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ABSTRACT

We proposed a fast and unsupervised clustering method, minimum span clustering (MSC), for analyzing the sequence–struc-

ture–function relationship of biological networks, and demonstrated its validity in clustering the sequence/structure similar-

ity networks (SSN) of 682 membrane protein (MP) chains. The MSC clustering of MPs based on their sequence information

was found to be consistent with their tertiary structures and functions. For the largest seven clusters predicted by MSC, the

consistency in chain function within the same cluster is found to be 100%. From analyzing the edge distribution of SSN for

MPs, we found a characteristic threshold distance for the boundary between clusters, over which SSN of MPs could be prop-

erly clustered by an unsupervised sparsification of the network distance matrix. The clustering results of MPs from both

MSC and the unsupervised sparsification methods are consistent with each other, and have high intracluster similarity and

low intercluster similarity in sequence, structure, and function. Our study showed a strong sequence–structure–function

relationship of MPs. We discussed evidence of convergent evolution of MPs and suggested applications in finding structural

similarities and predicting biological functions of MP chains based on their sequence information.
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INTRODUCTION

Over the past two decades, there has been a rapid

growth in volume and diversity of biological data, such

as new sequence, structural, and functional data added

to various proteomic and genomic repositories. To

organize these vase amounts of diverse data, many bioin-

formatics databases have been established and made

available to the public. Various statistical methods have

been developed for extracting useful knowledge from vol-

umes of data.1–9 Recently, studies of biological networks

have received considerable attentions. For example, they

are used to analyze protein interactions, metabolic path-

ways, and gene regulatory mechanisms.10–12

Network clustering is one of the fundamental prob-

lems in recognizing patterns of complex networks. Tradi-

tionally there are two commonly used approaches for

network clustering, including the partitional and the

hierarchical algorithms.13–15 Partitional clustering algo-

rithms, such as K-means algorithm,16 group complex

networks into several clusters so that nodes within each

cluster are more closely related to each other than nodes

in different clusters. However, this method is computa-

tionally difficult, requires a priori knowledge about the

number of clusters, and is sensitive to the choice of ini-

tial cluster centers. On the other hand, hierarchical algo-

rithms, such as the hierarchical clustering (HC)

method,15 group a network with a sequence of nested

partitions, either from singleton clusters to a cluster

including all individuals or vice versa. HC suffers from

the same problems of a predetermined number of clus-

ters and nonunique solutions. Another popular clustering

method, graph-based sparsification clustering, starts with

a proximity matrix, eliminates long distance edges with a

threshold, and preferentially retains the edges that are

likely to be part of the same cluster.17–19 Although it is

simple, its drawback is the arbitrary threshold which

varies with the system under investigation, as revealed by

a recent attempt in studying how dynamic graph thresh-

olding relates to various network clustering approaches,5
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including a popular flow-based approach, Markov clus-

tering algorithm (MCL).20 However, there exists a large

ambiguity in this study to the predicted value of thresh-

old, and the clustering results shown in its supplemen-

tary document are hardly satisfactory. Therefore, it is

desirable to have an unsupervised clustering algorithm

that is computationally efficient and gives reliable results.

For the study of protein networks, the small-world

network (SWN) approach has been demonstrated to be

useful in analyzing their structures and func-

tions.17,21,22 Furthermore, protein similarity networks

(PSNs) have been used to visualize functional trends

across protein superfamilies from the context of sequence

similarity.17 Subtle sequence similarities frequently indi-

cate structural, functional, and evolutionary relationships

among protein sequences. The use of PSNs to visualize

trends of sequence and structure has been made to make

functional inferences for the cupin superfamily.18 A

review on proteins as networks can be found in an article

by Krishnan et al.23

Recently, there is an increasing interest in the network

analysis of membrane proteins (MPs).24 MPs play a key

role in a wide variety of biological processes; their func-

tions include cell–cell contact, surface recognition, cyto-

skeleton contact, signaling, enzymatic activity, or

transporting substances across the membrane.25 The bio-

logical functions of MPs are strongly related to their three

dimensional structures. MPs in the same superfamily usu-

ally have similar three-dimensional structures but diverse

functions stemming from multiple structural distortions.

Many known diseases result from the defects of MPs. Their

clinical importance is demonstrated by the fact that

[mt]50% of known drugs in use today target MPs, which

are also responsible for the uptake, metabolism, and clear-

ance of these pharmacologically active substances. Despite

their biological and pharmaceutical importance, due to

difficulties in crystallizing MPs, only about 500 unique

structures have been derived so far.26,27 As the attempts

of using experimental methods to study MPs have encoun-

tered difficulties, there exist great incentives for computa-

tional and statistical studies of MPs.

