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Synchronization in a noise-driven developing neural network
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We use computer simulations to investigate the structural and dynamical properties of a developing neural
network whose activity is driven by noise. Structurally, the constructed neural networks in our simulations
exhibit the small-world properties that have been observed in several neural networks. The dynamical change
of neuronal membrane potential is described by the Hodgkin-Huxley model, and two types of learning rules,
including spike-timing-dependent plasticity (STDP) and inverse STDP, are considered to restructure the synaptic
strength between neurons. Clustered synchronized firing (SF) of the network is observed when the network
connectivity (number of connections/maximal connections) is about 0.75, in which the firing rate of neurons is
only half of the network frequency. At the connectivity of 0.86, all neurons fire synchronously at the network
frequency. The network SF frequency increases logarithmically with the culturing time of a growing network
and decreases exponentially with the delay time in signal transmission. These conclusions are consistent with
experimental observations. The phase diagrams of SF in a developing network are investigated for both learning
rules.
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I. INTRODUCTION

Synchronized neural oscillations have been observed in the
early stages of many sensory systems of animals, such as
insects, frogs, and primates. Studies on lower mammals have
demonstrated that synapses between neurons are established
from the early developmental stages, and activity-driven
synchronization of neurons may occur during development
and learning [1,2]. It has been shown that immature pyramidal
neurons of the rat hippocampus start to receive sequentially es-
tablished synaptic inputs around birth [3] and the hippocampal
network generates periodic synchronized neuronal discharges
during the first two postnatal weeks [4]. Nevertheless it is still
unclear whether these neural rhythms contribute to normal
functions of brains, are merely epiphenomena, or even interfere
with regular physiological processing.

Recently, experimental data has indicated that the synchro-
nization of oscillatory activity seems to be relevant for the
development of cortical circuits. This is demonstrated by the
involvement of neural synchrony in synaptic plasticity and
changes in the synchronization frequency of neural oscilla-
tions during development. Mounting evidence from invasive
electrophysiology in nonhuman primates, and electro- and
magnetoencephalographic (EEG/MEG) recording in humans,
has suggested that synchronous oscillatory activities provide
a fundamental mechanism for enabling various cognitive and
perceptual functions [5–10]. Particularly, it is found that neural
rhythms in the beta-gamma range (20–100 Hz) establish
precise synchronization of distributed neural responses and
play an important role in linking synchronized oscillations
to cortical computations. Furthermore, experiments have also
suggested that alpha activity (8–12 Hz) is associated with the
long-distance coordination of gamma- oscillations, and theta
activity (4–8 Hz) supports large-scale integration of subsys-
tems for the formation and recall of memories. In general,
there is a correlation between the synchronization frequency
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and the distance over which synchronization occurs. In other
words, short distance synchronization tends to occur at higher
frequencies, while long-distance synchronization occurs at
lower frequencies. Although theta frequency oscillations are
driven by septal and entorhinal inputs, gamma oscillations are
thought to be generated intrinsically [11,12].

It is known that neural networks are replete with various
kinds of noise, such as thermal noise, ionic conductance noise,
ion channel shot noise, ionic pump noise, synaptic release
noise, and synaptic bombardment [13,14]. How neurons can
store, process, and compute in such a noisy environment has
attracted a great deal of attention. The principle source of noise
is assumed typically to be synaptic noise, while thermal noise
is rarely considered in neural systems since it is weak in com-
parison with other sources [15,16]. The possible importance of
intrinsic noise from ion channels at the cellular level has been
examined both experimentally and computationally [17–20].
These studies have found that, due to the nonlinear response
of the system, the addition of noise in a neural network could
lead to neural synchrony with or without the presence of a
weak external signal. Understanding the evolved mechanism,
and the associated nonlinear dynamics that allow neurons to
function in a noisy network, is crucial toward understanding
information transmission and communication in the brain.

