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DISCOVER SOMETHING GREAT

Visualizing the Scientific World and Its Evolution
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We propose an approach to visualizing the scientific
world and its evolution by constructing minimum span-
ning trees (MSTs) and a two-dimensional map of scien-
tific journals using the database of the Science Citation
Index (SCI) during 1994-2001. The structures of con-
structed MSTs are consistent with the sorting of SCI cat-
egories. The map of science is constructed based on our
MST results. Such a map shows the relation among var-
ious knowledge clusters and their citation properties.
The temporal evolution of the scientific world can also
be delineated in the map. In particular, this map clearly
shows a linear structure of the scientific world, which
contains three major domains including physical sci-
ences, life sciences, and medical sciences. The interac-
tion of various knowledge fields can be clearly seen
from this scientific world map. This approach can be
applied to various levels of knowledge domains.

Introduction

The scientific knowledge of human beings is a complex
and dynamic network. Understanding various knowledge
domains is crucial in documenting the history of our knowl-
edge development, and could even reliably predict the
future trend of our knowledge evolution. Moreover, such
understanding provides objective guidance for allocating
resources and efficiently promotes interdisciplinary
collaborations. To capture the structure and evolution of
mankind’s scientific endeavor, two kinds of strategies,
including descriptive models (Borner, Maru, & Goldstone,
2004; Boyack, 2004; Chen, 2004; Newman, 2004; Small,
1999) and process models, are commonly adopted. Descrip-
tive models aim to describe the major features of and
provide an outlook on a knowledge domain. For example,
research in knowledge domain visualization has studied
the statistical patterns of citation networks, coauthorship
networks, and the identification of research fronts. On the
other hand, process models aim to extract the mechanisms
and temporal dynamics of a real-world network. The emer-
gence of small-world and scale-free network structures
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shows two well-known examples of process models in
statistical physics.

Previous studies in knowledge domain visualization have
unveiled many features or underlying mechanisms of spe-
cific knowledge domains. In the attempt to map the struc-
ture of science, citation analysis has been shown to play a
prominent and productive role. Price has used citation pat-
terns of documents to depict the topography of current sci-
entific literature (Price, 1965). For the analysis of citation
patterns, most noteworthy from this field are the methods of
cocitation (Small, 1973) and bibliographic coupling
(Kessler, 1963). In the cocitation scheme, similarity be-
tween two documents i and j is based on the number of
documents that cite both i and j. In bibliographic coupling,
however, similarity is based on the number of documents
cited by both i and j. Because the references of a document
do not change after its publication, the disadvantage of bib-
liographic coupling in structural studies of science is that
the structure is in general dynamic over time, whereas bibli-
ographic coupling is a fixed measure. In contrast, cocitation
reflects the frequency of being cited, which is a characteris-
tic that is variable over time. Small and Griffith have pio-
neered the method of mapping the structure of scientific lit-
eratures by cocitation analysis of the scientific network
(Griffith, Small, Stonehill, & Dey, 1974; Small & Griffith,
1974). On the other hand, Narin works at a more general
level by using the citation patterns between journals to de-
fine the disciplinary structure of science (Narin, Carpenter,
& Berlt, 1972). Journal-journal citations have also been
used in scientometric mapping by many authors (Carpenter
& Narin, 1973; Doreian & Fararo, 1985; Leydesdorff, 1986;
Tijssen, de Leeuw, & van Raan, 1987). More recently, Ley-
desdorff and Cozzens have also used these journal map-
pings to indicate change in science (Leydesdorff &
Cozzens, 1993). The generalized bibliographic coupling at
the journal level (the sum of multiplied citing frequency of
all journals by journals i and j) does not have the above-
mentioned shortcoming of giving a fixed network structure
of science over time. In fact, this approach can give a better
overall view of human scientific activities by including al-
most all published documents, and even allow the feasibil-
ity of predicting the future trend of the scientific network. A
comprehensive review of knowledge domain visualization
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can be found in a recent article by Borner and others
(Borner, Chen, & Boyack, 2003).