To investigate the sequence–structure relationship of

MPs, we have previously shown that the structure of sev-

eral MPs, including bacteriorhodopsin, halorhodopsin,

and sensory rhodopsin, can be predicted from their

sequence using thermodynamic principles.26,28,29 Fur-

thermore, we have combined molecular dynamics simu-

lations and fold identification procedures to predict the

structure of 696 kinked and 120 unkinked transmem-

brane (TM) helices from their sequence in the protein

data bank of transmembrane proteins (PDBTM).30,31

Although these results delineate a tight correlation

between sequence and structure of MPs, a panoramic

view of their sequence–structure–function relationship is

desirable. The aim of the present work is to develop an

integrated approach for clustering and visualizing PSNs

for MPs and to investigate their sequence–structure–

function relationship. Here we propose the use of mini-

mum span clustering (MSC) algorithm,4 which is effi-

cient (the computation time is linear with system size)

and does not require predetermined inputs on the num-

ber or size of clusters. Moreover, MSC enables the users

to view a complex system at various characteristic resolu-

tions. Our earlier application of MSC has provided an

excellent clustering of the social science network consist-

ing of 1575 SSCI (Social Sciences Citation Index) jour-

nals at four characteristic resolutions.4

In the present study of PSNs, the general structure of

the sequence similarity network (SSN) of 682 MP chains

was investigated by both MSC and the minimum spanning

tree (MST) algorithms.7,32 Our methods provide an effi-

cient and convenient approach to observe the sequence–

structure–function relationship among large sets of MPs,

to identify a general sequence pattern for a group of struc-

ture/function related proteins, and to investigate the simi-

larities/differences between neighboring protein groups in

the network. A characteristic threshold distance for the

cluster boundary of SSN for MPs was identified from ana-

lyzing the statistical edge distributions in the SSN, which

was used to view the network connectivity of MPs in an

unsupervised sparsification clustering. These methods of

network clustering are described in “Methods”, followed

by results and discussion in “Results and Discussion”. In

“Conclusion”, we conclude a strong sequence–structure–

function relationship for MPs, and the feasibility of pre-

dicting structure and function of MPs based on their

sequence information.

METHODS

Dataset construction

The sequence and structure dataset of 682 MP chains

used in this study was downloaded from PDBTM

(http://pdbtm.enzim.hu/). Sets of protein sequences from

PDBTM were sifted with a protein sequence culling

server, PISCES,33 by criteria of sequence identity (pair-

wise sequence identity <95%) and structural quality (X-

ray crystal resolution better than 4 Å and the traditional

crystallographic R-factor better than 0.36). For protein

pairs with sequence identity [mt]95%, only the highest

resolution polypeptide chain was considered. Sequences

consisting of noncanonical amino acids were excluded in

this study. The determination of transmembrane region

of a chain was made according to the TMDET and OPM

databases. In our dataset, 176 chains are peripheral and

506 chains have transmembrane units. The functions of

MP chains were assigned and classified according to the

Pfam descriptions and molecular functions in gene

ontology (GO). Overall, 627 chains are classified into 42

functional groups, 15 chains have unique function, and

40 chains have no characterized functions. To visualize
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these functional groups, chains in the first 24 groups

were colored by their function (similar colors for similar

functions). Chains have no characterized functions were

represented by open circles. All other chains were colored

in black. For simplicity in the color representation of

protein groups, the description of molecular functions is

more specific for large groups, and is more general for

small groups. A detailed list of our dataset is available in

Table SI of the supporting information.

Distance/similarity matrix calculation

To calculate similarity between sequences in our data-

set, we considered the E value calculated from BLAST

(Basic Local Alignment Search Tool), a parameter that

describes the number of hits one expected to see just by

chance when searching the database of a particular

size.5,17,34 This E value was calculated using the general

scoring matrix BLOSUM62 with default parameters, and

its cutoff was chosen to be 108 for a comprehensive cov-

erage. Such an E value (or 2log10 E) between sequences

has been widely used as a distance (or similarity) mea-

sure to visualize the clustering of protein functions in

previous studies of protein networks.5,17,18 Since a

lower E value infers a more significant match, here we

defined the similarity between sequences i and j as si;j

¼ 1= 11Ei;j

� �
with a value between 0 and 1. The simi-

larity pattern of sequence i in the dataset was denoted as

s
*

i ¼ si;j

� �
; j ¼ 1 � � � 682. Furthermore, we defined the

overall similarity between sequences i and j as the cosine

measure of their similarity patterns in the dataset; that

is, ~s i;j � s
*

i � s*j

j s*i jj s*j j
¼
P

ksi;ksj;k=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ksi;k
2
P

ksj;k
2

p
, where k

spans all dataset of 682 chains. Finally, we defined the

distance between sequences i and j in the distance matrix

{di,j} of our dataset as

di;j ¼ 1=~s i;j21: (1)

The tertiary structure similarity of MPs was calculated

with TM align, a protein structure alignment algorithm

based on the TM score.35 The transformation between

similarity (measured by TM score) and distance of terti-

ary structure was also defined as Eq. (1). TM-align

exploits three kinds of quickly identified initial structural

alignments, including an alignment of secondary struc-

tures between two proteins using dynamic programming

(DP), a gapless matching alignment of two structures,

and another DP alignment with a mixed score matrix of

the above two alignments and a gap-opening penalty.