The human brain is one of the most complicated neural
networks, which consists of 1011 neurons and 1015 synapses.
Any attempt to simulate a network with such an enormous
complexity would not be feasible at the present stage. To
investigate the fundamental mechanism of the synchronized
oscillations in a developing neural network, a simpler sys-
tem for computer simulations is culture samples of neural
networks, for example, prepared from the cerebral cortex
of embryonic rats [21–23]. In this paper, we attempt to
study noise-driven synchronized firing (SF) of a developing
neural network consisting of 50 neurons. The effects of
noise at various developing stages of the network are inves-
tigated using the Hudgkin-Huxley (HH) model of neurons.
A detailed description of our model is given in Sec. II. In
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Sec. III, we discuss the main results from our simulations,
including the structure of network connections, synchronous
activity of neural networks, the synchronization frequency
of a developing neural network, and the phase diagram of
network synchronization. In Sec. IV, we conclude this study
of synchronous behaviors in a noise-driven developing neural
network. Stable synchronization can occur in a network with a
connectivity greater than 0.73. The synchronization frequency
is found to increase linearly with the connectivity, but decrease
exponentially with delay time of signal transmission. The
phase diagram of network synchronization is investigated by
varying the synaptic modification parameters at various stages
of network development.

II. MODEL

To investigate the firing dynamics of a developing neural
network, we consider the activity of 50 interneurons, which
are randomly grafted on a substrate of area L × L, and
are not connected to each other initially. The development
of the network involves two time scales: at the long time
scale (T , in units of hours), the network gradually builds
up synaptic connections between neurons; at the short time
scale (t , in units of 10 ms), neurons communicate with each
other through existing connections. The network connectivity
is updated every 105 runs of neuronal communications
during our simulations. The probability of forming a synapse
between neurons i and j is assumed to follow the power
law

pij = k

rα
ij

, (1)

where rij is the distance between them. The coefficient α

implies the connection mechanism between two neurons. For
α = 1, the connection between two neurons is built through
a random search process, since the connection probability is
inversely proportional to the searching circumference of axons.
Compared with the random search process, long-distance
connections are more favored for α < 1 but less favored for
α > 1. For α = 0, the developed neural network is a random
network, and the connection probability between neurons is
independent of their distance. Here we note the value of α

is different in a random connection process (α = 0) and in
a random search process (α = 1). In general, the coefficient
k would depend on, for example, the local concentration of
neurotrophins and play roles in regulating neuronal plasticity.
Here, for simplicity, we assume a constant k = 0.005 for
the entire network at all times. Note that, although we have
assumed a simple form of connection probability between
two neurons, the exact connection probability is not known
experimentally and is probably different for different systems.

In the HH model, the activity of neuron i in the network
is described by a set of four time-dependent variables (Vi , mi ,
ni , and hi) [24–26]:

Cm

dVi

dt
= gNam

3
i hi(VNa − Vi) + gKn4

i (VK − Vi)

+ gL(Vrest − Vi) + I
inj
i (t), (2)
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(5)

where V represents the membrane potential, m and h are the
activation and inactivation variables of the sodium current,
and n is the activation variable of the potassium current. The
injected current is a sum of output currents from connected
neurons in the network, with a synaptic strength wij and a
delay time T0 in signal transmission, which can be expressed as
I

inj
i (t) = ∑

j wij I
out
ij (t − T0). For simplicity we approximated

the output current I out
ij (t − T0) as a step function with a duration

0.1 ms and an amplitude Imax{1 + exp[−0.002V
peak
j ]}−1,

where V
peak
j is the peak value of the action potential of neuron

j for the outgoing spike near time t − T0, and Imax is the
maximum output current from a neuron [27]. Typical values
of Imax and T0 used in our simulations are 25 nA and 9 ms,
respectively. The parameters gNa, gK, and gL are the maximum
conductance per surface area of the sodium, potassium, and
leak currents, VNa, VK, and Vrest are the corresponding reversal
potentials, and Cm is the membrane capacitance. Typical values
of the parameters in the HH model are Cm = 1.0 μF/cm2,
gNa = 120.0 mS/cm2, gK = 36.0 mS/cm2, gL = 0.3 mS/cm2,
VNa = 115.0 mV, VK = −12.0 mV, and Vrest = 10.6 mV [27].
The membrane potential V (t + �t) in Eq. (2) is solved using
the Euler method as

