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Abstract. Learning-induced synchronization of a neural network at various developing stages is studied by
computer simulations using a pulse-coupled neural network model in which the neuronal activity is simulated by
a one-dimensional map. Two types of Hebbian plasticity rules are investigated and their differences are compared.
For both models, our simulations show a logarithmic increase in the synchronous firing frequency of the network
with the culturing time of the neural network. This result is consistent with recent experimental observations.
To investigate how to control the synchronization behavior of a neural network after learning, we compare the
occurrence of synchronization for four networks with different designed patterns under the influence of an external
signal. The effect of such a signal on the network activity highly depends on the number of connections between
neurons. We discuss the synaptic plasticity and enhancement effects for a random network after learning at various
developing stages.
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1. Introduction

The functions of the nervous system crucially rely on
the synaptic connections among neurons. Studies on
lower mammals have demonstrated that, in almost all
peripheral and central nervous systems studied so far,
synapses between neurons are established from the
early developmental stages and activity-driven syn-
chronization of neurons may occur during development
and learning (Markram et al., 1998; Ben-Ari, 2001).
It has been shown that immature pyramidal neurons
of the rat hippocampus start to receive sequentially
established synaptic inputs around birth (Tyzio et al.,
1999) and the hippocampal network generates periodic
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synchronized neuronal discharges during the first two
postnatal weeks (Ben-Ari et al., 1989). Such a synchro-
nized activity drives synchronized oscillations of intra-
cellular calcium and provides conditions for Hebbian
plasticity in developing synapses. Recent experimental
advances, including real-time imaging of living neu-
rons, have provided physical insight into the molecular
and cellular processes that guide synaptogenesis in the
developing nervous systems (Engert and Bonhoeffer,
1999; Ahmari et al., 2000; Jontes et al., 2000). Based on
physically modeling experimental observations, com-
puter assisted simulations can be very helpful in un-
derstanding the synchronized activities in a developing
neural network and how the synaptic plasticity of the
network is affected by learning. Furthermore, computer
simulations can be complementary to experiments
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and serve as a useful tool to test various interesting
ideas.

Learning and memory is one primary function of the
neural system, which is crucial in developing behav-
iors to adapt to an ever-changing environment. So far,
our understanding of the physiology of learning and
memory is far from complete. It is now believed that
learning involves synaptic plasticity, that is, changes in
the structure or biochemistry of synapses that alter their
effects on postsynaptic neurons. In particular, previous
studies (Wise, 1996; Reynolds et al., 2001; Packard and
Knowlton, 2002; Schultz et al., 2003) have demon-
strated the involvement of the striatum in numerous
forms of learning and memory. Such an involvement
is likely based on changes in neuronal activity in the
striatum during learning. The increase in task-related
neuronal activity might lead to synaptic changes at
striatal synapses, such as the reinforcement of synaptic
strength due to a Hebbian learning rule. This meso-
scopic mechanism could underlie the learning of stim-
uli that predicts rewards and induces the preparation
of movements. Nevertheless, we still know very lit-
tle about learning and memory at various developing
stages of a neural network.

One of the most complicated neural networks is the
human brain; it consists of one hundred billion neurons
and each neuron has fifty thousand connections to
others. Any attempt to simulate a network with such
an enormous complexity would be almost impossi-
ble. A simpler system for computer simulations is
culture samples of neural networks prepared from
the cerebral cortex of embryonic rats. In this paper,
we attempt to study learning-induced synchronization
of a developing neural network, whose size ranges
from tens to hundreds of neurons. Since we focus on
the robust properties of collective neuronal dynamics
which are not sensitive to details of neurons (Usery
and Reid, 1999; Tresch and Kiehn, 2002; Zhigulin
et al., 2003), we apply a one-dimensional map
with excitable dynamics representing the neuronal
activities of the network, instead of a biological model
of action potential (AP) for nerve cells (Labos, 1986;
Hayakawa and Sawada, 2000). In our model, each
neuron integrates all the inputs from other neurons
and fires whenever the membrane potential reaches
a threshold. The firing dynamics of neurons can
be investigated at various stages of a developing
network. A detailed description of our model is given
in Section 2. The advantage of this model is its capa-
bility to investigate large size neural networks using

reasonable computational efforts. Results from our
simulations are consistent with recent experimental
observations. However several parameters used in this
model rely on experimental measurements and cannot
be calculated directly from a microscopic theory. In
Section 3, we present our results and discussion on the
initiation of synchronization behavior of a developing
neural network as the number of connections between
neurons increases. We show that the time dependence
of the synchronous firing frequency of neural networks
predicted from this model is consistent with that ob-
served in experiments. In addition, synaptic plasticity
and enhancement effects induced by learning are also
investigated for a developing network. Here “learning”
refers to the Hebbian learning of neurons due to an
external signal (described by Eq. (4) or Eq. (5) in
Section 2), and “developing” refers to the wiring and
pruning of the network depending on the activity of
the cells to form specific connections (described by
Eq. (1) in Section 2). Section 4 contains our main
conclusions.