These initial alignments are then submitted to a heuristic

iterative algorithm, which has been extensively used in

refining NP-hard structure-based alignments. It has been

found that the posterior probability from various data-

sets has a similar rapid phase transition at TM score

about 0.5, suggesting that protein pairs with a TM

score > 0.5 are mostly in the same fold while those with

a TM score < 0.5 are mainly not in the same fold. An

all-against-all structure alignment of 10,515 nonredun-

dant protein chains in the PDB has been conducted and

about 2000 folds has been obtained after clustering all

structures using the threshold of TM score = 0.5.36

Network visualization

In general, the comprehensive structure of a biological

network is rather complex and it is difficult to recognize

its important features from a hairball diagram. To extract

the characteristics of the network, in this study we applied

two visualization methods, including MST and an unsu-

pervised sparsification clustering. There are a number of

algorithms to construct MSTs, and we used the Kruskal

algorithm32 in this study. Decision about whether to con-

nect a pair of sequences of the seeding graph was made

using the distance array di,j, which was sorted in the order

of increasing distance. The sorted distance array di,j was

scanned from its top and a linkage between two sequences

was added to the seeding graph if no loop was present. At

the end of this procedure, a complete MST was con-

structed for the SSN (or for a protein cluster). With the

network information provided in the above distance

matrix, MST shows a tree diagram of the network with the

shortest path connecting all nodes in the network. On the

other hand, the unsupervised sparsification clustering

method reads the characteristic threshold distance, Dt, and

constructs a network graph by Cytoscape,37 showing all

connected edges with a distance shorter than Dt. Since Dt

is set to be the characteristic distance of the network sepa-

rating intracluster edge distribution from intercluster edge

distribution from our MSC analysis (as described in the

“Results and Discussion” section), each protein cluster of

the network and its intracluster connectivity can be clearly

visualized in the Cytoscape graph. We note that, for both

visualization methods, the relative positions of nodes in

the graphs do not preserve their actual distance as calcu-

lated in the distance matrix.

Network clustering

Network topology is the arrangement of various ele-

ments of a network, and clustering of a network helps

one to identify the topological structure of the network.

Our proposed clustering method, MSC, attempts to clus-

ter the network such that the span is minimized for both

the network and each cluster. The constructed tree dia-

gram of the network by MST was further clustered into a

tree diagram of clusters by MSC. In this way, as will be

discussed in the “Results and Discussion” section, it is

feasible to statistically analyze the inter- and intracluster

edge distributions of the network and define a threshold

distance Dt for the boundary between clusters. Here we

G.-M. Hu et al.

1452 PROTEINS



illustrate the procedure of MSC using a simple ten-

component three-step example:

We identify the closest neighbor of each node and

record their distances in a list of ascending order, as

shown in Table I. This list of shortest distances between

node pairs is truncated at the threshold distance Dt. For

a network of N nodes, instead of dealing with a distance

matrix of N2 elements, MSC only needs to process at

most N distances in this list.

The first cluster is constructed by starting from the node

pair with the shortest distance, then including additional

pairs from the list in the order of increasing distance. For

the added distance, if one of the two nodes is involved in

one of the above constructed clusters, the size of this clus-

ter increases but the number of clusters remains the same.

If both nodes of the distance are not involved in the above

constructed clusters, a new cluster is identified and the

number of clusters increases. All clusters of the network

are found when all distances in the list are considered. In

this example, sequences 3 and 4 form the first cluster. This

cluster grows by the inclusion of sequence 2 through its

connection with sequence 3. Sequences 1 and 8 then form

the second cluster, and sequences 6 and 7 form the third

cluster. Sequences 10 and 9 are added to the first cluster

respectively through their connection to sequences 3 and

4. Finally, sequence 5 is added to the second cluster

through its connection to sequence 8. The identified clus-

ters in the first run are referred as the first level clustering,

which has the highest resolution.

Clusters constructed in step 2 are considered as renor-

malized nodes and the average distance matrix of these

clusters is calculated for all inter-cluster node pairs

between two clusters. The network consisting of these

renormalized components is further clustered by steps 1

and 2, and higher levels of clustering with lower resolu-

tions are constructed.

Similarity measure for sets of clustering
results

Consider two sets of clustering results, A = {A1, A2,. . ., Am}

and B = {B1, B2,. . ., Bn}, of the same dataset. The similarity

matrix of A and B can be expressed as:

SA;B ¼

S11 � � � S1n

� . .
.