Vi(t + �t) = Vi(t) + �t

Cm

{Iinj(t) + gNami(t)
3hi(t)

× [VNa − Vi(t)] + gKni(t)
4[VK − Vi(t)]

+ gL[Vrest − Vi(t)]}, (6)

where n(t), m(t), and h(t) can be obtained from solving
Eqs. (3)–(5) [27]. We note that the accuracy of membrane
potential calculated from Eq. (6) depends on the value of �t .
In our experience, �t � 0.01 ms will be a good choice. Here
we use �t = 0.001 ms.

Electric noise plays an important role in neuron dynam-
ics. The main source of this noise is typically synaptic,
resulting from the probabilistic release of synaptic vesicles
and bombardment from the myriad of synapses made by
other cells. Although the firing frequency of neurons rarely
exceeds 1000 Hz, the combined synaptic activities of a neural
network can produce fluctuations on a much faster time
scale. Synaptic noise causes abrupt changes in the associated
synaptic conductance each time a spike invades the presynaptic
bouton. In Stein’s model, the effect of noise in the evolution
of the membrane potential of a given neuron is described as
trains of Dirac delta functions [28]. In the diffusion limit of
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synaptic input, the sum of delta functions becomes Gaussian
white noise [29,30]. Thus in the presence of synaptic inputs,
the membrane potential can be described as

Vi(t + �t) = Vi(t) + �t

Cm

{Iinj(t) + gNami(t)
3hi(t)

× [VNa − Vi(t)] + gKni(t)
4[VK − Vi(t)]

+ gL[Vrest − Vi(t)]} + Vnoise, (7)

where the Gaussian white noise is generated using√
−2a2 ln(rand) cos(2π rand) with an amplitude a = 0.25 mV

and a random variable, rand.
In neural networks, a synapse between two neurons has

the ability to change in its strength in response to either
use or disuse of transmission over synaptic pathways [31].
Previously, the Hebbian learning rule suggests an increase
of the synaptic strength, if the synapse persistently causes
the postsynaptic target neuron to generate action potentials
(APs). More recent experiments have demonstrated that, in
many synapse types, repeated presynaptic spike arrival a few
milliseconds (ms) before postsynaptic action potentials leads
to long-term potentiation (LTP) of the synapses, whereas re-
peated spike arrival after postsynaptic spikes leads to long-term
depression (LTD) of the same synapse. Previous experiments
demonstrated that postsynaptic APs are initiated in the axon,
then propagate back into the dendritic arbor of neocortical
pyramidal neurons, evoking an activity-dependent dendritic
Ca2+ influx which could be a signal to induce modifications at
the dendritic synapses that were active around the time of AP
initiation [1]. Therefore the synaptic efficacy can be regulated,
depending on the precise timing of postsynaptic APs relative
to excitatory postsynaptic potentials. The characteristic time
intervals for synaptic modifications are found to be 17 ms for
facilitation, and −34 ms for depression for layer 5 pyramidal
neurons in the somatosensory cortex [32]. Such a spike-timing-
dependent synaptic plasticity (STDP) rule is introduced in our
simulations, by considering a change in the synaptic strength
due to learning at each time step as [32]

�wij (�τ ) =
{

A+ exp(−�τ/τ+), �τ > 0
−A− exp(�τ/τ−), �τ < 0,

(8)

where �τ is the time of the postsynaptic spike minus the time
of the presynaptic spike. The parameters τ+ and τ− determine
the ranges of pre-to-postsynaptic interspike intervals over
which both synaptic strengthening and weakening occur. A+
and A−, which are both positive, determine the maximum
amounts of synaptic modification. Typical values of these
parameters in our simulations are A+ = 0.0012, A− = 0.0005,
τ+ = 10 ms, and τ− = 9.5 ms. Alternatively, we also consider
an inverse STDP rule that has been observed, for example, in
the connections between excitatory and inhibitory neurons in
the electrosensory lobe of fish [33,34]. These connections are
usually seen in sensory systems and cerebral cortex. In this
case, the change in the synaptic strength due to learning at
each time step is expressed as [33]

�wI
ij (�τ ) =

{−A+ exp(−�τ/τ+), �τ > 0
A− exp(�τ/τ−), �τ < 0.