Recently, because of the development in information
technology and the setup of many high-volume and high-
quality data sets of scientific publications, the study of
scientific network has attracted considerable attention. For
example, evolution of coauthorship networks and patterns of
scientific collaboration have been studied by using data from
various bibliographic databases (Borner, et al., 2004;
Newman, 2004). Mapping of the highest-performing papers
over the 20-year period within the Proceedings of the
National Academy of Sciences (PNAS) domain was gener-
ated by using citation analysis to study changes and trends in
the subjects of highest impact (Boyack, 2004). Progressive
visualization of the evolution of a knowledge domain was
applied to a cocitation study of the superstring field in theo-
retical physics (Chen, 2004). Nevertheless, a panorama of
mankind’s scientific activities is still desired. In particular, a
map of science can provide insight into a contemporaneous
state of knowledge and help researchers to make new dis-
coveries. A recent study on visualizing science by citation
mapping attempts to construct maps using simplified meth-
ods for ordination, for a dataset of about 36,000 documents
(Small, 1999). Such a map of science could represent the
relation among different disciplines, fields, specialties, and
individual papers, by their physical proximity as calculated
from citation data. To represent the high-dimensional cita-
tion data on the two-dimensional surface of either paper or
computer screen, several dimensional reduction techniques
have been shown to be quite useful. These methods include
multidimensional scaling (Kruskal, 1964), eigenvalue de-
composition (Davidson, Hendrickson, Johnson, Meyers, &
Wylie, 1998), factor analysis (Thurstone, 1931), latent
semantic analysis (Deerwester, Dumais, Landauer, Furnas, &
Harshman, 1990), pathfinder network scaling (Schvaneveldt,
1990), and self-organizing maps (Kohonen et al., 2000).
Other ordination techniques, such as triangulation (Lee,
Slagle, & Blum, 1977) and force-directed placement
(Fruchterman & Reingold, 1991), have also been applied to
display a large set of documents.

Here we describe a simple approach to visualizing the
scientific world and its temporal trend using the journal cita-
tion data from the Science Citation Index (SCI) during the
years from 1994 to 2001. This citation dataset is directly
computed from the extraction of the CD version of the SCI
database. To find the most relevant features and for simplic-
ity, only research journals of impact factor greater than 1
(about 2,000 journals) are considered. The dataset reported
in this article consists of more than 3 million articles and the
number of cited papers exceeds 67 million. To begin with,
we convert the similarity in journals’ citation patterns into
distance between journals, such that closely related journals
are short distances apart. This distance matrix of journals is
then used to cluster journals by a minimum spanning tree
(MST) algorithm (Gordon, 1981; Kruskal, 1956). MST is a
spanning tree for which the sum of similarities in their cita-
tion patterns is the largest. Each cluster of journals is named
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by the most popular words that appear in the title of its
members. The exact mapping of these clusters in a high di-
mensional space is implemented by classical scaling (CS)
according to the accumulated distance matrix of clusters.
The eigenvalues calculated from classical scaling (Borg &
Groenen, 1997), suggest that a two-dimensional map of
these clusters can be obtained from the projection of the
high dimensional map onto the two principal axes, with lim-
ited distortion. The coordinates of clusters in the two-
dimensional map are then optimized by Sammon mapping
(SM; Borg & Groenen, 1997). Such an approach produces a
sensible map of the scientific world with reasonable coordi-
nates of various knowledge clusters, but the distortion in the
distances between clusters is usually comparable to their
yearly temporal shift. A final step is to adjust the coordi-
nates locally by Procrustes analysis (Gower & Dijksterhuis,
2004), such that the temporal trend of the map can be
studied in detail.

Constructing a Network of Scientific Journals

The scientific knowledge of human beings consists of
various knowledge domains, such as physics, chemistry, and
neurology. In each knowledge domain, journals of different
aims and scope publish numerous papers every year to re-
port the most recent discoveries in a specific research area.
These journals are connected to each other through the ref-
erences in published papers and form a scientific network.
The complexity of the scientific network is an interesting re-
search topic and has profound importance. To investigate
this problem, we first constructed a network of scientific
journals by MST using the SCI database. In bibliometric
studies, a common technique for clustering documents is the
single-linkage method, which links two clusters together by
the “nearest neighbors” across clusters. A convenient ap-
proach in constructing a single-link partition is the MST,
which is usually defined in terms of link lengths (or dissimi-
larity). The dissimilarity between two documents can be vi-
sualized by the differences in their citation patterns. Because
the objects in our case are research journals instead of re-
search articles, we find it more adequate to use the general-
ized bibliographic coupling at the journal level to measure
the similarity between two journals. In other words, the cita-
tion pattern of each journal is represented by a normalized
citation vector and these vectors form a rescaled citation ma-
trix. The similarity between two journals is related to the
scalar product of their citation vectors.

