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ABSTRACT: Research in the recent decade has demonstrated the
usefulness of protein network knowledge in furthering the study of
molecular evolution of proteins, understanding the robustness of
cells to perturbation, and annotating new protein functions. In this
study, we aimed to provide a general clustering approach to visualize
the sequence−structure−function relationship of protein networks,
and investigate possible causes for inconsistency in the protein
classifications based on sequences, structures, and functions. Such
visualization of protein networks could facilitate our understanding
of the overall relationship among proteins and help researchers
comprehend various protein databases. As a demonstration, we
clustered 1437 enzymes by their sequences and structures using the
minimum span clustering (MSC) method. The general structure of
this protein network was delineated at two clustering resolutions, and the second level MSC clustering was found to be highly
similar to existing enzyme classifications. The clustering of these enzymes based on sequence, structure, and function information
is consistent with each other. For proteases, the Jaccard’s similarity coefficient is 0.86 between sequence and function
classifications, 0.82 between sequence and structure classifications, and 0.78 between structure and function classifications. From
our clustering results, we discussed possible examples of divergent evolution and convergent evolution of enzymes. Our
clustering approach provides a panoramic view of the sequence−structure−function network of proteins, helps visualize the
relation between related proteins intuitively, and is useful in predicting the structure and function of newly determined protein
sequences.
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1. INTRODUCTION

With the explosive number of newly discovered protein
sequences deposited into databases in the postgenome era, it
has become a challenging task to determine their structures and
to characterize their functions efficiently for these protein
sequences. Moreover, to reach a tight control of cellular
processes, proteins often act in association with other proteins
in a dynamic way.1 Therefore, it is desirable to develop
powerful methods for the study of protein networks.
Proteases, kinases, and phosphatases play essential roles in

various biological and pathological processes.2 Proteases
encompass 50% industrially used enzymes.3 They are involved
in general metabolism through protein modification, such as
food protein digestion, tissue protein mobilization, and
zymogen processing, as well as cellular metabolism by
proteasomes, which are large protease complexes that degrade
unneeded or damaged proteins as a major mechanism for
cellular regulation.4 Unlike proteases performing irreversible
proteolysis, kinases phosphorylate proteins and phosphatases
dephosphorylate proteins reversibly. Phosphorylation or
dephosphorylation results in a change in the structure of
modified proteins, causing them to become activated or
deactivated. Through the combined action of kinases and

phosphatases, the activity of an enzyme can be reversibly
altered.5 Many intracellular or pericellular proteases are
regulated by phosphorylation or dephosphorylation. For the
phosphorylation and dephosphorylation of enzymes to serve a
regulatory function, these two processes must in turn to be
regulated by controlling kinases and phosphatases.
It is now recognized that, beyond nonspecific degradative

functions, proteases also carry out highly selective cleavage of
specific substrates, which regulates the activity of many
proteins, modulates protein−protein interactions, creates new
bioactive molecules, and contributes to the processing of
cellular regulation. So far, more than 125 examples of kinases
(including all the major branches of the kinome) that undergo
regulated processing by one or more proteases have been
observed, suggesting frequent direct interactions between
proteases and kinases/phosphatases.2d Such bidirectional
protease−kinase/phosphatase interactions play important
roles in many cellular processes, such as apoptosis, trans-
membrane signaling, and cell migration. An example for the
protease−kinase interplay in cell proliferation is demonstrated
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by the experimental finding that proteolysis drives cell cycle
progression by regulating the activity of cyclin-dependent
kinases.6 Dysregulation of protease-kinase/phosphatase inter-
actions is relevant in various stages of cancer progression.
Therefore, understanding the interplay between proteases,
kinases, and phosphatases will offer new opportunities for
cancer treatments, and has important clinical applications.
One easy-to-use technique to analyze diverse protein

databases is the construction of protein similarity networks
(PSNs), in which the interrelationships between proteins are
described as a collection of independent pairwise alignments
between sequences and structures. By incorporating function-
related information, this technique provides a fast and easy way
to compute the framework for intuitively observing the
sequence−structure−function relationship among a large set
of evolutionarily related proteins.7 Several recent investigations
have utilized PSNs to extract useful bioinformatics information
for specific enzyme families, such as the bacterial protein-
tyrosine kinase family,8 the polymerase and histidinol
phosphatase family,9 and the C25 cysteine protease family.10