(9)

Typical values of these parameters in our simulations are
A+ = 0.0005, A− = 0.0012, τ+ = 10 ms, and τ− = 9.5 ms.

In general, the matrix of synaptic strength is asymmetric.
A change in the synaptic strength might result from remod-
eling of synapses in both presynaptic loci and postsynaptic
terminals. Saturation of synaptic efficacy can occur after
repeated potentiation, and previous experiments have shown
that saturation of hippocampal LTP impairs spatial learning
[35,36]. In this paper, for simplicity, we did not introduce
saturation for the synaptic efficacy. In our simplified case, the
learning due to the external signal is turned off before the
synaptic efficacy saturates. We note that several stabilization
procedures can terminate learning, either when activity levels
reach a certain threshold level, or invoke a bound on synaptic
strength [37,38].

For each value of network connections, we simulate the
neural activities of the network for 5 s. In the first 2 s, the
network is in the learning phase in which the synaptic strength
of each connection is updated according to learning rules in
Eqs. (8) or (9). Initially, the membrane potential of neurons is
chosen to have a Gaussian distribution with a zero average and
a standard deviation of 10 mV. The initial synaptic strength
between neurons is set to have a Gaussian distribution with
an average of 0.05 and a standard deviation of 0.01. After this
learning phase, the network enters a so-called recall phase in
the last 3 s, in which the learning rule is switched off and the
value of synaptic strength remains constant.

III. RESULTS AND DISCUSSION

A. Structure of network connections

For a developing neural network, in our simulations, the
general structure of network connections constantly reshapes
in the time scale of hours according to Eq. (1). For a culture
sample of N = 50 neurons randomly distributed on a square
substrate of length L (in the units of soma size), by fitting
those curves of Nc in Fig. 1, the number of connections (Nc)
of the network is found to grow logarithmically with time for
α = 1. Here we define the network plating density as D =
NL−2. The time (T ) for the network to reach a certain number
of connections can be well approximated by T ∝ D−α/2. Since
experimental measurement of the onset time of SF for cortical
neural cultures is proportional to D−0.44 [22], our model with
α = 1 seems to describe these neural cultures better.

Furthermore, we calculate the characteristic path length
between neurons and average clustering coefficient for various
simulated configurations of the neural network. Here the
characteristic path length l is defined to be the minimum
number of connections between two neurons. Since neural
networks are a directed graph, we define the clustering
coefficient of neuron i as Ci = (m2

i − mi)−1 ∑
j,k ejk , where

mi is the number of neurons connected to neuron i, ejk = 1
or 0 if neurons j and k are connected or disconnected, and
the summation runs over all neurons connected to neuron i.
The average clustering coefficient of the network is defined
as Cav = N−1 ∑N

i=1 Ci . In the case of α = 1 and L = 100,
we have l = 2.91 ± 0.84 for Nc = 200, l = 1.91 ± 0.32
for Nc = 500, and l = 1.68 ± 0.23 for Nc = 800. Similarly,
the value of l is 2.88 for Nc = 200, 1.90 for Nc = 500, and
1.39 for Nc = 1500 in the case of α = 0.5, and is 3.12 for
Nc = 200, 1.99 for Nc = 500, and 1.39 for Nc = 1500 in the
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FIG. 1. Number of synaptic connections as a function of culturing
time in a growing network with various different plating density D

for α = 1.