To begin with, the citation matrix {N;;}, number of cita-
tions of journal j cited by journal i, is extracted from a
dataset Q. The similarity of two journals i and j in their cita-
tion patterns is defined as its cosine measure
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where ¢; = N, /(2 ;cqN;) is the normalized citation matrix
element. Depending on the similarity in citation patterns of
journals 7 and j, the value of s;; ranges from O to 1. For map-
ping or visualization, coefficients of similarity are converted
into distances such that closely related journals are short dis-
tances apart and remotely related journals are long distances
apart. We express this conversion as

1
d,=\——— —1, 2
Y N max(4, s;) @

where ¢ is a cutoff parameter for this distance conversion and
the function max(a,b) chooses a bigger value from a and b.
For the case of r = 0, the distance between two unrelated
journals is infinite. This choice is not practical for science
mapping because the projection of journals on the map will
be largely distorted. For simplicity, we take t = 0.01 in our
analysis. A number of algorithms have been developed to
construct MST. Here we use the Kruskal algorithm (Kruskal,
1956) to construct MST of the database by successively con-
necting nearest-neighboring objects from an initially discon-
nected graph. Decision about whether to connect a pair of
objects of the seeding graph is made with the use of the dis-
tance array dj;, which is re-sorted in the order of increasing
distance. This resorted distance array is scanned from its top
and a linkage between two neighboring objects is added to
the seeding graph only if no loop appears in that graph. At
the end of this procedure, a complete MST of the database Q2
has been constructed.

The constructed MST of € can be decomposed to cluster
journals by breaking adequate links between journals. For a
complete MST, we record the distances of all existing links
between neighboring journals in a linkage array. Starting
from the longest link, a link between journals would be bro-
ken if the following two conditions were met: 1. the link be-
longs to a cluster of size (number of journals) greater than
Vmax and 2. both clusters resulting from breaking that link
are of size greater than Vy,;,. Here the parameter V. is used
to limit excessive chaining and the parameter Vi, is to pre-
vent too many isolated journals. In general, values of these
two parameters will depend on the journal database. The
choices of values for Vi, and Vinax are not unique for a jour-
nal database. Different choices imply clustering journals at
different resolutions. However, a slight change in these val-
ues will not drastically change the clustering of journals. For
each cluster, we define its dominant journal (DJ) as the most
cited journal in the cluster. In other words, a DJ has the high-
est sum of normalized citations in the cluster.

Results

As a demonstration, 196 SCI journals of impact factor
(IF) greater than 5 were clustered and their MST was con-
structed as shown in Figure 1, using Viyin = 5 and Vi = 20
(Supporting information, 2005). Here solid lines represent
links between journals within a cluster and dotted lines rep-
resent shortest links between two neighboring clusters. DJ of
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a cluster is represented by a filled circle and each journal is
labelled by a number. This dataset of 196 journals is decom-
posed into 21 clusters of size ranging from 5 to 19 journals.
The largest cluster is related to neurosciences and contains
19 journals. Its DJ is J Neurosci. All these 19 journals belong
to neurosciences or clinical neurology in SCI subject cate-
gories. The major part of this cluster contains 12 journals
(including the DJ) and the scope of these journals covers a
broad range of topics in neurosciences. The remaining part
of this cluster (journals 13—19) deals with clinical neurology,
which also contains a small branch focusing on blood circu-
lation in the brain (18 and 19). The neighboring clusters of
this neuroscientific cluster demonstrate its importance in
connecting basic sciences and applications. Two applica-
tion-related clusters, including psychology (154-159) and
psychiatry (172-176), are located at the peripheral region of
the MST. The connection between psychological journals
and neuroscientific journals is through journals related to
cognitive neurosciences and behavior sciences (154 and
155). The connection between psychiatric journals and neu-
roscientific journals is through molecular psychiatry (172).
These brain-science related clusters are connected to bio-
chemistry and molecular biology through physiological
journals (59-61). The second largest cluster in this MST
contains 18 journals and is related to the SCI subject cate-
gories including biochemistry and molecular biology, cell
biology, genetics and heredity, and developmental biology.
This cluster can be divided into a branch of broader range in
biology (20-27) and a branch of more specific topics in ge-
netics (28, 29, and 33-37) and developmental biology
(28-32). The DJ of this cluster is Cell (25). Research jour-
nals in molecular and cell biology, such as Cell (25) and
Molecular Cell (24), provide useful guidance in the research
areas of genetics and developmental biology. We note that,
by using only journals of IF > 5, many important knowl-
edge fields, such as mathematics, computer science, and ma-
terials science, are not included in the MST in Figure 1.
Therefore, Figure 1 does not give a complete view of the sci-
entific network. Instead, we use it to demonstrate our
methodology of clustering scientific journals. It is also easier
to view the detail structure of a small database.