�

Sm1 � � � Smn

2
6664

3
7775; (2)

where the matrix element Sij = p/q is the Jaccard’s simi-

larity coefficient with p being the size of intersection and

q being the size of the union of cluster sets Ai and Bj.38

In this study, the similarity of clustering results A and B

is defined as Sim A; Bð Þ ¼
P

i�m; j�nSij=max m; nð Þ,
and it has been shown that 0 < Sim(A, B) � 1 and

Sim(A,A) = 1.39

RESULTS AND DISCUSSION

The E value calculated by the homology searching algo-

rithm BLAST has been widely used in recognizing remote

protein homologies for the structural and functional

annotation of newly determined proteins, and proven to

provide useful clustering results for various protein net-

works. Typically the threshold E value used in clustering

proteins is much <1, but there is no general rule for deter-

mining the threshold value. Since large E values have little

meaning, the defined sequence distance between proteins

in Eq. (1) is mainly contributed from those small E value

pairs in the overall sequence similarity pattern, as

described in the “Methods”. Moreover, many protein pairs

have very similar structure and function even though their

E value is large. By sifting our data set with criteria E

value > 1 (or si,j < 0.5) and ~s i;j > 0.85, 96% of protein

pairs have similar tertiary structures (TM score > 0.5).

Furthermore, we calculated the distribution of sequence

similarity for protein pairs in our dataset using the Pfam

classification. For related protein pairs (within the same

family and having the same Pfam description), 8% (9%)

of pairs have a si,j value less than 0.2 (0.5), but only 4%

(6%) of pairs have a ~s i;j value less than 0.2 (0.5). Further-

more, 99% of unrelated protein pairs have a si,j or ~s i;j value

less than 0.2. The above findings suggest that the defined

overall similarity, ~s i;j , in this study is a better index for

homology modeling of proteins, although our clustering

results using si,j or ~s i;j are in general consistent with the

Pfam classification.

To determine the threshold distance (Dt) for cluster

boundary, as shown in Figure 1, we compared the length

distribution of edges in the MST diagram and that in the

1st level MSC clusters without thresholding. As described

in the “Methods” section, MST generates a tree diagram

for the network by minimizing its overall span, while

MSC divides the network into clusters by minimizing the

overall span of each cluster and the sum of overall span

for all clusters. In other words, the MST diagram can be

decomposed into MSC clusters by removing all interclus-

ter edges. Thus, the difference between the length

Table I
Shortest Distance Pairs of Network Nodes Listed in Increasing Order for Demonstration Purposes

Node i 3 4 2 1 8 6 7 10 9 5
Node j 4 3 3 8 1 7 6 3 4 8
dij 0.08 0.08 0.15 0.49 0.49 0.68 0.68 0.90 0.97 0.98
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distribution of MST edges and that of MSC edges repre-

sents the length distribution of inter-cluster edges, which

has a smaller peak at sequence distances less than 1 and

a major peak at sequence distances greater than 1, as

shown in the inset of Figure 1. The first peak is mostly

contributed from clusters with similar sequences, struc-

tures, and functions, and these clusters tend to form a

group in a lower resolution MSC. On the other hand,

the second peak is contributed from clusters with differ-

ent sequences, structures, or functions. Therefore, this

characteristic sequence distance can be set as the thresh-

old distance for the cluster boundary of MPs, and we

have Dt = 1. This characteristic threshold distance will be

used in visualizing the clustering of proteins and the

connectivity of clusters in MSC or an unsupervised spar-

sification clustering. To study the sensitivity of our clus-

tering results on the value of Dt, we calculated the

Jaccard’s similarity coefficient for clustering results of

membrane proteins using different Dt, as shown in Sup-

porting Information Figure S1. The Jaccard’s similarity

coefficient between the MSC results is greater than 0.9 if

the value of Dt is varied between 0.6 and 1.6, and the

coefficient between the sparsification clustering results is

greater than 0.9 if Dt is varied between 0.7 and 1.3. For

other values of Dt, the clustering results would have

more significant changes, particularly for using the spar-

sification clustering method. The value of Dt differs for

four different systems that we have studied (MPs, pro-

teases, kinases, and phosphatases), and is different for

different levels of MSC clustering. This result is consist-

ent with findings in previous studies.5

To cluster MPs, we first applied MSC to decompose

their SSN at various resolutions. At the highest resolu-

tion (1st level) with Dt = 1, the network was decomposed

into 156 clusters and 93 isolated nodes. As shown in Fig-

ure 2, we plotted a MST diagram for each of these clus-

ters. For the largest seven clusters, we displayed the PDB

code of their hubs, including antibody Fab fragments

(which were mainly added to stabilize MPs and aid crys-

tallization in experiments), GPCRs, porins, ATP-binding

cassette transporters, aquaporins, potassium/sodium

channels, and bacterial rhodopsins. Their representative

tertiary structures are displayed in Supporting Informa-

tion Figure S2. Here a node is denoted as a hub if it has

more than five connections in a MST diagram. The

validity of our MSC clustering is demonstrated by the

high average intracluster sequence similarity of 0.89 and

the low average inter-cluster sequence similarity of 0.02.