2. Model

We consider the firing dynamics of a developing neu-
ral network of N fixed neurons, which are randomly
grafted on a substrate of size L × L. These neurons are
not connected to each other initially. The development
of the neural network involves with two time scales: At
long time scale (T0, in unit of hours), the network grad-
ually builds up connections between neurons; at short
time scale (τ 0, in unit of 10 milliseconds), neurons
communicate with each other through existing connec-
tions. During our simulations, the network connectivity
is updated every 104 runs of neuronal communications.
The probability of forming a synapse between two
neurons is assumed to have the following power-law
form:

p = k

rα
i j

, (1)

where rij is the distance between neurons i and j. The
coefficient α implies the connection mechanism be-
tween two neurons. The connection between two neu-
rons is random for α = 1, since the connection prob-
ability is inversely proportional to the searching cir-
cumference for the axon. Long-distance connections
are favored for α< 1, while they are disfavored for
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α> 1. In general, the coefficient k would depend on
the level of activity in the network (for example, lo-
cal concentration of neurotrophins) and play roles in
regulating neuronal plasticity. Here, for simplicity, we
assume a constant k for the entire network at all times.
Note that, although we have assumed a simple form of
connection probability between two neurons, the exact
connection probability is not known experimentally
and is probably different for different systems. The
neuronal activity is described by a one-dimensional
iterative map v (t + 1) = f (v (t)) with the following
form (Hayakawa and Sawada, 2000):

f (v) =






0 for v < −1

av for −1 ≤ v < 0.2

av − 0.1 for 0.2 ≤ v < 0.85

c(v − 1) for 0.85 ≤ v

, (2)

where v(t) (in arbitrary unit) is the membrane potential
of neurons at time t. The coefficients a > 0, b > 1,
and 0 < c � 1 are constants and determine the shape
of firing pulses. This map, as shown in Fig. 1(a) has
an unstable fixed point at vu = 0.2, above which the

resting 
potential

Figure 1. A simplified representation of the neuronal activity in-
cluding (a) a piecewise-linear one-dimensional map f(v) and (b) a
comparison of the simulated AP using f(v) (left) and one experimen-
tally recorded AP (right). The coefficients a, b, and c are the slopes
in each segment. The units of the short time scale t and the AP v are
set to be 3 ms and 70 mV respectively in (b).

neuron will fire a single pulse, drop below its resting
potential, and gradually return to normal value. There-
fore this map can generate a realistic AP even though
some biological details are ignored. In Fig. 1(b), we
show a comparison of a computer generated AP us-
ing Eq. (2) (left) with an experimentally recorded one
of CA1 pyramidal cell of rats (right) (Bikson et al.,
2002). Notice that, in our model, the initial membrane
potential must exceed the threshold vu before the neu-
ron can fire an action potential. This threshold has
been observed in many experimental and theoretical
studies, but it is not apparent in the recorded poten-
tial in Fig. 1(b). Following the paper of Hayakawa and
Swada, we choose a = 0.5, b = 1.5, and c = 0.04 in
our simulations.

For a partially connected and externally controlled
neural network, the activity of each neuron is affected
by connected neurons and an external bias. For the i-th
neuron, we express its activity as

vi (t + 1) = f

(

vi (t) +
N∑

j �=i

wi jv j (t − τ ) + ve
i (t)

)

,

(3)

where i and j are the neuron indices, ve
i (t) is the external

bias to the i-th neuron, wij is the synaptic strength from
neuron j to i, and τ is the delay time. For simplicity, a
constant delay time is assumed. In our simulations, a
learning algorithm is also introduced to the neural net-
work. Assuming the spike-timing-dependent synaptic
plasticity (STDP) rule (Markram, 1997; Song et al.,
2000; Bi and Poo, 2001), the change in the synaptic
strength (�wij) due to learning at each time step can
be expressed as the following:

�wi j (�t) =
{

A+ exp(−�t/τ+) �t > 0

−A− exp(�t/τ−) �t < 0
, (4)

where �t is the time of the postsynaptic spike minus
the time of the presynaptic spike. The parameters τ+
and τ− determine the ranges of pre-to-postsynaptic
interspike intervals over which synaptic strengthen-
ing and weakening occur. A+ and A−, which are both
positive, determine the maximum amounts of synap-
tic modification. Alternatively, we also consider a pure
Hebbian plasticity (PHP) rule (Koch, 1999; Hayakawa
and Sawada, 2000), which is expressed as:

�wi j (t) = εvi (t)v j (t − τ ′), (5)
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where τ ′ determines the ranges of pre-to-postsynaptic
interspike intervals. If the firing of postsynaptic cells
lags the firing of presynaptic cells by a time τ ′, the
learning rule in Eq. (5) will lead to a maximal synap-
tic facilitation. Synaptic facilitation decreases if the
firing time difference differs from τ ′ . Synaptic depres-
sion can occur when postsynaptic cell fires shortly be-
fore presynaptic one. Previous experiments (Markram,
1997) have demonstrated that postsynaptic APs are ini-
tiated in the axon and then propagate back into the den-
dritic arbor of neocortical pyramidal neurons, evoking
an activity dependent dendritic Ca2+ influx that could
be a signal to induce modifications at the dendritic
synapses that were active around the time of AP initi-
ation. Therefore the synaptic efficacy can be regulated
depending on the precise timing of postsynaptic APs
relative to excitatory postsynaptic potentials (EPSP).
The characteristic time intervals (τ+ and τ−) for synap-
tic modifications are found to be 17 ms for facilitation
and −34 ms for depression for layer 5 pyramidal neu-
rons in somatosensory cortex (Bi and Poo, 2001). Since
wi j can be positive or negative, both excitatory and in-
hibitory synapses are allowed in our network. This sim-
plification is convenient for simulating large size net-
works, but it is not realistic for neurons and synapses
to switch between excitatory and inhibitory depend-
ing on activity. This problem can be easily remedied
by making two populations of neurons, excitatory and
inhibitory, and adjusting the synaptic strengths within
these populations. In Section 3, a comparison between
results from these two models will be discussed. In
general, the matrix of synaptic strength is asymmetric.
A change in the synaptic strength might result from
remodeling of synapses in both presynaptic loci and
postsynaptic terminals. Saturation of synaptic efficacy
can occur after repeated potentiation, and previous ex-
periments have shown that saturation of hippocampal
LTP impairs spatial learning (Castro et al., 1989; Moser
et al., 1998). In this manuscript, for simplicity, we did
not introduce saturation for the synaptic efficacy since
we study the simplified case that the learning due to the
external signal is turned off before the synaptic efficacy
saturates. We note that several stabilization procedures
can terminate learning either when activity levels reach
a certain threshold level (Nass and Cooper, 1975) or
invoke a bound on synaptic weight strengths (Linsker,
1986). The Hebbian learning rule is believed to highly
correlate with the induction of long-term potentiation
(LTP), which serves as a model for learning and mem-
ory and offers the most direct link from the molecular

to the behavioral levels of analysis. The time evolution
of the neural network follows Eq. (3) as well as Eq. (4)
or Eq. (5) at the short time scale, while the connectivity
of neurons is updated according to Eq. (1) at the time
scale of hours.

3. Results and Discussion

3.1. Synchronous Firing Frequency: Simulations
and Experiments

In Section 2, we have constructed a simple model of
neural networks based on an experimentally observed
Hebbian learning rule. Particularly, our assumptions
on the synaptogenesis and the neuronal activity are
very simplified. Nevertheless we show that simulation
results using such a simple model are consistent with
recent experimental observations (Jia et al., 2004). In
the experiment, neuronal culture samples are prepared
from the cerebral cortex of embryonic days 17 – 18
and observed using a fluorescence microscope. Fir-
ings of the networks are monitored by the intracellular
Ca2+ concentration changes and recorded by an in-
tensified CCD video camera. The time dependence of
the synchronous firing frequency f of the network is
observed to follow a logarithmic form: f = fc + fo