From the MST in Figure 1, it is evident that the number of
biological or medical journals is much larger than that of
physical and chemical journals for the journal set of IF > 5.
These biomedical journals form a big condensed domain on
the right hand side of MST, whereas the physical-chemical
journals form a linear domain on the left hand side. Although
many biomedical instruments are invented based on physi-
cal sciences, it seems that physical journals are remotely
connected to biomedical journals. The physical cluster con-
tains 14 journals and most of them are in the SCI category of
physics. The only exceptions are Surface Science Report
(84, chemistry) and Progress in Quantum Electronics (85,
engineering). The DJ of the physical cluster is Phys Rev Lett
(PRL, 78), which locates at the center of this cluster. Particle
and nuclear journals (72—74) are clearly separated from con-
densed matter journals (79 and 81). Although Physics Today
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82 Phys. Today
81 Solid State Phys.
80 Rep. Prog. Phys.

79 Adv. Phys.

84 Surf. Sci. Rep.

78 Phys. Rev. Lett.

77 Adv. Atom. Mol. Opt. Phys.
76 Rev. Mod. Phys.

75 Phys. Rep.

74 Annu. Rev. Nucl. Part. Sci.

73 Adv. Nucl. Phys.

191

146

173 Arch. Gen. Psychiatry 57 J. Biol. Chem.
187 Cancer Res. 146 J. Cell Biol.
25 Cell 126 J. Clin. Invest.
185 Circulation 116 J. Immunol.
177 Endocrinology 118 J. Mol. Biol.
149 Gastroenterology 5 J. Neurosci.

139 J. Virol.
192 Mol. Cell. Biol.

46 J. Am. Chem. Soc. 164 Plant Cell

168 Proc. Natl. Acad. Sci. U.S.A.
157 Psychol. Rev.

87 Nature

99 N. Engl. J. Med.

78 Phys. Rev. Lett.

FIG. 1.

An MST of SCI journals of impact factor greater than 5. Each journal is represented by a circle and labeled by a number. Titles of all journals can

be found in the supplemental data. Journals in the same cluster are connected by a solid line and clusters are connected by a dash line. The line length is re-
lated to the distance between two connected journals, but distortion could occur due to a two-dimensional map of the MST. Filled circles are DJs of these

clusters.

(82), Report on Progress in Physics (80), Review of Modern
Physics (76), and Physics Report (75) are in the same SCI
category of physics & plus; multidisciplinary, these journals
focus on very distinct subjects. Journals 75 and 76 empha-
size particle and nuclear physics, whereas 80 and 82 are
more connected to condensed matter physics. The physical
sciences are connected to biomedical sciences through mul-
tidisciplinary journals including Science (86), Nature (87),
and Proc Natl Acad Sci USA (PNAS, 168). Figure 1 suggests
that the cluster of PNAS serves as a hub of biomedical sci-
ences, whereas the cluster of Nature and Science serves as a
bridge connecting the two domains.