In Figure 2, each node is colored according to its func-

tion, and the observed color consistency within clusters

implies a close sequence-function relationship for MPs.

Furthermore, the average intra- and intercluster tertiary

structure similarities of our MSC sequence clustering are

0.71 and 0.23, respectively. The percentage of inconsis-

tent links (two proteins that are connected in the

sequence network but belong to different functional cate-

gories) in Figure 2 is less than 5%, suggesting a strong

sequence–function relationship for MPs. As shown in

Supporting Information Figure S3, all of these protein

pairs have a low TM score about 0.2. In addition, the E

value is usually much smaller than 1 for consistent links,

but is between 0.01 and 1 for most of inconsistent links.

The clustering result of proteins can be further improved

if their structure information is input as additional infor-

mation. In Supporting Information Table SII, we listed a

detailed data analysis for protein pairs of these inconsis-

tent links. For some inconsistent links, the functions of

proteins are related or similar to each other. For exam-

ple, 3mk7-C is a cytochrome c oxidase and 1zrt-D is an

ubiquinol–cytochrome c reductase. Similarly 3ag3-D is a

cytochrome c oxidase and 2bs2-C is an oxidoreductase.

Moreover, 3vmt-A is a transglycosylase, while 3fwl-A is

both a penicillin binding protein and a transglycosylase,

suggesting the effect of divergent evolution observed in

the MSC result. In our clustering scheme, no protein can

be assigned to be in more than one cluster, but in reality

proteins can have more than one function. In Table II,

we further elaborated the sequence–structure–function

relationship for the largest 7 clusters. These results verify

a strong sequence–structure relationship for MPs. For

comparison, in a random clustering of 682 nodes into

249 clusters, the average intra-/intercluster similarities

are 0.03/0.03 in sequence and 0.23/0.23 in tertiary struc-

ture. The scatter plot in Supporting Information Figure

S4 shows the relationship between the standard deviation

of sequence lengths (rl) and the average sequence length

(lav) for predicted protein clusters. This result indicates

that sequence length plays some role in the clustering of

proteins, since 85% of clusters have a value of rl/lav less

Figure 1
Statistical length distributions of edges predicted by MSC (dashed line)
and MST (solid line). As shown in the inset, the difference of these two

distributions gives the length distribution of intercluster edges, since the
MST edges are composed of intracluster edges (MSC edges) and inter-

cluster edges.
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than 0.25. The details of our MSC results for MPs can be

found in Table SI of the supporting information.

At the second level of MSC with a renormalized

threshold DR
t ¼ 4 (as described in step 3 of MSC), the

SSN of MPs contains 22 clusters, as demonstrated in the

tree diagram of Figure 3. Here solid lines represent intra-

cluster links, springs represent intercluster links, and

dashed circles enclose nodes in the same group. The

average intracluster similarity is 0.58 in sequence and

0.50 in tertiary structure, while the average intercluster

similarity is 0.01 in sequence and 0.23 in tertiary struc-

ture. In Figure 3, we observed that clusters in FAB,

GPCR, metal transporter, electron transfer protein, and

potassium/sodium channel groups tend to form an

aggregation of the same function, indicating a close evo-

lutional relationship for chains in the same functional

Figure 2
MST diagrams of 156 MSC clusters in the 1st level. These clusters are arranged from left to right in the descending order of cluster size. Here each
node is colored according to its function, as described in the legend (only for the largest 25 functional categories to avoid confusion, since many

colors look alike). The largest seven clusters are labeled and their hub centers are circled. Isolated nodes are not shown.
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group. These MP clusters also have very similar struc-

tures, judged by the fact that the average tertiary struc-

ture similarity is 0.73 for the FAB group, 0.64 for the

GPCR group, and 0.78 for the metal transporter group.

Within each group, MPs are phylogenetically related and

share conserved sequence patterns. It is interesting to

note a possible radiative evolution (instead of bifurcated

evolution) of GPCRs from the hub node 4dkl-A, as

observed in the sequence similarity diagram of GPCRs in

Figure 2. Such a covarion process of GPCRs deserves fur-

ther investigation using metric multidimensional scaling

analysis to explore their sequence space and identify vari-

ous evolutionary pathways.40 On the other hand, evi-

dence of convergent evolution is observed for chlorophyll

binding proteins (CBPs) and porins. Chains in the CBP

group (including MSC clusters 15, 43, 87, 89, 90, 146,

148, and 154) are very distributed (low sequence similar-

ity), and the average tertiary structure similarity for these

chains is only 0.22. For simplicity, we focused on the

CBPs in clusters (15, 148) and (89, 90). According to the

literature, clusters 15 and 148 contain CBPs in plants,

while clusters 89 and 90 contain CBPs in photosynthetic

bacteria. The average sequence distance is 0.05 between

clusters 15 and 148, 0.08 between clusters 89 and 90, and

greater than 40 otherwise. Therefore, although the core

complexes of photosystems I and II are highly conserved

among oxygenic photosynthetic organisms due to their

common origin from an endosymbiosis event,41 CBPs

show larger variability in their origin among different

groups of organisms, possibly correlating with the

Table II
Summary of the Sequence, Structure, and Function Properties for the Largest Seven Clusters Predicted by the 1st Level MSC Sequence Clustering