ln(t/tc), where fc is the minimum firing frequency and tc
is a threshold of growing time. In our simulations, 200
neurons are randomly grafted on a square substrate of
size L = 200 (the size of a soma is set to unity). The
initial neuron states are set with an average of 0.4 and a
standard deviation of 0.3. Initially, there is no connec-
tion between neurons. When synapses are formed, the
initial synaptic strength has a zero average and a stan-
dard deviation of 0.04. All neurons are under a 0.1 DC
bias for the learning rule in Eq. (4) or a 0.05 DC bias
for the learning rule in Eq. (5). As shown in Fig. 2, our
simulation results for the synchronous firing frequency
of the network are consistent with experimental obser-
vations (squares). This result demonstrates that the de-
veloping rule in Eq. (1) and the learning rule in Eq. (4)
or Eq. (5) together determine the synchronous firing
frequency of a developing network. Nevertheless, we
note that larger values of α tend to shift simulation
results away from the experimental data if they are
fitted to the same curve. Changing the exponent will
also affect the two characteristic time scales, T0 and
τ 0, when the simulation data are fitted to the experi-
mental results. The short time scale, τ 0, decreases as
the exponent increases. The inset of Fig. 2 shows the
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Figure 2. A comparison of results from our simulations (open triangles: α = 1 and Eq. (5); filled triangles: α = 2 and Eq. (5); open
ovals: α = 0.5 and Eq. (4); open diamonds: α = 1 and Eq. (4); filled diamonds: α = 2 and Eq. (4)) and from experiments (squares) for
the time dependence of the synchronous firing frequency of neural networks. The solid line is the best fit to the experimental data. The
parameter set used is {k = 10−5

, A+ = 10−3, A− = 8 × 10−4, τ = 3τ0, τ+ = τ0, τ− = τ0} for the learning rule in Eq. (4), and is
{k = 10−5, ε = 5 × 10−4, τ = τ0, τ

′ = τ0} for the learning rule in Eq. (5). Here the set of time scales {T0, τ 0} is {0.18 h, 70 ms}, {0.6 h, 63
ms} and {0.6 h, 48 ms}, for α = 0.5, 1, and 2 respectively for the learning rule in Eq. (4), while it is {0.12 h, 500 ms} and {0.6 h, 125 ms}
for α = 1 and 2 respectively for the learning rule in Eq. (5). The inset shows the number of connections among neurons calculated from our
simulations as a function of days in vitro for α = 1.

time dependence of the network connectivity (number
of connections, Nc) for α = 1, which can be fitted by
a logarithmic function in the range of consideration.
Therefore the synchronous firing frequency increases
linearly with the network connectivity. It is then clear
that, as the mean connectivity of the network increases,
the enhanced communications among neurons lead to
an increase in the synchronous firing frequency. This
conclusion is also confirmed by experimentally study-
ing the effect of Mg2+ on the firing frequency and
network connectivity (Jia et al., 2004).

3.2. Synchronous Activity of Neural-Networks
with Different Designs

To further study this model, we consider that initially
40 isolated neurons (N) are grafted on a square
substrate of size L = 200 with random membrane

potentials (vi); the neuronal states vi are chosen to
have an average of 0.2 and a variance of 0.2. We
choose the parameter set {α = 1, k = 5 × 10−4, A+ =
5×10−4, A− = 5.25×10−4, τ = 9τ0, τ+ = 3τ0, τ− =
3τ0, τ− = 3τ0} for the learning rule in Eq. (4) and
{α = 1, k = 5×10−3, ε = 5×10−4, τ=9τ0, τ

′ = 9τ0}
for the learning rule in Eq. (5). The initial synaptic
weight between neurons is set to have a zero average
and a variance of 0.03 (wij = 0 if neurons i and j are
not connected). In addition, a quarter of neurons are
externally biased by a sine wave of period T = 50τ 0

and amplitude A = 0.5 during the first 4000 learning
time steps (TL). We note that oscillations in neural
networks usually serve various physiological functions
(Penttonen et al., 1999; Mikkonen et al., 2002), which
is why a simpler DC drive is not utilized. After this
learning phase, the network enters a so-called recall
phase, in which the external signal is turned off and
the learning coefficient is set to zero. The neuronal
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activity in this recall phase is investigated by averaging
results from 300 different runs.

During the learning phase, frequent firing is ob-
served near the peak of the external signal for biased
neurons. For a network with sufficient connections, the

firing activity is gradually seen for non-biased neurons,
although their neuronal states might have different
phase and/or frequency. At the steady state of the
recall phase, for an appropriate learning coefficient,
the neuronal activity persists in the absence of the

Figure 3. Neuronal activities of various neurons in a partially connected network after learning induced by an external signal, including (a)
synchronized firing of a biased neuron, (b) synchronized firing of a non-biased neuron, (c) out-of-phase firing of a non-biased neuron, and (d)
random firing of a non-biased neuron. Here the learning rule in Eq. (5) is adopted.