The journal set for Figure 1 actually consists of many
multidisciplinary journals and many review journals. It is
also interesting to view the MST structure of the core
research journals. Therefore, we construct an MST for 176
core research journals of IF > 4, as shown in Figure 2. The
MST in Figure 2 contains 18 clusters and their cluster mem-
bers can be found in the supporting information (Supporting
information, 2005). The clustering of these core research
journals seems to be reasonable, except for some small clus-
ters of size V. For example, the plant and earth science
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cluster (DJ is Plant Physiol) also contains incompatible re-
search journals in climate research (144, 145) and global
biogeochemical cycles (143) because the number of journals
in these research areas is less than Vy,;,, which can be easily
found by inspecting the long distances between cluster
members. This inconsistency can be alleviated by using a
larger data set or by using a variable Vi, if the distance be-
tween cluster members is longer than a threshold. The gen-
eral features of Figure 2 are similar to that of Figure 1, i.e.,
physics and chemistry are separated from the rest of bio-
medical clusters. In the absence of a multidisciplinary
bridge, physical sciences are connected to biomedical sci-
ences through the biochemistry cluster. It is found that cell
biology also plays an important role in connecting these bio-
medical clusters. However, the connection of these clusters
in the MST of Figure 2 is not robust. Deletion of the
connecting journal between two clusters could break their
connections. For example, if we remove the journal Mol
Psychiatry (116) from the data set, the psychiatry cluster
will be connected to the neuroscience cluster. To build a
robust connection between clusters, we construct the MST
of these clusters by calculating the accumulated distance
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Physics

118 Arch. Gen. Psychiatry 109 Development
44 Biochemistry 152 Genetics

172 Cancer Res.
58 Cell

136 Circulation 168 J. Immunol.

73 J. Biol. Chem.
88 J. Clin. Invest.

34 J. Neurosci. 125 Phys. Rev. Lett.
101 J. Am. Chem. Soc. 149 Psychol. Rev.
165 J. Virol. 160 Radiology

18 N. Engl. J. Med.

142 Plant Physiol.

FIG. 2. An MST of SCI core research journals of impact factor greater than 4. Each journal is represented by a circle and labeled by a number. Titles of all
journals can be found in the supplemental data. Journals in the same cluster are connected by a solid line and clusters are connected by a dash line. The line
length is related to the distance between two connected journals, but distortion could occur due to a two-dimensional map of the MST. Filled circles are DJs

of these clusters. Here we use Vi, = 5 and Vi = 20.

between clusters. As shown in Figure 3, this MST connec-
tion is robust against single journal deletion. It is interesting
to note that, although some connections between clusters are
modified, the general features observed in Figure 2 still hold
in Figure 3.

After demonstrating the applicability of our method in
clustering scientific journals, we applied this method to con-
struct an MST of all SCI journals of impact factor greater
than 1 using Vi = 50 and Vi, = S. Figure 4 shows a col-
lection of physical clusters (Supporting information, 2005).
This physical domain is constructed by first locating the
largest cluster in physics (the most popular word in the jour-
nal titles of cluster members is phys). Then, using this clus-
ter as the core, its nearest-neighbor clusters are included into
this physics domain. We also include the next-nearest-
neighbor clusters into the physics domain if the majority
members of a nearest-neighbor cluster contain phys in their
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journal titles. The largest cluster of this domain is related to
condensed matter physics. The DJ of this cluster is PRL,
which suggests that PRL is dominated by condensed matter
physics, although it is categorized as physics + multidisci-
plinary. Above the condensed matter physics cluster are the
particle physics cluster (DJ is Phys Rev D) and the astro-
physics cluster (DJ is Astrophys J). On the right hand side
are statistical physics (DJ is Phys Rev E), fluids (DJ is J
Fluid Mech), mathematical physics (DJ is Commun Math
Phys), and plasmas (DJ is Phys Plasmas). Below the main
cluster, we see chemical physics (DJ is J Chem Phys), optics
(DI is Appl Optics), surface physics (DJ is Thin Solid Films),
and applied physics (DJ is IEEE Trans Electron Devices). In
general, an MST of scientific journals can be constructed
very efficiently for a large database and details of various
knowledge domains can be investigated with the desired
resolution.
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Physics

Chemistry
Psychiatry

Biochemistry Plant & Earth Sciences Cardiology & Hematology

Cancer Medicine I

Medicine 1T

Pathology Clinical Oncology

Gene Therapy

Cell Biology Immunology

Evolution Development & Genetics

Neuroscience

Psychology

FIG. 3. A cluster MST of SCI core research journals of impact factor
greater than 4. Each cluster is represented by a circle and labeled by a num-
ber. The line length is related to the distance between two connected clus-
ters, but distortion could occur due to a two-dimensional map of the MST.