of MPs

Cluster Sequence similarity Structure (similarity) Function Consistency

1 0.97 b sheets (0.70) Antibody Fab fragments 28/28
2 0.91 72TM helix bundle (0.63) GPCRs 19/19
3 0.96 b barrel (0.91) Porins 15/15
4 0.96 Mix of helices and sheets (0.57) ATP-binding cassette (ABC) transporter 15/15
5 0.87 a helix bundle (0.50) Aquaporins 12/12
6 0.96 a helices (0.86) Potassium/sodium channels 12/12
7 0.94 72TM helix bundle (0.81) Bacterial rhodopsins 11/11

Figure 3
MST diagram of 22 MSC groups in the second level. Intragroup and intergroup links are represented by solid lines and springs, respectively. The

size of nodes is proportional to sc 1 25, where sc is the cluster size. Here each node represents a cluster in the 1st level, and is colored according to
the majority function of its components. The color code of nodes is the same as that in Figure 2. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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adaption to their environment. In Supporting Informa-

tion Table SIII, we randomly selected 77 CBPs of plants,

alga, and euglena from the UniProt database and found

that their sequences are most similar to CBPs in clusters

15 and 148. Although most of these CBPs are highly

homologous, the CBP (UniProt ID: P84988) of

Euphrates poplar is distinct from other CBPs, suggesting

a different origin of this protein.

In this article, we have mentioned two features of MSC

for network clustering, including its computational effi-

ciency and its prediction of the characteristic number of

clusters at various resolutions. By running Matlab codes of

various clustering methods on an Intel Core i7 desktop

computer, we found that MSC is comparable with HC in

efficiency, and is much faster than K-means and affinity

propagation (AP).6 For a network of size N = 3,000, the

computing time is approximately 2–5 s for MSC and HC,

30 min for K-means, and 8.5 h for AP. For N = 10,000, the

computing time is less than 1 min for MSC and HC but

longer than 12 h for K-means and AP. To further validate

MSC, as shown in Table III, we compared the intra- and

intercluster similarity in sequence and in tertiary structure,

calculated by various clustering methods (MSC, MCL, K-

means, and HC). For SSN, the intra-/intercluster similar-

ities are 0.89/0.02 in MSC, 0.60/0.02 in MCL, 0.37/0.03 in

K-means, 0.89/0.02 in HC, and 0.03/0.03 in a random

clustering. For the clustering of tertiary structures, the

intra-/intercluster similarities are 0.71/0.23 in MSC, 0.50/

0.23 in MCL, 0.45/0.23 in K-means, 0.67/0.23 in HC, and

0.23/0.23 in a random clustering. Here, samples in a ran-

dom clustering were constructed by randomly assigning

682 nodes into 249 clusters. The intercluster similarity in

tertiary structure of all four methods is about the same as

that of a random clustering, suggesting that the overall ter-

tiary structures are very different for proteins in different

clusters as predicted from the four methods. The largest

intracluster similarities for MCL clustering were found

with an inflation of 18.7, although the conceivable values

of inflation are between 1.1 and 10.0. In general all four

methods provide much better clustering results than a ran-

dom assignment. Our results in Table III demonstrated

that MSC performs better than the other three methods in

clustering the sequence and tertiary structure networks. In

this study, the performance of MSC was only compared to

that of MCL, HC and K-means (three of most popular

clustering methods). A more general comparison in the

performance of various clustering methods with our char-

acteristic threshold Dt is currently under our investigation

for various biological networks.

The characteristic threshold distance, Dt, for cluster

boundary of MPs identified in this study can be applied

to an unsupervised sparsification clustering of MPs.

Compared with the regular sparsification clustering of

protein networks in previous studies,17,18 our method

has two advantages; 1, the threshold of sparsification is

not arbitrary but uniquely identified from the statistical

analysis of the network, and 2, most identified protein

clusters have unique biological function and are not

entangled with other clusters as seen in previous studies.

The details of this sparsification clustering of MPs can be

found in Table SI of the supporting information. In Fig-

ure 4, we showed a visualization of MP clusters with

Dt = 1, generated by Cytoscape using the organic layout.

In total, there are 111 clusters and 93 isolated nodes. On

the whole, for the unsupervised sparsification clustering

of MP chains, the average intra-cluster sequence similar-

ity is 0.85 and the average intercluster similarity is 0.02.

