[V-m(x,y)]
and bottom layers of the film due to the surface tension. This
excess free energy can be expressed as +C, [VXm(x,y)]*+D[V?m(x,y)]%}
1 1 2 4
FTITI fdxdyE(Vu)z, (31) + 55 dxdydzt|m|?+2ujm|%), (34
with
10’ Lad T T T T T T
o4, QT amT\  |[am
] v°qQ°L T‘FCO 75”’]7
square lattice phase - C (q)=C _ (35)
W L | P [am(gs+gc+0,)] ’
N i ] where
L uniform flat phase B_’ﬂ' aTr T . o
%= 2 N7 S'”(?) - 89
KL'g* a7T+ {aﬂ') i (CMT) a7
o el il ol ol el = —— TCO0§ —|SINl — | |,
1007 10" 10’ 10' 10° 10’ 10" 9« ™ 2 2 2
T
and

FIG. 10. The mean-field phase boundary of the square-lattice
phase and the uniform flat phasgaq as a function of the number- g,=27qzco§<ﬂ) _ (39)
of-layers (N) and surface tension7] at t=0. Above the data 2
points, the square-lattice phase is stable, while the stable phase is
the flat phase below the data points. The parameters for this figure In the limit of thin films, « is small and the undulation of
are the following: K=10"% dyne, B=2.5x10" dyne/cnf,  the film becomes
a=3x10""cm, y=2.5x10 2 erg,C;=10 " erg,t=0 dyne/cm,
andD=5x10"2¢ erg/cnf. u(x,y,z) =u(x,y), (39
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which is independent of. The total free energy then be- For large surface tension it can be shown that there are no

comes stable modulated phases in thin films because the surface
energy dominates the free energy. However, for small sur-

Ft"tzzl__aff dxdy{C”(q)[V-m(x,y)]2+ C,[VXm(x,y)]? face tensions, the transition from the uniform flat phase to
modulated phases occurs whisn- N, =8D 7y*/(a’K*C|?)

+D[V2m(x,y) P+t mOx,y)[*+2ulm(x,y)|} 40 for t=0.
For thicker films, within the above approximation, we cal-

with culate the free energy for various modulated phases. In the
Cj(a)=Cj— Y*q*/[a(27q¥/L+Kg*)]. (41) Pfgl,) phase, the free energy is given by
|
1 2 am\  [am 2F2
S LA Tar 2 S 2] e L 4o
1™ 1eua 9+3 am\  [am 5‘2a71'+3 1+2 am\ [am\|? ' (42)
e N e N e W ) ar 2 PN 2
providedI";=<0. In the square-lattice phase, the free energy is given by
1 2 am\ [am\]? r )
- LA +ECO 7 Sin 7 ( q+t) 4s
4 40ua3+1§a77_a77+3 am\  [am\|’ (43
27 @n %\ 2 PN T 2an " 2 N 2
|

providedI" ;=<O0. For the above parameters, we estimate that the transition

In general, the phase diagram can be calculated using tifeom a uniform flat phase to the square-lattice phase occurs
free energy in Egs(42) and (43) together with suitable at about 10-100 layers with a undulation wave vectarf
boundary conditions. In the presence of nonvanishing curvaabout 1§ cm . The square-lattice phase exists in a region
tures and finite surface tension at the boundaries, the stress gf temperature range of order a few degrees C. These results
the layers must balance the Laplace presquf. This  agree qualitatively with the experimental data from Ref.

boundary condition can be expressed as [13].
Furthermore, we calculate the dependence of the phase
g(i“) = V2. (44) boundary between the uniform flat phase and the square-
Jz lattice phase on surface tensior) (and compression modu-