case of α = 2. This result implies a small separation between
neurons in the developing neural networks. In addition, in
the case of α = 1, the average clustering coefficient of the
network is calculated to be 0.110 ± 0.077 for Nc = 200,
0.218 ± 0.029 for Nc = 500, 0.620 ± 0.009 for Nc = 1500,
and 0.980 ± 0.001 for Nc = 2400. Larger fluctuations in
both the characteristic path length and clustering coefficient
are observed for neural networks with smaller values of Nc.
The analysis of neural connectivity has revealed that neural
networks studied in our simulations exhibit the small-world
properties that have been observed in several neural networks.
For example, the values of (N ,l,Cav) are (32,1.69,0.59) for
the macaque visual cortex, (73,2.18,0.49) for the macaque
cortex, (55,1.79,0.60) for the cat cortex, and (282,2.65,0.28)
for Caenorhabditis elegans [39].

B. Synchronous activity of neural networks

Synchronous activity among individual neurons is a robust
phenomenon in many regions of the brain [33,40–42]. To study
how synchronization occurs in a noisy environment as a neural
network develops, we investigate the correlation in neuronal
activities of a network with STDP or inverse STDP learning
rules at various developing stages. Here we consider that
initially 50 isolated neurons are grafted on a square substrate of
size L= 100 and the delay time is set to be 9 ms. Two neurons, i
and j , are defined to be synchronized if both are active and their
time correlation (T Cij ≡ 〈[Vi(t) − 〈Vi(t)〉][Vj (t) − 〈Vj (t)〉]〉,
where angular brackets denote a time average) is greater
than 0.2. Furthermore, we define an order parameter �s for
the synchronization of neuronal activities as the number of
synchronized neuron pairs divided by the maximum number
of connections (Nc

max = 2450). For the case of �s = 1, all
neurons are synchronized. As shown in Fig. 2, we calculate
the order parameter of synchronization, �s , for networks at
various developing stages with the STDP learning rule. Here
the developing stage of a network is described by the number of
connections (Nc) or by the network connectivity (Nc/Nc

max).
The value of �s is at its background value of about 0.3 for
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FIG. 2. The time dependence of the order parameter for network
SF (�s) in our simulations for neural networks with STDP learning
in the case of (a) 100 � Nc � 1700 or (b) 1800 � Nc � 2400. The
inset in (b) shows 〈�s〉 in the recall phase as a function of the number
of connections.

Nc < 1500, and starts to fluctuate for 1500 � Nc < 1800. For
Nc � 1800, the order parameter begins with the background
value in the learning phase, and reaches an equilibrium value
in the recall phase, which is 0.77 for Nc = 1800, 0.86 for Nc =
1900, and 1 for Nc � 2100. This equilibrium value of �s (〈�s〉,
time average of �s) grows linearly from 0.77 to 1 for 1800
� Nc � 2100, as shown in the inset of Fig. 2(b). All neurons
in the network fire synchronously for Nc � 2100. Further
investigation shows that the transition from a background
activity state to a SF state occurs if the average synaptic
strength of the network is greater than 0.04. The time for this
transition is about 0.80 for Nc = 2400, 1.01 for Nc = 2300, 1.26
for Nc = 2100, and 1.72 for Nc = 1800. No transition has been
observed for Nc � 1700 since the average synaptic strength
of these networks is smaller than 0.04 in our simulations.
SF can also occur in networks with inverse STDP learning by
choosing appropriate parametric values in Eq. (9), in which
the relative timing of spikes in a pre- and a postsynaptic
cell is reversed. In Fig. 3, we show the synchronization order
parameter for a network with the inverse STDP learning rule at
various developing stages (Nc = 500, 1000, 1700, 1800, 2100,
and 2400). Similar to the results for networks with STDP
learning, there is no enhancement in network synchronization
at early developing stages (Nc � 1700). A steady enhancement
of network synchronization is observed for Nc � 1800.
For Nc � 2100, all neurons in the network fire synchronously
at the network oscillation frequency.
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FIG. 3. The time dependence of the order parameter of network
SF (�s) in the computer simulations for networks with inverse STDP
learning and 500 Nc � 2400.

