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Monte-Carlo simulations of polymer crystallization in dilute solution
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Polymer crystallization in dilute solution is studied by three-dimensional Monte-Carlo simulations
using the bond fluctuation model. We study monodisperse chains of moderate length, intended to
model recent experiments on monodisperse alkanes with length of a few hundred carbon atoms, and
we also investigate chain folding of very long polymers. For monodisperse flexible chains we
observe both extended-chain and once-folded-chain crystals. The simulations illustrate the range of
defects and irregularities which we expect to find in polymer crystals. The roughness of the top and
bottom surfaces of the lamellae is measured. Chain ends can be seen as cilia emerging from the
surfaces. Folds are found to occur with approximately equal frequency on top and bottom surfaces.
Although most chain folds are aligned perpendicular to the growth direction, a significant number
of chains folding parallel to the growth direction are found as defects. The simulation includes a
chain stiffness parameter which has an important effect on chain folding kinetics. When chains are
semi-flexible the crystals formed are extremely irregular with many defects including holes and
blocks of extended chains within the folded chain lamellae. For very long chains we show that the
lamellar thickness is determined by the folding kinetics. The thickness diverges as the temperature
approaches the infinite chain melting point. ForT—T,,, the thickness is close to the theoretical
minimum thickness, which indicates the dominant importance of the entropic barrier in
crystallization. © 1998 American Institute of Physids$0021-960808)52510-X

I. INTRODUCTION in polydisperse systems. However, recent experiments on
monodisperse alkane chathshow anomalous growth rate
The study of polymer crystallization has received con-of crystallizatiot®'* and a marked preference for “integer
siderable attention since the discovery of crystallization offolding_”15 Crystallization of monodisperse alkanes has re-
thin lamellar polymer crystals in solution in 1957. For a re-cently attracted considerable interest both experimentally
cent review see Ref. 1. In general, polymers can form twoand theoretically. For temperatures lower tign(the crys-
dimensional lamellar crystals in both melts and solution. Theallization temperature of extended chain crystalthe
crystal thickness decreases continuously with supercoolingrowth rate initially increases with supercooling, passes
for polydisperse polymer chains, and is mainly determinedhrough a maximum, and falls to a minimum at a temperature
by folding kinetics rather than by energetics: although thickT, (the crystallization temperature of folded chain crystals
crystals are thermodynamically more stable than thin crysBelow T,, the growth rate increases sharply with supercool-
tals, thin crystals can grow faster than thick crystals at largéng. Real-time small angle x-ray scattering experiments show
supercoolings. that extended chain crystals form at temperatures betWween
There are many attempts to explain the physical originandT,, and once-folded chain crystals form at temperatures
of polymer crystallization. The secondary nucleation theorybelow T,.'* This anomalous temperature dependence of
of crystallizatiorf is a coarse-grained model which correctly growth rate is interpreted by the so called “self-poisoning”
predicts the growth rate of crystallization for polydisperseeffect, which is due to wrongly folded chains on the crystal
polymers. The nucleation barrier has now been recognized teurfaces preventing the adsorption of further correctly posi-
be entropic. Various modifications of the nucleation theory tioned chains. Sadler and Gilmer modified their row model
have been applied to study morphology of the cry§tdl, by including a preferred thickness which seems to give cor-
fractionation! and layer thickenin§. An alternative fine- rect trends of the growth rate in monodisperse systéms.
grained model takes a rather different approach involvingAithough this model might not provide a true representation
rough growth surfaces and molecular pinnifg: Crystal  of polymer crystallization, it does mimic the “self-poisoning
thickness and growth rate calculated from this model are irffect” in crystal growth.
agreement with results of the nucleation theory. The above Previously we presented a motfeio describe the self-
models provide simplified views of polymer crystallization. poisoning effect in monodisperse alkane crystallization and
A more realistic picture of polymer crystallization is desired the minimum in the growth curve. The one-dimensional ver-
to include both chain connectivity and entropic barrier. sion of this model is simple enough to solve the growth rate
The discussion above applies to polymer crystallizatioranalytically. The two-dimensional version, representing the
growth of one single lamella, was studied by Monte-Carlo
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lattice site may be occupied by more than one monomer.
Each attempted move is to move one monomer by one lattice
site in one of the 6 lattice directions. The move is rejected if

the new position breaks the excluded volume constraint, or if
= the new bond vectors between the monomer which was
moved and its neighbors are not contained in theBséthe

q - | rel——T P |
LY 1 1 setB is chosen to satisfy the constraints of both excluded
7 e o volume between monomers and topological entanglement
N A between chaingi.e., two chains cannot pass through each
N4l | it ) othep. If any other bond vectors were added to this set, the
1 t chains would become “phantom” chains.
. In order to model crystallization we have added attrac-

tive interactions between chains which are different from
those used in the previous studf@$?Polymer crystals con-
tain arrays of parallel stems held together by short range

o attractive forces. This is modeled by an attractive interaction
A / of energy— 1 unit whenever there are two parall(2,0,0
/ / bonds (non-successiyeon neighboring sites. In addition
“ there is an energy of e whenever there are two successive
parallel P(2,0,0 bonds on the same chafsee Fig. 1 This