Nevertheless, a panoramic view of the combined protease/
kinase/phosphatase network is desirable.
It is a common practice to construct PSNs using sequence

homology.7a,8,11 However, we are aware of three issues in using
a single E value (−log10 E) from BLAST (Basic Local
Alignment Search Tool) as the similarity measure to cluster
protein sequences. First, the clustering of protein sequences
often relies on an artificial threshold E value, and the threshold
is different for different protein networks. Second, the range of
−log10 E is between −∞ and∞ and its value is larger for closer
pairs, which is not suitable to define a distance measure for
network graphing. Third, although the consistency between
structure similarity and this local homology measure is
acceptable, there are considerable exceptions (as shown in
Table S1) that will be further discussed in the Results and
Discussion.
The aims of the present work are to construct a general

approach for clustering protein sequences/structures and
visualizing the relationship among proteins. In this study, new
distance measures of protein sequence/structure similarity were
proposed for clustering and visualizing protein networks.
Further, we combined the minimum span clustering (MSC)12

and the minimum spanning tree (MST)13 methods to visualize
the sequence−structure−function relationship of enzymes at
two MSC resolutions. The clustering accuracy of MSC was
previously shown to outperform hierarchical clustering (HC),
Markov clustering (MCL), K-means, and affinity propagation
(AP) for membrane proteins.14 The MSC classifications based
on sequence/structure information on enzymes were compared
with their functional classifications in existing databases. For
proteases considered in this study, they belong to 67 MEROPS
families and are divided into 72 clusters in the second level
MSC. The Jaccard’s similarity between these two classifications
is 0.86, which is considerably higher than the maximum value of
0.53 between MEROPS and various MCL classifications.
Finally, we demonstrated the applicability of our method in
predicting the structure and function of newly determined
sequences.

2. METHODS

2.1. Data set preparation

In this study, the sequences and structures of proteases, kinases,
and phosphatases were downloaded from the protein data bank
(PDB). These protein sequences were chosen based on the
Enzyme Commission’s (EC) classification of enzymes15 and
the MEROPS classification of proteases.16 As this is our first
attempt to cluster the network of proteases, kinases, and
phosphatases and to visualize their network structure using
MSC and MST, we limited our data set to those nonredundant
proteins with high quality structure. These sequences were
sifted with the protein sequence culling server, PISCES,17 by
criteria of sequence length (between 40 and 10000), sequence
identity (pairwise sequence identity less than 95%) and
structural quality (X-ray crystal resolution better than 3 Å
and the traditional crystallographic R-factor better than 0.3).
The sifted data set contains 536 proteases, 882 kinases, and 199
phosphatases from 183 organisms, among which 40% of
kinases, 25% of proteases, and 26% of phosphatases are from
Homo sapiens. To avoid overrepresentation of human kinases
(only about 7% of kinases in the database KinBase are human
kinases), we kept the percentage of human kinases to 25% by
randomly removing 180 human kinases from our data set. In
total, 536 proteases, 702 kinases, and 199 phosphatases were
considered in this study, and each enzyme was represented by a
single chain. Detailed information regarding enzyme sequences
in our data set is available in the Supporting Information Table
S2. An additional set of 4464 protease sequences were selected
randomly from Uniprot to generalize the test of MSC on
clustering large protein networks. In addition, we randomly
selected 300 enzyme sequences from Uniprot to test the
applicability of our method in functional prediction for novel
protein sequences.

2.2. Calculating the distance/similarity matrix

The BLAST E value, a parameter describing the number of hits
one expected to see just by chance when searching the database
of a particular size,7a,11a,18 was computed using the general
scoring matrix BLOSUM62 with default parameters. Since a
lower E value infers a more significant match, the symmetrized
similarity between sequences i and j is expressed as

= −s ei j
E E

,
i j j i, , . The similarity pattern of sequence i in the

data set is denoted as ⇀si = {si,j}, j = 1, ..., 1437. We further
define the overall similarity between sequences i and j as the
cosine measure of their similarity patterns , i .e . ,
̃ ≡ ⇀·⇀ |⇀||⇀|s s s s s/i j i j i j, . In general, our overall sequence similarity
measure is similar to the neighborhood correlation, which also
scores the similarity of two sequences by including all sequence
pairs but is defined to be the correlation coefficient of their
neighborhoods.7b Finally, we define the distance between
sequences i and j in the distance matrix {di,j} of our data set as