(a)

(b)

(c)

Figure 4. Neuronal activities of various neurons in a partially connected network after learning induced by an external signal, including (a)
synchronized firing of a biased neuron, (b) synchronized firing of a non-biased neuron, and (c) out-of-phase firing of a non-biased neuron. Here
the learning rule in Eq. (4) is adopted.
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(a)

(b)

center
random

outer
side

Figure 5. Investigation of the synchronized firing behavior for various neural networks with different designed patterns: (a) four different
designed patterns studied, and (b) the dependence of the number of synchronized neurons on the number of connections between neurons in the
network for the learning rule in Eq. (5). In (a) biased neurons are grafted in the black regions, while non-biased neurons are grafted in the grey
regions. To smoothen those curves in (b) for a better presentation of our results, each data point (at Nc) in the curves is an average within the
range (Nc, Nc + 20).

external signal. Figure 3 shows various neuronal states
in the recall phase for the learning rule of Eq. (5).
Synchronized firing is observed for both biased (a)
and non-biased (b) neurons. For non-biased neurons,
we also observe out-of-phase firing (c) and random
firing (d). Figure 4 shows various neuronal states
in the recall phase for the learning rule of Eq. (4),
which exhibits synchronized firing for biased (a) and
nonbiased (b) neurons as well as out-of-phase firing
for nonbiased neurons (c). However, random firing is
not observed in this case. The mechanism leading to
oscillations is due to the delayed connections (Shayer
and Campbell, 2000). In the limit of zero delay, no
oscillation is observed. In fact, the network without
delays becomes inactive after the removal of the ex-

ternal signal. Our simulations show a robust behavior
for the reproduction of stimuli over a wide range of
parameters ε and TL for the learning rule in Eq. (5),
which is not observed for the learning rule in Eq. (4).

Synchronous activity among individual neurons is a
robust phenomenon in many regions of the brain (Us-
rey and Reid, 1999; Tresch and Kiehn, 2002; Zhigulin
et al., 2003). To study how synchronization occurs as a
neural network develops, in Figs. 5 and 6, we calculate
the average number of synchronous neurons in the re-
call phase for a network at various developing stages.
Here two neurons (i and j) are defined to be synchro-
nized if both neurons are active and their time correla-
tion (Ci j ≡ 〈[vi (t) − 〈vi (t)〉][v j (t) − 〈v j (t)〉]〉, where
angular brackets denote a time average) is greater than
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Figure 6. The dependence of the number of synchronized neurons
on the number of connections between neurons in the network for
the learning rule in Eq. (4). To smoothen those curves in (b) for a
better presentation of our results, each data point (at Nc) in the curves
is an average within the range (Nc, Nc + 50).

0.2. In addition, we are also interested in the synchro-
nization behavior of various networks with different
designed patterns. Such a study would be useful in
controlling the physical properties of a neural network
by a specifically designed pattern. As schematically
illustrated in Fig. 5(a), four networks with different
patterns are studied: “random” denotes a randomly
grafted network with randomly chosen biased neurons,
“center” denotes a network in which the biased neu-
rons are located at the center region and non-biased
ones are grafted at four corner regions, “side” denotes
a randomly grafted network in which biased neurons
are located at one side, and “outer” denotes a ran-
domly grafted network in which the biased neurons
are located at the outer regions. The number of syn-
chronized neurons is calculated at various developing
stages for these four networks using the learning rule
of Eq. (5), as shown in Fig. 5(b). It is shown that there
is no synchronization if the Nc is less than 600, while
the number of synchronous neurons reaches a plateau
at around 1300 connections. For a network with 40
neurons, the maximal number of connections between

model 1
model 2

Figure 7. The dependence of the number of synchronized neu-
rons on the number of network connections for the learning rule in
Eq. (5). In model 1, synapses can switch between excitatory and
inhibitory depending on their activity. In model 2, the switching
between excitatory synapses and inhibitory synapses is not allowed.