Constructing the Map of Science

Although MST is useful in clustering journals, the infor-
mation about similarity between unconnected journals is
missing. Therefore we desired to construct a map of scientific
journals, which can be used to visualize the panorama of the
scientific world and to study the temporal evolution of sci-
ence. Using the database of scientific journals of impact fac-
tor greater than 1, the largest 20 clusters found in MST were
studied and their cumulative citation matrix was calculated.
Each cluster of journals is named by the most popular words
that appear in the titles of its members. The squared distance
matrix {d,f} can be obtained by Equation (2). The CS method
is used to find a set of vectors {y*} such that the squared dis-
tance matrix between the { y*} points matches {d,j2 } asclosely
as possible. The dimension of the data points is chosen to be
small, either two or three, so that we can visualize the data.
Here a two-dimensional mapping of these scientific clusters is
created by projecting our CS results onto the two principal
axes. To minimize the distortion of the scientific world map,
the coordinates of clusters in the map are further optimized by
SM, which minimizes the following cost function:

-1
E= > {d;—d(, y-")P(E d,-ﬁ) , 3)

i<j i<j

where the summation runs over the dataset under investiga-
tion, and d(a,b) is the distance between points a and b.
Although SM constructs a nearly global optimization for the
coordinates of various knowledge clusters, the distortion in
the distance between clusters due to the two-dimensional

mapping is usually comparable with the yearly temporal
change of distance. This distortion incapacitates the attempt
to study the temporal evolution of the scientific world
through the constructed science map. To resolve this prob-
lem, we locally adjust the coordinates in the same domain by
minimizing the cost function in Equation (3) for each do-
main and the temporal evolution of the domain is mapped by
Procrustes analysis. Procrustes analysis is a method of com-
paring two configurations, which matches corresponding
points from each of the two configurations by minimizing
the sum of squared differences between the two configura-
tions. Therefore, the yearly shift of each cluster simply
results from the yearly change in the accumulated distance
matrix.

As shown in Figure 5(a), the constructed map of science
for year 2001 shows a linear structure of the scientific world,
which contains three major domains including medical
sciences, life sciences, and physical sciences (Supporting in-
formation, 2005). This result is consistent with the science
mapping of Small (Small, 1999), in which biology is found to
locate in between physical sciences and medical sciences.
The linear structure of our science map is a direct result of the
distance conversion in Equation (2), because the distance be-
tween two unrelated clustersis \/¢~! — 1 (infinite for r = 0).
The structure of the science map could change if a different
distance conversion formula were adopted. For example, the
constructed science map has a ring structure if we use
dij = 1 — s;;. In this case, the distances between all pairs are
less than unity, which leads to a ring structure of the con-
structed science map. Such a ring structure of science has also
been proposed by Boyack and others (Boyack, Klavans, &
Borner, 2005, in press). Nevertheless, we consider this ring
structure as an artifact due to an improper distance conver-
sion. Although our science map only contains the 20 largest
clusters, we expect that this linear structure remains stable
after adding smaller clusters, because these smaller clusters
will not affect the distance between two unrelated clusters.
For cell biology in year 2001, the amount of incoming cita-
tions is 295,734 and that of outgoing citations is 129,228. The
incoming citations of physics, cell biology, and general med-
icine are many more than their outgoing citations, which in-
dicates their importance in their knowledge domains. The
gap between physical sciences and life sciences is quite obvi-
ous, whereas the gap between life sciences and medical
sciences is small. This is due to the intensive interaction
between cell biology and medical sciences. The average dis-
tance between knowledge clusters in the domain of medical
sciences is much shorter than that in the other two domains.
This is a clear indication for the high correlation among
knowledge clusters in medical sciences. Moreover, the prop-
erty of each knowledge cluster can be judged from this map.
For example, the focus of neurology is clearly different from
that of neuroscience. Neurology is close to general medicine,
while neuroscience is closely related to cell biology. The MST
structure of these clusters as shown by the solid lines is con-
sistent with our two-dimensional mapping, which confirms
our global minimization of Equation (3). An enlargement of
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P119 Phys. Rev. E
\ “~~ P104