= − ̃d sln( )i j i j, , (1)

This defined sequence distance is mainly contributed from
those small E value pairs in the overall sequence similarity
pattern, since large E values have little meaning.
The similarity between the tertiary structures of enzymes was

calculated using TM-align, a protein structure alignment
algorithm based on the TM-score (scaled by the average
length of template proteins).19 More information about TM-
align is available in the Supporting Information. The trans-
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formation between similarity (measured by TM-score) and
distance for tertiary structures was also defined as eq 1.

2.3. Network clustering and visualization

The MSC method was used to cluster the networks of enzyme
sequences or structures from their distance matrix by
minimizing both the average intracluster distance of each
cluster and the overall connected distance of the network.12

The general structure of the enzyme network was visualized
using the MST method to minimize the length sum of all edges
in the tree diagram. The constructed MST diagram is therefore
also a connected tree diagram of MSC clusters. Here we briefly
describe the three steps in the MSC procedure with a flowchart
as shown in Figure 1, and provide an example of implementing
MSC in the Supporting Information.

Step 1. Starting with the N × N distance matrix for a network
of N nodes, we identify the closest neighbor of each node and
record their distances in a list of ascending order. For a network
of N nodes, instead of dealing with a distance matrix of N2

elements, MSC only processes N distances in the list in the next
(clustering) step.
Step 2. The first cluster is constructed by starting from the

shortest node pair, then including additional pairs from the list
in the order of increasing distance. For the added distance, if
one of the two nodes is involved in one of the above
constructed clusters, the size of this cluster increases but the
number of clusters remains the same. If both nodes of the
distance are not involved in the above constructed clusters, a
new cluster is identified and the number of clusters increases.
All clusters of the network are found when all distances in the
list are considered. Since several clusters contain outliers that
are remotely related to most cluster members, we further
calculate the threshold distance Dt (as described in the next
paragraph) between clusters and truncate all links longer than
Dt. The identified clusters after truncation in the first run are

referred as the first level clustering, which has the highest
resolution.
Step 3. Clusters constructed in step 2 are considered as

renormalized nodes, and the average distance matrix of these
clusters is calculated for all intercluster node pairs between two
clusters. The network consisting of these renormalized
components is further clustered by steps 1 and 2, and higher
levels of clustering with lower resolutions are constructed.
To determine the threshold distance in step 2, as shown in

Figure 2, we compared the length distribution of edges in the

MST diagram and that in the nontruncated MSC clusters. Both
MST and MSC deal with the minimum span of the network;
MST constructs a connected network of the minimum span,
while MSC constructs a group of minimum spanned subnet-
works. The MSC edge distribution (dotted line) contains only
intracluster edges, while the MST edge distribution (solid line)
contains both intra- and intercluster edges. Thus, the
comparison in the edge distributions (as a function of edge
length) of MST and MSC gives a meaningful threshold
distance (Dt) between clusters. Since our data set contains only
a subset of proteins, outliers may be clustered with other
remotely related sequences, and therefore MSC removes
outliers by truncating links longer than Dt. As shown in the
inset, the difference between MST and MSC edge distributions
gives the length distribution of intercluster edges, which is
vanishing small at sequence distances less than 0.4 but is
significant at sequence distances greater than 0.4. Therefore,
this characteristic sequence distance of 0.4 was set to be the
threshold distance in step 2 for the cluster boundary of the
sequence similarity network of proteases/kinases/phosphatases
in the first level MSC. The comparison of our clustering results
on various values of Dt in Figure S1 suggests a drastic change
for Dt less than 0.3 due to the breaking of a significant amount
of intracluster links.

2.4. Similarity measure for sets of clustering results

Consider two sets of clustering results, A = {A1, A2, ..., Am} and
B = {B1, B2, ..., Bn}, of the same data set. The similarity matrix
of A and B can be expressed as

Figure 1. Flowchart of the MSC network clustering algorithm.