neurons is 1560. This finding implies that synchro-
nization of neurons occurs in the early stage of a de-
veloping neural network, but matures at a late stage
of development. Note that the percolation transition
of our neural networks (in which case a path among
neurons is built from one side of the substrate to the
opposite side) occurs at about 40 connections. The syn-
chronization of networks occurs at a stage much later
than that of percolation of networks. We also note that
all four patterns show a continuous phase transition
in the synchronization of neurons as the network de-
velops. Furthermore, we compare the synchronization
behavior of these four patterns. In Fig. 5(b), the time
sequence for the initiation of synchronization is fol-
lowed by “random”, “center”, “side”, and “outer”. The
two patterns denoted by “random” and “center” initiate
synchronization at 700 connections and are quite sim-
ilar in their synchronization behavior, but “side” and
“outer” initiate synchronization at around 800 connec-
tions. We note that similar results are also obtained
when synapses of very weak efficacy (after learning)

Table 1. The average distance and number of connections between biased neurons and others for four neural networks
with different designed patterns.

Pattern Random Center Side Outer

Distance 104.6 111.8 122.7 128.8

Connections 17.6 20.1 19.0 21.8 16.4 18.8 15.0 17.4

Nc = 700 Nc = 800 Nc = 700 Nc = 800 Nc = 700 Nc = 800 Nc = 700 Nc = 800
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are removed. In fact, the critical Nc to initiate syn-
chronization is smaller in this case. Although several
factors could affect the synchronization behavior of a
network, we suspect that synchronization is mainly af-
fected by those connections to the biased neurons. As
shown in Table 1, the average distance between biased
neurons and others for these four networks is consistent
with the above result in Fig. 5(b). Since the connection
probability between neurons is inversely proportional
to the distance between neurons, the average number
of connections to the biased neurons follows a similar
trend for various values of Nc. The only exception is
the pattern denoted by “center”, in which over 30%
connections are between biased neurons (the rate of
connections between biased neurons are about 20%
for the “random” pattern). Thus the data in Table 1
support our conjecture on the synchronization of net-
works. However, when the number of connections to
the biased neurons is small, the maximal number of
synchronized neurons is also reduced as observed in
the pattern denoted by “outer”.

Figure 6 shows the relation between the number of
synchronized neurons and the number of network con-
nections for the learning rule in Eq. (4). It is clearly
seen that the synchronization behavior of the “center”
network differs drastically from that of the other three
networks. For the “center” network, biased neurons
are located in the central area and thus the network
establishes many connections between active biased
neurons at the early developing stage. For this rea-
son, there exists finite number of synchronized neurons
in the “center” network at the early developing stage
(Nc < 600), but there are almost no synchronized neu-
rons for the other three networks. As the networks
further evolve, more non-biased neurons become ac-
tive in the other three networks, and the number of
synchronized neurons increases suddenly at Nc ∼ 700
and reaches 40. On the other hand, for the “center”
network, the connections between nonbiased neurons
and biased neurons are relatively rare such that many
nonbiased neurons are not excited by biased neurons.
In this case, the saturated number of synchronized neu-
rons in the “center” network is only a third of that in
the other three networks.

By comparing Figs. 5 and 6, we find some major dif-
ferences between our learning rules in Eqs. (4) and (5).
The STDP model in Eq. (4) tends to give a quasi-first
order transition for the synchronizing behavior of most
networks, while the PHP model leads to a second or-
der transition for the synchronizing behavior of all four
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Figure 8. The time evolution of the number of active neurons
for the “random” neural network of various numbers of neuronal
connections for the PHP model (a) or for the STDP model (b). The
external drive is removed at t = 4000.

networks. It is clear that the learning rule in Eq. (4) has
a much greater learning effect than that in Eq. (5). We
have also tried to reduce the learning coefficient in the
STDP model and find no network activity for smaller
learning coefficients. This also demonstrates the first
order characteristic (all or none) of the STDP model.

In our simulations, an initial Gaussian distribution
of synaptic weight wij is used. For simplicity, we de-
liberately do not distinguish excitatory and inhibitory
neurons for the learning rule in Eq. (5) (model 1). This
assumption is not realistic since neurons and synapses
cannot switch between excitatory and inhibitory de-
pending on activity. Here we consider another model
(model 2) for the learning rule in Eq. (5), where switch-
ing between excitatory and inhibitory is not allowed for
neurons. A comparison in the synchronized activity of
the network of these two models is given in Fig. 7. In
model 2, all biased neurons and one third of unbiased
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Figure 9. Enhancement effects induced by learning as a function of
the number of neuronal connections for the PHP model (a) or for the
STDP model (b). Long-term enhancement is favored for networks
with a large number of connections, while short-term enhancement
dominates for networks with few connections.

neurons are excitatory. Both models show a continu-
ous increase in the number of synchronized neurons
(Ns) as the network develops, and Ns saturates at large
numbers of network connections. However, the maxi-
mal value of Ns and the critical value of Nc to initiate
synchronization are both smaller in model 2. From our
simulations, we find that the maximal value of Ns and
the critical value of Nc depend on the number of in-
hibitory neurons. In model 1, some inhibitory synapses
switch to be excitatory due to learning, which effec-
tively reduces the percentage of inhibitory synapses of
the network. Other than that, both models seem to give
consistent results.