. ) lus (B) att=0. This is done numerically for the square-
After substitution of Eq.(32) into Eq. (44), the boundary |ayice” phase and the uniform flat phase with the above
condition becomes parameters. The phase boundary is given by the condition
) I'4=0. In Fig. 10, we plot the phase boundary as a function
ﬂta%ﬂ _Lar (45  Of N and surface tension. As shown in Fig. 10, for small
2 2 2B surface tensiond\ grows linearly asr increases. For large
surface tensions, however, the phase boundary is indepen-
We note that the above boundary condition is equivalentient of 7. This is due to the suppression of the surface un-
to minimizing the free energy in Ed34) with respect to  dulation by the large surface tension, and therefore the com-
@. The phase diagram in Fig. 9 is obtained using the followpetition between compression energy and undulation energy
ing representative parameter& =x/a=10"° dyne, B will determine the ground state. For large surface tensions,
=2.5x10" dyne/cnf, r=20 dyne/cm,a=3x10"" cm, ¥  the phase boundary is approximately givenlby & where
=2.5x10 * erg, a'ndCH=lO’l3 erg. These values corre- »_ -2 [g/K is the penetration depth for a mode of the
spond to the smectic phase that is unstable to modulation N ave vectorg in thex-y plane. Thus the number of layers at
:Jheectt::jl[kB(r)]](.e?/I\tle_?u.rt\Q/eer 22‘(;?)3%‘1?27@‘;;&2%?5 (()ar)f_ the phase boundary for the small compression modulus is
der to obtaing~1Cf cm! as observed in the modulated found to scale asllf.v\/EAssummg that the number of lay-
phases of Ref13]. ersN at the transition can be characterized by a single com-
We compare our results with experimental data for thebination of B and 7, we write
liquid crystal 4n-heptyloxybenzylidene-#-heptylaniline
(70.7. The phase diagram of 70.7 as a function of tempera- _
ture and film thickness has been thoroughly studi?i31]. N~rg(B7 %), (46)
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S entational(tilt) order within the films. The systems studied in
E E Ref. [13] exhibit not only smecti€c phases, but also crys-
[T v 5 5 5 5 8 x & talline phases. However, to the extent that the characteristic
10 L er=100 s J wavelengths of the various modulated phases are large com-

F 2 pared with the molecular size, we expect that our results can
[ ] be applied to understand the modulated phases.
Ntlw E ' _: Our model is a phenomenological one. Thus a direct com-
‘t . E parison of the phase diagram in Fig. 9 with the experiments
i ] of Ref. [13] is not possible. In particular, we note that the
' | J observation of the square-lattice phase between a high-
E i temperature one-dimensional rippled phase and a low-
- ] temperature flat crystalline phase is not accounted for by our
107 Lsunt sl o ol sl e sy ol sl s model. Nevertheless our model can help to explain the ap-
10 10 3 10 pearance of a square-lattice modulated phase rather than a
Bt hexagonal phase. The square-lattice phase is a possible stable
equilibrium phase that maintains the inversion symmetry of
FIG. 11. The rescaled mean-field phase boundary of the squarébe film.
lattice phase and the uniform flat phade,( as a function oiN/ 7 This inversion symmetry can be broken by, among other
andB/ 2. Above the data points, the square-lattice phase is stabldhings, an applied electric field perpendicular to the plane of
while the stable phase is the flat phase below the data points. Féhe film. In this case we find that for strong fields an equi-
the different values of the surface tensienthe rescaled curves of librium hexagonal phase is predicted. However we also find
the phase boundary are the same. This data collapse illustrates th@ interesting result that the transition from the square-lattice
scalingN~ rg(B/72). The parameters for this figure are the follow- phase to the hexagonal phase occurs continuously, rather
ing: K=10"°% dyne, a=3x10"7 cm, y=2.5x10"" erg, C than via a first-order reconstruction. Between the square-
=10 B erg,t=0 dyne/cm, and =5X 10" erg/cnt. lattice phase and the hexagonal phase is an intermediate
phase of lower symmetry than either of the other two. This
whereg is a scaling function. From the limit above, we find situation is analogous to what happens in certain uniform
that g(y)~+y for smally, andg(y)~ constant for large tilted smectics. Between the smectiand smectidc phases,

y. Thus we expeck=2 and both of which are achiral, an intermediate smettiphase
— can occur, which is chirdl1,32]. The transitions are second
N~ 7g(B/ 7). (47)  order. It should be possible to observe at least the continuous

) — ) ) ) distortion of the square-lattice phase in films such as those
In Fig. 11 we plotN/7 vs B/7* and find a simple scaling  stydied in Ref[13] in the presence of a transverse electric

curve for various values of. field. Depending on the strength of the flexoelectric effect in
such systems, the continuous transition to the hexagonal
VII. DISCUSSION phase at high fields may also be possible.

In this paper, we have examined the effects of boundaries
on modulated phases of liquid crystal_films and I_ipid bilayer ACKNOWLEDGMENTS
membranes. For freely suspended films, we find that our
model is consistent with the experimental observation of the The authors acknowledge partial support from the Donors
phase transitions from uniform to square-lattice modulatedf the Petroleum Research Fund, administered by the Ameri-
structures for films thicker than approximately 100 layerscan Chemical Society, from the Exxon Education Fund, and
[13]. We note, however, that our model treats only the ori-from the NSF under Grant No. DMR-92-57544.
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