Figure 2. Statistical distributions of edge lengths in the MST diagram
and in the first level MSC clusters (untruncated). The inset shows the
relative difference of these two distributions, which gives the length
distribution of intercluster edges.

Journal of Proteome Research Article

DOI: 10.1021/acs.jproteome.5b01031
J. Proteome Res. 2016, 15, 2123−2131

2125

http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.5b01031/suppl_file/pr5b01031_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.5b01031/suppl_file/pr5b01031_si_001.pdf
http://dx.doi.org/10.1021/acs.jproteome.5b01031
http://pubsdc3.acs.org/action/showImage?doi=10.1021/acs.jproteome.5b01031&iName=master.img-001.jpg&w=239&h=269
http://pubsdc3.acs.org/action/showImage?doi=10.1021/acs.jproteome.5b01031&iName=master.img-002.jpg&w=175&h=147


=
⋯

⋮ ⋱ ⋮
⋯

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥

S S

S S
S

n

m mn

A B,

11 1

1 (2)

where the matrix element Sij = p/q is the Jaccard’s similarity
coefficient with p being the size of intersection and q being the
size of the union of cluster sets Ai and Bj. In this study, the
similarity of clustering results A and B is defined as Sim(A, B) =
Σi≤m, j≤nSij/max(m,n), and it has been shown that 0 < Sim(A, B)
≤ 1 and Sim(A, A) = 1.

3. RESULTS AND DISCUSSION

In previous studies, the BLAST E value of protein pairs has
been widely used as the sequence distance in recognizing
remote protein homology for structural and functional
annotations of newly determined proteins, in spite of the
mentioned drawbacks in the Introduction. Here we first discuss
examples that a simple E value falsely predicts the similarity
between proteins by comparing their TM scores, and justify di,j
(defined in section 2.2) as a better distance measure. The TM
score is a metric for measuring the structural similarity of two
proteins; a score below 0.17 corresponds to randomly chosen
unrelated proteins, while a score above 0.5 assumes generally
the same fold in SCOP/CATH.19 Overall, by sifting protein
pairs in our data set, 87% (147/169) pairs have a TM score
greater than 0.5 for the criteria of di,j < 0.16 and E > 1.0 (small
di,j but large E value), while only 27% (4/15) pairs have a score
larger than 0.5 for di,j > 0.92 (si,j < 0.4) and E < 10−10 (large di,j
but small E value), indicating a higher consistency between
structural similarity and small di,j values. Table S1 selectively
lists the sequence, structural, and functional properties of
protein pairs having inconsistent dij and E values. Here the
structural similarity of a protein pair is evaluated by the TM
score and the posterior probability to find them in the same
fold family using the Fold and Topology definition from
SCOP.20 In Figure S2, the structural similarity of these protein
pairs is further demonstrated by the overlapping structures
shown in (a) for kinases 3g2f-A (green) and 2iwi-A (red), in
(b) for phosphatases 4n0g-A (green) and 1txo-A (red), and in
(c) for proteases 1hne-E (green) and 1dle-A (red). In addition,
without introducing any free parameter for clustering and
visualizing the protein networks, MSC clustering results are
shown to be consistent with the classification of existing
databases.

3.1. Sequence−structure relationship of enzymes

The clustering of enzymes’ similarity networks was carried out
by MSC, which decomposed the sequence network into 267
clusters and 228 outliers, as listed in Table S2. Based on the EC
numbers of these enzymes, the MSC clusters contain 128
kinase clusters, 42 phosphatase clusters, and 97 protease
clusters. To verify the validity of our clustering result, we first
investigated the sequence−structure relationship of the
predicted MSC clusters. Protein structure similarity is often
measured by TM score, and it has been found that the posterior
probability from various data sets has a similar rapid phase
transition at a TM score about 0.5, suggesting that protein pairs
with a TM-score > 0.5 are mostly in the same fold while those
with a TM-score < 0.5 are mainly not in the same fold.21 Figure
S3 shows the cumulative distributions of TM scores for
intracluster protein pairs. The cumulative distributions sharply
increase at a TM-score = 0.5 for all three enzyme categories.