To further study the synchronizing activities of neuron firing
at various developing stages, in Fig. 4, we show typical time

series of neuron firing in a network of 50 neurons in the
recall phase. For Nc � 1800, synchronous firing of neurons
in the neural network is clear. As Nc increases, more neurons
fire synchronously and the time correlation of firing among
neurons becomes stronger. In addition, we observe alternate
firing in two groups of neurons for 1800 � Nc � 2000. For
Nc � 2100, all neurons in the network fire synchronously.
Figure 5 shows various neuronal states in the recall phase for
Nc = 1800 [Fig. 5(a)] and for Nc = 2400 [Fig. 5(b)]. In the
case of Nc = 1800, as shown in Fig. 5(a), neurons 1 and 2
belong to the same group of neurons that fire synchronously,
while neuron 3 belongs to another group of neurons that
fire alternately. Occasionally a number of neurons switch
from one synchronous group to another as in the case of
neuron 4. As Nc increases, more neurons switch between
these two synchronous groups, and more frequently. When the
switching frequency is high enough, the two groups become
one synchronous group and all neurons fire synchronously.
This phenomenon of overall SF occurs for neural networks
with Nc � 2100, and neurons fire at the network frequency.
However, for a network with a lesser number of connections,
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FIG. 4. The firing events of 50 neurons in the recall phase (4.9 � t � 5.0 s) for networks at different developing stages (Nc = 1800, 2000,
2100, and 2400). Clustered SF is observed for Nc = 1800 and 2000, and overall SF is observed for Nc = 2100 and 2400.
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the firing frequency of neurons could be considerably smaller
than the network frequency when the network breaks in a
number of neuron clusters. This type of clustered oscillation
has been observed from in vitro experiments, in which the
network frequency is about 30–40 Hz, and the firing frequency
of neurons is less than 2 Hz [43,44].

C. The synchronization frequency of neural networks

Fast network oscillations (from 40 to 200 Hz) have been
observed in both in vivo and in vitro experiments [44,45].
In Sec. III B, we have demonstrated a fast synchronous
oscillation of neural networks that is driven by noise. The
SF frequency is found to vary at different developing stages.
In Fig. 6, we show the dependence of the synchronization
frequency of neural networks on the number of connections
[Fig. 6(a)] and culturing time [Fig. 6(b)] of the network for
both STDP and inverse STDP learning rules. As shown in
Fig. 6(a), fast oscillation is observed for networks with Nc �
1800, and the network oscillation frequency increases linearly
with Nc [22]. Since the number of synaptic connections of a
network grows logarithmically with the culturing time of the
network as shown in Fig. 1, the network SF frequency is found
to increase logarithmically with culturing time in Fig. 6(b). Its
time dependence can be fitted to a logarithmic function: f =
f0 + c log(T /Tc), where f0 is the minimum synchronization
frequency, Tc is the onset time for SF, and c is a constant.
Our simulation results are consistent with recent experimental
observations [22], in which a logarithmic time dependence of
SF frequency is observed in neuronal culture samples prepared
from the cerebral cortex of embryos of Wistar rats. We note,
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FIG. 6. Network SF frequency as a function of the number of
connections (a) and of culturing time (b) for networks with STDP
learning or inverse STDP learning.

however, that the characteristic network bursting rate in this
experiment is about 1 Hz, which is considerably smaller than
the network SF frequency (about 100 Hz) observed in our
simulations.

A number of factors could affect the network SF frequency.
In our work, we have shown the linear dependence of the SF
frequency on network connectivity. Another factor, that could
vary the SF frequency, is the strength of noises present in
the network. For example, it has been shown that variation
in the strength of channel noise could shift the firing rate
of neurons from 1000 to 1 Hz [29]. Here we investigate
another effect on the network SF frequency resulting from
time delay in signal transmission. Time-delayed coupling
has been shown to enhance neural synchrony in networks
of Hindmarsh-Rose neurons [46]. Similar enhancement of
neural synchrony by time delay in signal transmission has
also been observed in networks of HH neurons, as shown in
Fig. 7. In particular, this enhancement of neural synchrony is
most obvious for a network with delay time in the range of
8–20 ms, where the equilibrium order parameter 〈�s〉 reaches
its maximal value. Such an enhancement in neural synchrony
is due to the increase of synaptic strength under learning
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FIG. 7. Time averaged �s (〈�s〉) in the recall phase as a function
of delay time of signal transmission for neural networks with STDP
learning (circles) or inverse STDP learning (squares). The inset shows
their average synaptic strength as a function of delay time.