3.3. Short- and Long-Term Enhancement Effects

The plasticity of our networks enforced by Eq. (4) or
Eq. (5) is contributed from active neurons rather than
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Figure 10. The time evolution of the average synaptic strength for
the PHP model (a) or for the STDP model (b). Both the external
signal and the learning coefficient are set to zero at time = 4000.

silent neurons. In Fig. 8, we investigate the number
of active neurons of a “random” network with various
numbers of connections for the PHP model (a) or for
the STDP model (b). Here a neuron is defined to be
active if it fires at least once within a period of T. In
the presence of an external signal, the number of active
neurons of the network increases with time of learning.
For a network with more connections, more neurons
become active at the end of the learning phase. After the
external signal is removed (in the recall phase), all neu-
rons become silent rapidly if the network has less than
600 connections, as shown in Fig. 8(a). In Fig. 8(b),
the network becomes silent only for Nc ≤ 300. It is ob-
served that the number of active neurons overshoots at
the end of the learning phase for Nc ≤ 1100 in Fig. 8(a)
and for Nc ≤ 600 in Fig. 8(b). Clearly the increase of
active neurons in the learning phase includes a short-
term enhancement (which rapidly diminishes within
seconds after switching off the external signal) and a
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Figure 11. The synaptic strength of individual neurons for net-
works of Nc = 600, 900, and 1300 using the learning rule in Eq. (5).
Circles represent active neurons, and triangles represent silent neu-
rons.

long-term enhancement (which lasts for much longer
than seconds). Here we define the number of active
neurons in the learning phase as the enhancement. This
enhancement is related to the average synaptic weight
of the network. The characteristic decay time of the
short-term enhancement in our simulations is compa-
rable with that of augmentation (Koch, 1999). It has
been postulated that the long-term enhancement could
result from structural remodeling of synapses or for-
mation of new synaptic contacts (Buchs and Muller,
1996; Engert and Bonhoeffer, 1999; Toni et al., 1999).
This postulate is consistent with the results of our sim-
ulations.

In Fig. 9, we plot both the short-term enhancement
and the long-term enhancement as a function of net-
work connections. A large increase rate of active neu-

Figure 12. The synaptic strength of individual neurons at different
times for a network of Nc = 900 using the learning rule in Eq. (5). Cir-
cles represent active neurons, and triangles represent silent neurons.

rons is found for networks with 750–1100 connections
for the learning rule in Eq. (5) as shown from Fig. 9(a),
which suggests that the most crucial developing period
for learning occurs at the mid stage of development.
For an all-to-all coupled network, almost all neurons
are active. Approximately we can divide the develop-
ment of a neural network into three stages, including
the early stage (Nc < 750), the mid stage (750 < Nc

< 1100), and the late stage (1100 < Nc). Similar be-
haviors are also observed for the learning rule in Eq. (4)
as shown from Fig. 9(b). However, as we noted in the
previous sub-section, the STDP in Eq. (4) tends to give
a quasi-first order transition, instead of a second order
transition. The growth in the long-term enhancement
in STDP is much faster and occurs earlier than that in
PHP. It is suggested from Fig. 9 that short-term en-
hancement dominates the learning effect for an infant
network. Thus we believe that long-term enhancements
can be initiated only after the number of network con-
nections exceeds a threshold value. We note that both
the developing rule in Eq. (1) and the learning rule in
Eq. (4) or Eq. (5) are important for these enhancement
effects. In particular, for the long-term enhancement to
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Figure 13. The synaptic strength of individual neurons for net-
works of Nc = 600, 750, and 1300 using the learning rule in
Eq. (4). Circles represent synchronized neurons, squares represent
non-synchronized neurons, and triangles represent silent neurons.

occur, neurons in the network must establish enough
connections and the synaptic strength of these connec-
tions must be enhanced through learning.