The percentage of intracluster protein pairs with TM-score >
0.5 is 95%, 97%, and 98% for proteases, kinases, and
phosphatases, respectively. Alternatively, the posterior proba-
bility of intracluster protein pairs to be in the same fold family
is 95.6%, 95.2%, and 97.9% for proteases, kinases, and
phosphatases, respectively.
In Figure 3, we displayed the tertiary structure similarity

matrix of 1437 enzymes, in which network nodes were ordered

according to the first level MSC sequence clustering (outliers,
kinases, phosphatase, and proteases in descending order). In
this depiction, each matrix element is the TM-score between
two sequences. The apparent block diagonalization pattern in
Figure 3 suggests a strong correlation between the sequence
and tertiary structure of three enzyme categories. The observed
off-diagonal signals in Figure 3 indicate similar tertiary
structures between proteins in related clusters, and these
clusters merge together in the second level MSC. For example,
as listed in Table S2, clusters 2, 3, 5, 16, 17, 29, 30, 32, 35, 36,
39, 54, 65, 70, and 73 are in the PA clan of MEROPS, and the
corresponding off-diagonal elements have a high TM score.
Since the classification of proteases into clans in MEROPS is
mainly based on the similarity of their tertiary structures, this
observation suggests a strong sequence−structure relationship
of enzymes. Although recent work demonstrates that only three
mutations are enough to induce a significantly different folding
structure for some proteins, it is found in our analysis that
natural proteins generally conserve the sequence−structure
relationship. This result suggests that Paracelsus protein pairs
are not seen to occur naturally and that comparative modeling
of proteins is still a valid approach in predicting protein
structure.22 Similar patterns are also observed in Figure S4,
whose matrix elements display the posterior probability of
protein pairs to be in the same fold family.
3.2. Sequence−function relationship of enzymes

To further demonstrate the validity of the MSC results, we
investigated the sequence−function relationship of predicted
clusters. Figure 4 shows the network structure of 267 enzyme
clusters, as visualized by their MST diagrams. In Figure 4(a),
the function of each enzyme sequence was colored according to
its EC number. Protein sequences in the three enzyme

Figure 3. Tertiary structure similarity matrix of 1437 enzymes, ordered
according to the first level sequence-based MSC results. The bar shows
the TM score between two sequences with a grayscale from white (0)
to black (1). The structure similarity is very low in the diagonal block
for sequences at the upper right corner, which are isolated nodes in
our clustering result.
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categories were represented by different shapes: circles for
proteases, squares for kinases, and triangles for phosphatases. In

general, the MSC result of 1437 enzymes in our data set is
consistent with their functional classification of EC, as can be

Figure 4.MST diagrams of enzyme clusters from the first level MSC. Each node is colored according to its function specified in the EC classification
(267 clusters) (a) or in the MEROPS classification (97 protease clusters) (b), as described in the legend. These clusters are arranged from left to
right in descending order of cluster size. We labeled the PDB ID for hubs with more than 5 connections in (a). In (b), we labeled the associated clan
for the largest 34 clusters. Isolated nodes are not shown. The red circle in cluster 127 of (a) points out an example of mixing enzymes of different
categories.
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seen from the colors and shapes of nodes in the predicted MSC
clusters. Only ten clusters mix nodes of different enzyme
categories, such as 4jeg-A, the Src Homology 2 (SH2) domain
of a protein tyrosine phosphatase, and 3eaz-A, the SH2 domain
of a protein tyrosine kinase, in cluster 127. Such inconsistency
results from the fact that the sequence of few enzyme chains in
PDB is just a fragment, which disappears after removing
fragment sequences. In general, our results agree well with the
EC functional classification of enzymes. Several examples of
divergent evolution were observed in Figure 4. For the
divergent evolution observed in cluster 99, its hub (3hyh-A)
and three neighboring nodes (3poz-A, 3ugc-A, and 4pdp-A) are
highly similar in sequence (average distance 0.004, and E value
ranging from 10−41 to 10−12) and structure (average TM score
0.76, and 99% average probability to be in the same fold
family). The superposition of their tertiary structures shown in
Figure 5 suggests that these four kinase domains basically have