additional energy is to model the energy difference between

gaucheandtrans bonds of polymer chaingor equivalently
FIG. 1. 2 chains of 8 monomers are shown. All monomers are shown in oN¢he kink energ)/

plane for convenience although the simulations are doneDin ABttractive Si lati ied t at tant t T
interactions of strength 1 occur whenever there are two par@li2)0,0 iImulations are carried out at a constant temperature

nonsuccessive bonds on neighboring lattice sites. The bond may be on tesing the Metropolis algorithm. If any attempted move of
same chain or different chains. An attractive eneegg also added when- monomers satisfies the excluded volume constraint and the
ever two successive bonds on the same chain are parallel and are boffxw bond vectors are still in the allowed set. then the move
P(2.00. is accepted with probability

three-dimensional Monte-Carlo simulations using the bond- w=min[1,exg—AE/T)]. (2
fluctuation model. The method of Monte-Carlo simulations

for polymer crystallization is described in Sec. II. In Sec. lll, The two parameters in the model are the temperafuaad

we discuss the results from Monte-Carlo simulations forihe stiffness parameter. If T/e>1 andT is not much less
monodisperse flexible polymer chains at different temperathan 1, the chain behaves like a self avoiding walk/é< 1
tures. The effect of chain stiffness of polymers is discusseghe chain will be rod-like. In order to determine appropriate
in Sec. IV. In Sec. V, we study the crystallization of ex- harameter ranges for the simulation, we measured the angu-
tremely long polymer chains in dilute solution. Section VI |3r correlations between nearest neighboring borigy 4nd

shown in Fig. 2, wheref;=(u;- Ui 1)en, f2=(Ui- U1 2)en,
Il. ALGORITHM OF MONTE-CARLO SIMULATION andu; is the unit vector of thé-th bond. The angular bracket

The bond fluctuation model is an efficient method of{ )en indicates an ensemble average over all possible con-
simulating the dynamics of large numbers of polymer chainsfigurations weighted by their Boltzmann probabilities. Figure
It was originally introduced by Carmesin and Krenfefor 2 shows that foif/e>0.3 there is almost no change in these
studying dynamics of polymer chains in various spatial gdi-correlations. Bothf; and f, have small positive values at
mensions. Since then it has been used for investigation of th@rge T/e which are due to excluded volume constraints only
crossover between Rouse and reptation dynaiiider but not the stiffness energy term. Fbfe<0.3 the chain is
studying interdiffusion of polymer blend8,and the dynam-  Significantly stiffened by the stiffness energy term. In all

ics of polymer melts near glass transition. simulations presented in this paper€.5/e<0.7 so that the
Each monomer in the model occupies:@2x 2 cube of ~ chains in solution behave like flexible self-avoiding walks.
sites on a cubic latticésee Fig. L The set of allowed bond The parametee has another role in this model which is
vectors is actually more important than controlling the stiffness of the
chains in solution, and it is for this reason that we include it
B=P(20.0UP(21,0UP(2,1.)UP(3,0,0UP(3,10). in the simulation. The value & affects polymer crystalliza-

@) tion in the following two waysi{1) it lowers the free energy
where P(a,b,c) stands for the set of all permutations and of the crystals, and therefore we expect that the crystalliza-
sign combinations of-a, =b, £c. The number of configu- tion temperature of polymeric crystals increases witk) it
rations per bond ig=108. The length of one bond can take penalizes folding of polymer chains, and we expect a differ-
any one of the 5 values ¥5,/6,3,/10 (in units of lattice  ent folding kinetics at large values ef The second point is
spacing. Chains satisfy the excluded volume constraint: noparticularly important for temperatures beldly since the
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FIG. 2. Angular correlations between nearest neighboring bofigsand 0 5000 10000
next nearest neighboring bond§,) as a function as/e. For T/e>0.3, Time (104MC steps)

both correlations are not affected by the stiffness paraneeteor T/e<0.3,
the persistence length of polymer chains is longer than the bond length.

FIG. 3. Growth rate, attach rate, and detach rate of polymer chains with
e=0.6 during crystallization al =0.45. The attach rate increases sharply

resulting crystal is determined by the competition betweergfter nucleating an additional layer @t-10° MC steps. The growth rate
folding kinetics and chain stiffness overshoots right after the nucleation due to the concentration fluctuation of
' polymer chains. The small attach rate indicates a complicated folding kinet-
ics of polymer chains near the crystal surface.