Two basic types of cluster structure are observed in Fig-

ure 4, including a globular structure and an extended

structure. To distinguish these two structure types, we

defined the cluster connectivity as the number of dis-

played edges divided by the number of node pairs. A

cluster is considered to be globular if its connectivity is

greater than 0.85, and extended if its connectivity is less

than 0.70. For those clusters whose members are highly

similar to each other (for example, FAB, GPCR, potas-

sium/sodium channel, porin, and bacterial rhodopsin),

they tend to form a globular structure; and for clusters

whose members are only similar to a few neighbors (for

example, cytochrome C and cytochrome C oxidase), they

tend to form an extended structure. Some clusters have a

mixed structure of both types. For clusters consisting of

at least 6 nodes, the average intra-cluster sequence simi-

larity is 0.88 6 0.08 for globular structures, and is

0.55 6 0.08 for extended structures. For the largest ten

clusters predicted by the sparsification clustering, globu-

lar clusters (I, II, III, IV, V, VIII, IX, and X) are consist-

ent with predictions from the second level MSC, as

shown in Figure 3.

In Supporting Information Table SIV, we examined

the sequence–structure–function relationship for the larg-

est 5 clusters from the unsupervised sparsification clus-

tering method. The largest cluster is composed of 43

antibody Fab fragments, and its average intracluster

sequence similarity is 0.97. Cluster II consists of 24

GPCRs, and the average intracluster sequence similarity

is 0.91. Cluster III consists of 19 potassium channels and

the average intracluster similarity is 0.78. Cluster IV con-

tains 18 ATP-binding cassettes of ABC transporters, and

the average intracluster similarity is 0.96. All these four

clusters have 100% functional consistency and high

Table III
Comparison of Clustering Validity (Intra-/Intercluster Similarity) of the

1st Level MSC, MCL, K-means, and HC

Clustering method

Intra-/intercluster similarity

Sequence Tertiary structure

MSC 0.89/0.02 0.71/0.23
MCL 0.60/0.02 0.50/0.23
K-means 0.37/0.03 0.45/0.23
HC 0.89/0.02 0.67/0.23
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intracluster sequence similarity. Their structures are

mainly globular. Cluster V has 18 members and only 15

of them are cytochrome C oxidases. Unlike the other

four clusters, this cluster has a mixed globular/extended

structure, and thus a lower intracluster sequence similar-

ity and consistency. The above clustering results validate

the predicted characteristic threshold distance Dt for the

SSN of MPs.

To further study the relationship between sequence

and tertiary structure of MPs, in Figure 5, we displayed

the tertiary structure similarity matrix of MPs in which

network nodes were ordered according to the 1st level

MSC sequence clustering (A) or the unsupervised sparsi-

fication sequence clustering (B). On these depictions,

each matrix element is the tertiary structure similarity

(TM score) between two protein chains with a grayscale

bar shown on the top. For properly rearranged tertiary

structure similarity matrices, the similarity is high in

regions near the diagonal, and is low otherwise. The

apparent block diagonalization patterns in Figure 5 sug-

gest a strong correlation between sequence and tertiary

structure for MPs. Observed off-diagonal signals in Fig-

ure 5 indicate similar tertiary structures between proteins

in related clusters. For example, in Figure 5(A), the larg-

est cluster and clusters 9, 149, 153, and 156 seem to have

similar structures. Chains in these five clusters are all

FAB and these clusters merge together in 2nd level MSC

and in the unsupervised sparsification clustering. In

addition, clusters 2, 7, 69, 71, and 141 also have similar

structures. Clusters 2, 69, and 141 are GPCRs and clus-

ters 7 and 71 are bacterial rhodopsins. Although GPCRs

and bacterial rhodopsins are not homologous in

sequence, they both have 7-transmembrane helix tertiary

structures. To quantify similarity of sets of clustering, we

calculated their similarity measure as defined in the

“Methods” section. The similarity measure is 0.71

between 1st level MSC sequence clustering and sparsifica-

tion clustering, 0.64 between 1st level MSC sequence

Figure 4
Cytoscape visualization of 111 clusters in the SSN of MPs generated by using the unsupervised sparsification of its distance matrix with Dt = 1.
For the largest ten clusters, globular clusters (I, II, III, IV, V, VIII, IX, and X) are consistent with the second level MSC groups, as shown in Figure 4.

Only edges of distance less than Dt are displayed. The color code of nodes is the same as that in Figure 2. Isolated nodes are not shown. [Color fig-
ure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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clustering and 1st level MSC tertiary structure clustering,

and 0.50 between sparsification clustering and 1st

level MSC tertiary structure clustering. Note that the

similarity measure is only 0.32 between two random

assignments of 682 nodes into 156 clusters and 111

clusters.

There exist many applications of this study. It is con-

venient to detect confusing annotations in existing data-

bases. For example, 3m73-A is a voltage-dependent

anion channel (VDAC) in the Pfam description and

uncharacterized in the GO molecular function, while

3emn-X is a eukaryotic porin in the Pfam description

and has VDAC activity in the GO molecular function.