the same geometrical features in three-dimensional space. All
these kinase folds have a small N-terminal lobe and a large C-
terminal lobe. The small lobe consists of five-stranded β-sheets
and a helix. The large lobe is composed of 6 α-helices and a few
short 310 helices. Nevertheless, their functions are different
from each other (EC numbers 2.7.11.1, 2.7.10.1, 2.7.10.2, and
2.7.12.1). For example, 3hyh-A is the protein kinase domain of
yeast AMP-activated protein kinase Snf1, which is a master
metabolic regulator for several intracellular systems, including
the cellular uptake of glucose, the β-oxidation of fatty acids, and
the biogenesis of glucose transporter type 4 and mitochon-
dria.23 It is an important target for drug development against
diabetes, obesity, and other diseases. On the other hand, 3poz-
A is the kinase domain of human epidermal growth factor 2
(HER2), which plays a role in the regulation of cell
proliferation, differentiation, and migration.24 Aberrant signal-
ing of HER2 promotes cell proliferation and opposes apoptosis,
and therefore a tight regulation of HER2 is helpful to prevent
uncontrolled cell growth from occurring. Both protein kinases
are activated through an allosteric mechanism.25 More
information related to possible examples of divergent evolution
of enzymes is available in Table S3.
In addition to the EC classification of enzymes, another

known enzyme database is MEROPS, which classifies proteases
in a hierarchical manner and manually assigns proteins to
families and clans. In Figure 4(b), we colored nodes in the
protease clusters (MSC clusters 1−97) according to the

MEROPS classification. Six colors were used to represent the
six catalytic types of proteases in MEROPS, including aspartic
peptidases, asparagine peptide lyases, cysteine peptidases,
metallo peptidases, serine peptidases, and threonine peptidases.
Moreover, for the largest 34 clusters of proteases, their
associated clan was also labeled if all of their members belong
to the same clan. Among these clusters, two contain mixed
enzymes, two contain proteases of mixed catalytic types, and
one contains proteases of mixed clans. It is found that our MSC
result of proteases seems to be more consistent with the
MEROPS classification than the EC classification. However, as
shown in clusters 1−97 in Figure 4(a), most cases of color
inconsistency contain the color purple (proteases of unknown
EC number). We believe that both EC and MEROPS are
equally good at classification if the EC numbers of those
proteases colored in purple were provided.
We have used the MSC method to cluster protease networks

of size ranging from 536 to 5000 sequences in order to further
validate the applicability of MSC on clustering large protein
networks. The threshold distance of these protease networks is
found to be around 0.5. Since the clustering result is not
sensitive to a small change of the threshold distance as
suggested by Figure S1, the threshold distance is set to be 0.5
for protease networks of various sizes. In general, we found that
the value of Dt is not sensitive to network size, but differs for
different systems. For every intracluster edge predicted by
MSC, we checked if both proteases linked by the edge also
belong to the same protease family in MEROPS, and calculated
the precision, recall, and F1-score of the first level MSC
classifications as shown in Table 1. As defined in classification

tasks, precision = TP/(TP + FP), recall = TP/(TP + FN), and
F1-score = 2·precision·recall/(precision + recall), where TP, FP,
and FN stand for true positive, false positive, and false negative,
respectively. The results in Table 1 suggest that MSC is
applicable to networks of various sizes and the F1-score of MSC
classification increases with network size due to the improved
prediction precision for large networks.
To further compare our clustering result of proteases with

the MEROPS classification, we attempted to find a suitable
MSC resolution that is comparable to the family classification
of MEROPS. Since MEROPS families usually consist of several
first level MSC clusters, the MSC resolution was set to the
second level for a direct comparison. The MST diagram in
Figure 6 delineates the general network structure of proteases,
in which a node represents a first level MSC cluster. The
sequence distance between two clusters is the average distance
of their cluster members. In the second level MSC, these nodes
were furthered clustered into groups, and the threshold
distance was found to be 0.3. Figure 6 clearly shows a high
consistency between the classifications of MEROPS (67

Figure 5. Superposition of the tertiary structures of kinases involved in
an example of divergent evolution: 3hyh-A (hub, black), 3poz-A
(blue), 3ugc-A (red), and 4pdp-A (green), as shown in cluster 99 of
Figure 4(a).