FIG.4. An MST of physical journals in SCI database of impact factor greater than 1. Each journal is represented by a circle and labeled by a number. Titles
of all journals can be found in the supplemental data. Journals in the same cluster are connected by a solid line and clusters are connected by a dash line. The
line length is related to the distance between two connected journals, but distortion could occur due to a two-dimensional map of the MST. Filled circles are

DIJs of these clusters.

the domain of physical sciences is drawn in Figure 5(b),
which shows the temporal evolution of physical sciences
during 1994-2001. The average distortion for the two-
dimensional mapping is about 10% of the maximal temporal
shift in the distance between two knowledge clusters. During
these eight years, it seems that analytical chemistry is run-
ning away from the rest of domain members and constantly
drifts toward the domain of life sciences. Note that here we
are not attempting to give a complete view of the complex
scientific network. Putting all the information together will
simply confuse the readers. Instead, we demonstrate a feasi-
ble approach to understanding the scientific network. The de-
tails of the scientific network can be investigated by choosing
aknowledge area with the desired resolution. We further note
that, although only a portion of journals is selected in our
analysis, these selected journals are quite representative.
Garfield had argued that the significant scientific literature
appears in a small core of journals (Garfield, 1996). In fact, in
the 1987 SCI, 500 journals account for half of what is pub-
lished and more than 70 percent of what is cited, and 2,000

journals published about 85 percent of all SCI-indexed arti-
cles that year and 95 percent of cited articles. Our 20 clusters
actually cover 763 journals (more than one third of journals
of IF > 1) and contain almost all the most-cited and most-
productive journals. The limitation of choosing these domi-
nant journals actually helps us in analyzing the scientific
database and understanding our scientific world. Neverthe-
less, we admit that some knowledge fields with low impact
factors, such as mathematics and computer sciences, are not
considered in this analysis.

The statistical properties of cluster citations are depicted
in Figure 6 for year 2001. Statistically, the mean self-citation
of physical sciences is 0.75 with a standard deviation of
0.09. The mean self-citation of life sciences is 0.60 with a
standard deviation of 0.06. The mean self-citation of med-
ical sciences is 0.45 with a standard deviation of 0.08. The
standard deviations of these three domains are of the same
order, whereas their mean values vary a lot. We thus con-
clude that the citation culture of journals is consistent within
the same domain but differs a lot for different domains.
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FIG.5. A two-dimensional map of the scientific world (a) and its temporal evolution in the domain of physical sciences (b). The distance (in arbitrary units)
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As shown in Figure 6(b), the relative interdomain citations
for the domain of physical sciences are negligible. Based on
our limited data set, it seems that research results in medical
sciences have little effect on the discoveries made in physi-
cal sciences. The domain of physical sciences seems to sep-
arate from other domains of science. On the contrary, inter-
domain citations between medical and life sciences are
visible and nearly identical. This indicates that research re-
sults in these two domains might promote new discoveries
made in one another.

Conclusion

In this paper, we have presented an approach to con-
structing an MST and a two-dimensional map of scientific
journals. This approach can be applied to various levels of
knowledge domains. As a demonstration, we tested this ap-
proach using 2,000 SCI journals of impact factors greater
than 1. The structures of constructed MSTs at various
knowledge levels are consistent with the sorting of SCI cat-
egories. Therefore, this approach could be very useful in au-
tomatically clustering scientific journals. The connections
between related knowledge clusters can be obtained in a
glance at these MSTs. Particularly, we find that the cluster of
PNAS serves as a hub of biomedical sciences, and the cluster
of Nature and Science serves as a bridge connecting the two
domains. In addition, we also constructed a two-dimensional
map of the scientific world based on our MST results. Such
a map shows the relation of various knowledge clusters and
their citation properties. Extending our present work by
using a more complete data set might give a better view of
the scientific network. The temporal evolution of the scien-
tific world map can also be delineated. Our results suggest
that a two-dimensional map of science can be constructed
to help comprehend various knowledge domains and to
capture the structure and evolution of mankind’s scientific
endeavor at a glance.
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