Our results showed these two chains have a long

sequence distance (7.7) and a low tertiary structure simi-

larity (TM score = 0.27), and belong to different MSC

clusters. In the literature, 3m73-A is a SLAC1 anion

channel that contains ten transmembrane helices and is

weakly voltage-dependent, and differs radically from

VDACs (such as 3emn-X) from mitochondrial outer

membranes that have a porin-like b-barrel struc-

ture.42,43 Another application is the annotation of pre-

viously uncharacterized protein chains, as denoted in

Supporting Information Table SI in red color. For

instance, in Figure 4, the protein chain 1jb0-K in cluster

29 is uncharacterized in PDB. Since this cluster has a

globular structure, it is very likely that 1jb0-K shares the

same function as a CBP. To examine this prediction, we

compared this protein chain with 37643 structures in

PDB and the most similar structure found was 2wsc-G, a

CBP in the photosystem I reaction center, with a Z score

4.0 and TM score 0.98. All other structures have a Z

score less than 2.0.44 Furthermore, we conducted a test

on the functional identification for tested protein chains

based on the sequence information of hub proteins. As

shown in Table IV, seven additional protein chains were

randomly selected from the UniProt database. For the

first six UniProt IDs, their function can be immediately

identified by their sequence similarity with hub proteins.

For the UniProt ID P04840, its GO molecular functions

include “Porin” (UniProtKB-KW annotation) and

“Voltage-gated anion channel” (inferred from direct

assay45,46). Our calculations showed that its sequence

distance is 19.54 to the chain 3szd-A (identified as a

Porin), and is 0.06 to the chain 3emn-X (identified as

VDAC). VDACs are eukaryotic porins located on the

Figure 5
Tertiary structure similarity matrices of MPs, ordered according to their

sequence clustering using MSC (A) or the unsupervised sparsification
(B). Bar shows the level of similarity in tertiary structure between two

MPs with a grayscale from white (0) to black (1). Note that the similar-

ity is very low in the diagonal block for TM chains at the upper right
corner, which are isolated nodes in our clustering results.

Table IV
Functional Identification of Test Protein Chains by Their Sequence Similarity to Hub Proteins

UniProt ID Molecular function Hub ID Hub function E value di;j

A2NYU9 FAB heavy chain 3pjs-B FAB heavy chain 1.4E223 0.048
P35412 GPCR 4dkl-A GPCR 6.2E203 0.046
Q10185 ABC transporter 3d31-A ABC transporter 2.5E210 0.032
O14520 Aquaporin 3ne2-A Aquaporin 3.5E209 0.016
Q6I9B6 Potassium channel 3ldc-A Potassium channel 8.9E204 0.042
Q18DH8 Bacteriorhodopsin 1uaz-A Bacterial rhodopsins 5.7E258 0.033
P04840 Porin 3szd-A Porin 3.0E 1 01 19.538

Voltage-gated anion channel 3emn-X Voltage-dependent anion-selective channel 6.5E225 0.056
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outer mitochondrial membrane, but their sequences are

rather different from sequences of porins located on the

outer membrane of gram-negative and -positive bacteria.

For porins in the MSC cluster 3, their average sequence

distance to 3emn-X and other 43 VDACs randomly

selected from Uniport is greater than 90, suggesting a

possible convergent evolution between VDACs and bacte-

rial porins. Our annotation of this protein chain as a

VDAC is consistent with its UniProt classification based

on the direct assay.

The above examples are only for testing the validity of

our automated clustering methods for well investigated

MPs, and to reproduce known results that are consistent

with the literature. Our clustering methods could be par-

ticularly useful if the data set consisted of a single super-

family in which all members are evolutionarily related.

Using these methods to construct a series of nested net-

works at different distance thresholds could be useful,

because the appropriate distance threshold for separating

clusters into groups of proteins that have the same func-

tion will be different for different superfamilies.

CONCLUSIONS

The complexity of biological networks surges as enor-

mous experimental data are collected. These biological

data are intrinsically variable, noisy, and sometimes impre-

cise. It is desirable to have improved techniques for the

integration and analyses of data arising from different

sources, as well as for visualization to understand a wide

range of complex networks. In biological networks, this

can help identify similar biological entities, like proteins

that are homologous in different organisms or that belong

to the same complex and genes that are co-expressed. Our

proposed clustering methods in this study demonstrated

an efficient and convenient approach to identify a general

sequence pattern for a group of structure/function related

proteins, which could be useful in deriving structural and

functional information for novel protein sequences. These

methods also offer a panoramic view of protein similarity

networks, and allow researchers to trace the relationship

between proteins within the same cluster or in neighboring

clusters. They could be used as an automated means for

classifying proteome or genome databases, which is under

our current investigation.
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