Table 1. Precision, Recall, and F1-Score of MSC
Classifications of Protease Networks of Size Ranging from
536 to 5000 Sequences

network size precision recall F1-score

536 0.958 0.988 0.973
1000 0.969 0.980 0.974
2000 0.978 0.978 0.978
3000 0.980 0.980 0.980
4000 0.981 0.983 0.982
5000 0.981 0.987 0.984
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families) and the second level MSC (72 groups). The Jaccard’s
similarity coefficient is 0.86 for these two classifications, which
is considerably higher than the maximum value of Jaccard’s
similarity between the MEROPS’ classification and the
sequence classifications from various other clustering algo-
rithms (0.53 for MCL, 0.78 for HC, and 0.54 for K-means as
described in the Supporting Information). For comparison, the
average similarity coefficient is 0.31 for ten random assignments
of 67 protease clusters with the MEROPS classification. As
shown in Table S4, there is some discrepancy between the
second level MSC and MEROPS classifications in MEROPS
families S01, M12, T01, and A02. For example, MSC clusters
36 and 70 are both in the S01 family of MEROPS, but they are
in different MSC groups. The MSC clustering seems more
reasonable than MEROPS considering their low average TM
score of 0.20 (0.8% average probability to be in the same fold
family) and a large average sequence distance of 19.8. It also
seems reasonable that MSC clusters 59 and 82 are in different
MEROPS families but are in the same MSC group, as they have
a high average TM score of 0.65 (92% average probability to be
in the same fold family) and a small average sequence distance
of 0.26. The above comparison demonstrates that the sequence
network and functional network of proteases correlate strongly,
but are slightly different.
In the MEROPS classification of proteases, a family is a set of

homologous proteases with a significant similarity in their
functions, and a clan contains one or more families that show
evolutionary evidence by their similar tertiary structures. For
example, proteases in the clan PA exhibit a double β-barrel fold,
proteases in the clan SB have a parallel β sheet structure, and
proteases in the clan SC display an α,β-hydrolase fold. It was
observed that proteases in these three clans have the same
catalytic triad (serine, histidine, and aspartic acid) at their active
site in spite of the dissimilarity in their sequences and
structures.26 Such an observation demonstrates a possible
convergent evolution in proteases. A recent study systematically
evaluated simple active site features from all serine, cysteine,
and threonine proteases of independent lineage, and identified
several convergently related cysteine proteases (e.g., 1euv-A of
MSC cluster 23 and 1g2i-A of MSC cluster 63) and serine
proteases (e.g., 2ic8-A of MSC cluster 74 and 1zrs-A of MSC
cluster 90).26b This result is consistent with our clustering in
Figure 6, which shows a large sequence difference for clusters
23 and 63, as well as clusters 74 and 90. To further study the

convergent evolution of proteases, we searched for proteases
with the same function but homologically different sequences.
For simplicity, a protease’s function was characterized by its EC
number, as the fourth EC digit describes the specificity of the
enzyme reaction by defining the specific reaction substrate/
product or the cofactors used. In Table S5, we showed the
convergent evolution observed for serine and cysteine
proteases. For example, in MSC clusters 21, 33, and 89, serine
proteases of EC number 3.4.16.4 have the same function, but
their average values in sequence distance, E value, and TM
score are respectively 23.5, 440.5, and 0.49. In MSC clusters 20,
40, and 57, cysteine proteases of EC number 3.4.19.12 have an
average value of 55.1, 3064.5, and 0.25 in the sequence
distance, E value, and TM score. Figure 7 schematically shows

the superposition of the tertiary structures of 1xp4-A, 3pte-A,
and 1w79-A (a) as well as that of 3mhs-A, 3c0r-A, and 1cmx-A
(b). Although these proteins have very low sequence homology
and belong to different sequence clusters, their core structures
(the average TM score is 0.37 for entire proteins and is 0.56 for
the overlapping cores in Figure 7) and functions are similar to
each other. Since these nonhomologous sequences fold to form
similar core structures and functions, we considered them as
examples of convergent evolution. An enlargement of the core
area of Figure 7(a) is shown in Figure S5. In Figure S6, we
show the structural alignment of protease sequences involved in
these two examples of convergent evolution. Aligned residues
are located in the core area. Although these protease sequences
are very different from each other and their sequence
alignments are poor, the structural similarity in their core
area is crucial for their functional similarity.
3.3. Sequence−structure−function relationship of
enzymes