3.4. Synaptic Plasticity of Neural-Networks

To further investigate the synaptic plasticity of our net-
works, we calculate the average synaptic strength of
the random network as a function of time for various
numbers of connections, as shown in Fig. 10. Here
we define the average synaptic strength of the network
as w = (

∑N
i, j=1 wi j )/Nc and the integrated synaptic

strength of i-th neuron as wi = �j wij. For the PHP

model, as shown in Fig. 10(a), the growth curves of the
average synaptic strength of the network in the learn-
ing phase follow a simple power law. The exponents of
these curves are 1.07, 1.21, 1.53, and 1.57 for networks
with 600, 1000, 1300, and 1500 connections, respec-
tively. The early stage of the network is characterized
by a nearly linear synaptic plasticity, while the growth
of the average synaptic strength in the late stage has
an exponent greater than 1.5. Typically, saturation of
synaptic efficacy can occur after repeated potentiation.
Therefore, a cutoff for the synaptic weight should be
introduced in the PHP model to avoid divergence in
synaptic weight. For the STDP model, as shown in
Fig. 10(b), the growth curves of the average synaptic
strength of the network in the learning phase are very
different from those in Fig. 10(a). These growth curves
increase rapidly with time initially, but eventually reach
a threshold at longer times.

In Fig. 11, for the learning rule in Eq. (5), we show
the synaptic strength of individual neurons at the end of
the learning phase in a typical simulation for Nc = 600,
900, and 1300. The first ten neurons in all networks are
biased and thus have unusual high synaptic strengths.
On the average, active neurons tend to have a greater
synaptic strength (in absolute value) than silent neu-
rons. However, some active neurons can have rather
small absolute synaptic strength, particularly for net-
works with a large number of neuronal connections
due to Eq. (3). The time evolution of the distribution of
synaptic strength of individual neurons for a network
with 900 connections for the PHP model is given in
Fig. 12. The first ten neurons are activated initially due
to the external signal (a). As time evolves, silent neu-
rons can be activated through their connections with
biased neurons, even though their absolute synaptic
strengths are small (b). It is observed that the abso-
lute synaptic strength of active neurons increases much
more rapidly than that of silent neurons (c–f). For the
learning rule in Eq. (4), in Fig. 13, we show the synaptic
strength of individual neurons at the end of the learning
phase in a typical simulation for Nc = 600, 750, and
1300. It is also found that active neurons usually have a
greater synaptic strength (in absolute value) than silent
neurons. Moreover, we notice that the synaptic weights
of synchronized neurons are about the same for Nc =
600 and 750. For Nc = 1300, all neurons become syn-
chronized but their synaptic weights are very different
from each other. The time evolution of the distribu-
tion of synaptic strength of individual neurons for a
network with 750 connections for the STDP model is
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Figure 14. The synaptic strength of individual neurons at different times for a network of Nc = 750 using the learning rule in Eq. (4). Circles
represent active neurons, squares represent non-synchronized neurons, and triangles represent silent neurons.

given in Fig. 14. The first ten neurons are active and
synchronized due to the external signal at t = 200. As
time evolves, more silent neurons are activated due to
their connections to the biased neurons. At t = 2000,
many silent neurons become active but remain non-
synchronized. The number of synchronized neurons
starts to increase after t = 3000 and reaches a plateau
in the learning phase (t > 4000).

4. Conclusions

In conclusion, we have applied a pulse-coupled
neural network model to study the synchronization

behavior and synaptic plasticity of a developing neural
network by considering two types of Hebbian learning
rules. The time dependence of the synchronous firing
frequency of neural networks predicted from our
models is shown to be consistent with that observed
in experiments. For the PHP model, the number of
synchronized neurons after the removal of the external
signal shows a continuous transition as the number of
network connections increases. Nevertheless, for the
STDP model, the number of synchronized neurons
shows a quasi-first order transition as the number
of network connections increases. We find that the
number of connections to biased neurons plays an
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important role in inducing the synchronization of
neurons and affecting the fraction of synchronized neu-
rons, after analyzing four networks with different de-
signed patterns. The synaptic plasticity of the network
is also very different at various developing stages. Af-
ter learning, we only observe short-term enhancement
effects for a network at its early developing stage. As
the network further evolves, both short-term and long-
term effects are observed. For the largest increasing
rate of active neurons to occur, the network connection
ratio is about 50% in the PHP model and is about
30% in the STDP model. We consider this stage as the
most effective learning period. For a globally coupled
neural network, long-term enhancement effects are
favored.
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