rules in Eqs. (8) or (9). As seen in the inset of Fig. 7, the
average synaptic strength of the network has larger values
with delay times in the range of 8–20 ms. In addition to the
enhancement effect on network synchronization, time-delayed
coupling also changes the network SF frequency, as shown
in Fig. 8, since signal transmission among neurons takes
a longer time for a larger delay time. The data fitting in
Fig. 8 shows an exponential decrease of SF frequency with
delay time for networks with STDP or inverse STDP learning
rules. This delay time in signal transmission is proportional
to the distance over which synchronization occurs. Therefore
our simulation results are consistent with the experimental
observation that short distance synchronization tends to occur
at higher frequencies, while long-distance synchronization
occurs at lower frequencies.
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of synaptic modification, A+ and A−, at various values of Nc for
networks with STDP learning (a) or inverse STDP learning (b).

D. Phase diagram of network synchronization

So far, we have demonstrated that SF can be induced by
noises in a growing neural network with STDP or inverse
STDP learning rules. To observe network SF, we have
deliberately chosen appropriate parametric values such that
the average network synaptic strength increases with time. For
a network of HH neurons, the transition from a background
activity state to a SF state can occur for 8 � T0 � 21 ms
and Nc � 1800 provided that proper values of A+ and A−
in Eqs. (8) or (9) are chosen. The phase diagrams of network
synchronization are shown in Fig. 9 for networks with a STDP
learning rule [Fig. 9(a)] or an inverse STDP learning rule
[Fig. 9(b)], where the delay time is set to 9 ms. For networks
with the STDP learning rule, the condition for the existence
of a SF state is A+ − A− � 0.7 for Nc = 1800 and is A+ −
A− � 0.4 for Nc = 2400. For networks with the inverse STDP
learning rule, the condition for the existence of a SF state is
A− − A+ � 0.7 for Nc = 1800 and is A− − A+ � 0.4 for
Nc = 2400.

IV. CONCLUSIONS

In conclusion, we have applied a HH model of neurons to
study the noise-driven synchronization behavior in a devel-
oping neural network by considering two types of learning
rules. The constructed neural networks in our simulations
exhibit the small-world properties that have been observed
in several neural networks. Stable network SF can occur for
networks with Nc � 1800 (or network connectivity greater
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than 0.73) in the case of T0 = 9 ms. Our computer simulations
show that the network SF frequency increases linearly with
network connectivity, and decreases exponentially with delay
time of signal transmission. Alternatively, the network SF
frequency increases logarithmically with culturing time of a
developing neural network, and decreases with the distance
over which synchronization occurs. These conclusions are
consistent with experimental observations. For 1800 � Nc �
2100, clustering of neurons in their SF activity is observed and
the firing frequency of neurons is only half of the network
firing frequency. For Nc � 2100 (or network connectivity
greater than 0.86), all neurons fire synchronously at the
network frequency. The firing activity of the network can be
described by an order parameter 〈�s〉: an overall SF state
characterized by 〈�s〉 = 1 for Nc � 2100, a clustered SF

state characterized by 0.75 � 〈�s〉 < 1 for 1800 � Nc <

2100, and a background activity state characterized by 〈�s〉 <

0.75 for Nc < 1800. Finally, we investigate the phase diagram
of network synchronization by varying the values of A+ and
A− at various stages of network development. By choosing
appropriate parametric values, we show that similar network
SF activities can be observed for networks with STDP learning
or inverse STDP learning.
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