Our clustering results have shown high similarity between the
second level MSC and existing databases for enzymes. Here we
examined the second level MSC results of proteases to further
delineate their sequence−structure−function relationship. The
structure distance was calculated using the TM-score and eq 1.
Figure S7 shows the comparison of the MEROPS classification
with the MST diagram of 110 clusters of protease structures in

Figure 6. MST diagram of protease clusters. Each node represents a
cluster in the 1st level MSC, and is colored as in Figure 4(b). The 2nd
level MSC clusters these nodes into groups, and the intragroup and
intergroup links are represented by solid lines and dot-dashed lines,
respectively. Dashed circles enclose clusters in the same MEROPS
family (as denoted).

Figure 7. Superposition of the tertiary structures of proteases involved
in two examples of convergent evolution: (a) 1xp4-A, 3pte-A, and
1w79-A, and (b) 3mhs-A, 3c0r-A, and 1cmx-A.
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the second level MSC (Dt = 0.3), suggesting a high consistency
(the Jaccard’s similarity coefficient is 0.78) between the
functional and structural classifications. Meanwhile, the
Jaccard’s similarity coefficient is 0.82 between the sequence
and structure classifications and is 0.86 between function and
sequence classifications in the second level MSC. These values
are much larger than 0.3 in the case of random assignments.
The observed strong sequence−structure−function relationship
for proteases provides evidence for the concept for proteins,
“sequence determines structure determines function”, that has
been proposed for many decades.

3.4. Prediction and visualization of proteins’ functions

In the era of genomics, the number of amino-acid sequences
with unknown function grows exponentially. Bioinformatics
tools can be useful in deciphering the role of these novel
sequences in the cell or organism by comparing these
sequences with those of proteins with known structure and
function. To demonstrate the applicability of our method in
this regard, we randomly selected 300 sequences (100
sequences for each enzyme category) from the Uniprot
database (not included in our data set), and predicted their
function by finding out their associated MSC cluster. Since the
distance matrix in eq 1 varies with data sets, we investigated the
test sequences one by one to minimize the perturbation to the
distance matrix. In this test, the precision of functional
prediction, which was calculated based on the functional
categories in Figure 4, is 100% (80/80) for proteases, 97% (89/
92) for kinases, and 91% (67/74) for phosphatases. Among 300
test sequences, 20 proteases, 8 kinases, and 26 phosphatases
were identified as outliers, and their function cannot be
annotated using the present data set. Table S6 shows the
functional prediction of 300 test sequences.
Another application of this study is to provide an interface

for intuitively understanding complex databases. For example, a
simplification of the MEROPS database is presented in Figure
6, and further exploration of a specific clan or family can be
linked to the corresponding clusters in Figure 4(b). The
understanding of a novel sequence in its structure and function
can also be achieved at various resolutions. Currently we are
constructing an interactive web interface for viewing proteases,
which could serve as a complementary tool to the MEROPS
database.

4. CONCLUSION

In this study, we have successfully achieved our aims in
constructing a general approach for clustering proteases,
kinases, and phosphatases and visualizing their sequence−
structure−function relationship. Our results are consistent with
the EC and MEROPS classifications of these enzymes. We
found high consistency between the second level MSC
classifications in sequences/structures with existing functional
classifications of MEROPS and EC. The observed strong
sequence−structure−function relationship for the three
enzyme categories provides some evidence for the proposed
concept for proteins “sequence determines structure deter-
mines function”, and supports the computational approach for
the structure and function prediction of proteins using their
sequence information. From our clustering results, we discussed
possible examples of divergent evolution and convergent
evolution in the network of proteases, kinases, and
phosphatases. Our study not only estimates the consistency
level for the sequence−structure−function relationship of

enzymes, but also points out possible inconsistency due to
convergent/divergent evolutions.
With the exponentially growing number of sequenced

genomes, our method has the advantage of being accurate
and efficient in predicting the structure and function of newly
determined protein sequences. Furthermore, as demonstrated
in this study, a panoramic view of the sequence−structure−
function network of proteins is feasible using the present
approach. We proposed to construct an interactive web
interface for understanding the protein networks intuitively
and exploring the networks at various resolutions.
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