Ill. CRYSTALLIZATION OF MONODISPERSE
FLEXIBLE POLYMER CHAINS

As discussed in the Introduction, for monodisperse al-of polymer chains with stiffness parameter=0.6 at
kane chains “integer folding” of polymer crystallization is T=0.45. The attachment and detachment rates are defined by
observed in various experiments. In this section, we simulatéhe number of chains which have successfully attachédrto
the folding kinetics of polymer crystallization for polymer detached fromthe crystal surface divided by total time since
chains with chain stiffness parameter 0.6 at temperatures the beginning of the simulation. A monomer is counted as
betweenT; and T, and at temperatures belol. being part of the crystal if at least 3 of the sites which would

Simulations were done in a box of A0.0X 32 with the  be nearest neighbors in the crystal are occupied by mono-
periodic boundary condition in botk- and z-axes, and the mers. A chain is counted as being attached to the crystal if
hard wall boundary condition ig-axis. Chains in the crystal more than half of its monomers are in the crystal. We count
are aligned in the direction and crystal growth is in the  the number of attacheddetachedl polymer chains every
direction. In the box, 10 polymer chains with 8 effective 2x 10* Monte-Carlo(MC) steps(where one MC step repre-
monomers per chain were deposited randomly, and hence tlsents an average of one attempted move per monpmer
concentration of polymer chains i$=0.006. The initial therefore the measured values are slight underestimates, due
nucleation will not be discussed in this paper, and we uséo the possibility of a chain attaching and detaching in the
two different seeds to study the growth of crystals aftersame time period. The growth rate is the difference between
nucleation. The seed can be a layer of extended clisged  attachment and detachment rates. This is not affected by the
thicknesd e~ 8 monomersor once-folded chaind {..& 4 possible cancellation of attaching and detaching of polymer
monomergin thex—z plane. During the simulation, polymer chains. The initial growth rate is very small due to the diffi-
chains are constantly adsorbed or released from the crystallty of nucleating an additional layer on a flat surface. The
surfaces(growing from the seed The size of the box in attachment rate increases sharply after the nucleation of an
y-direction increases according the propagation of theadditional layer due to the increased surface roughness. At
growth front of the crystal so that the total volume of accesdong times, the average growth rate is about 0.005 chains per
sible space for polymer chains is roughly fixed. Additional 10* MC steps. The growth rate is much slower than the chain
polymer chains were added into the box as soon as the nunattachment and detachment rates, indicating that there is a
ber of free polymer chains in solution is less than 10, so thalarge amount of reorganization of chain configurations going
the concentration of polymer chains is approximately con-on at the crystal surface, and that each chain moves on and
stant. off the surface several times before finding its final position.

In Fig. 3, we show the growth rate, attachment and deThe chain attachment rate is itself very sl¢anly 0.07 per
tachment rate as a function of time during the crystallizationrl0* MC steps$, which emphasizes the very large number of
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FIG. 5. Density profile of an extended chain crystal as a function of distance
away from the center of the seed. The seed layer extends frérto 7.

the center of the seed. The density profile of the extended
chain crystal decreases slowly to zero at the boundaries due
to surface roughness and cilia.
FIG. 4. Monte-Carlo simulation of an extended chain crystal of chains of Figure 6 shows the surfacé&) and bond configurations
length 8 effective monomers grown from an extended chain sgeda (B) of a folded chain crystal, forming &=0.4. The simu-
“space filling” representation which shows surface clearly, &8 an al- lation was performed with a seed of fold chains and all folds
ternative representation of the same configuration, which shows the bon .
configurations. In the simulatiof;=0.45 ande=0.6. Both surface rough- on the bottom surface. However, we also consider the crys-
ness and cilia of the crystal can be easily seen. The seed layer is at the rdallization with a seed of extended chains at the same tem-
of this view (not shown and the growth directiony( axis) is toward the  perature, and the resulting crystal is shown in Fig. 7. This
viewer. initial condition can be achieved by first quenching the sys-

tem to a temperature betwe&p andT,, and then quenching

it again to a temperature below. For the resulting folded
individual monomer moves which are involved. chain crystal shown in Fig. 6, the surface roughness is about

In the Appendix, we estimate thal;=0.48 and 0.47+0.07 (lattice spacing The number of folds parallel to

T,=0.41 for stiffness parameter=0.6 and concentration of the seed is 53 on the top surface and 48 on the bottom sur-
polymer chains¢=0.006. Figure 4 shows the surfac®s)  face. The number of folds perpendicular to the seed is 11 on
and bond configurationéB) of an extended chain crystal, the top surface and 13 on the bottom surface. Although the
forming at T=0.45. The simulation was performed with a symmetry between top and bottom surfaces is deliberately
seed of extended chains. No crystallization is seen if the seégkoken by the initial condition, the resulting crystal restores
has only half-length since a folded chain crystal is unstablghis symmetry immediately after 5 layers. Here we define the
at this temperature. For the crystal shown in Fig. 4, the surasymmetry of folding bya(l)=(ny; — Ny )/ (Npj +n¢y),
face roughness is about 1-8.05 (lattice spacing Here we  wherel is number of layers in the crystal, amg | andny
define the surface roughness as the standard deviation of tBge the number of folds parallel to the seed on the bottom
surface position of each stem, i.e.= \(zZZ—7%), wherez is  surface and the top surface respectively. As shown in Fig. 8,
the average of surface position of each stgm(j-th stem  for the folded chain crystal growing from a seed of folded
on thei-th layen. A monomer is considered to be part of the chains, the asymmetry drops to zero very quickly due to
crystal if more than three of its nearest neighboring sites arkinetics. For the folded chain crystal growing from a seed of
occupied by other monomers,; is calculated by consider- extended chains, the asymmetry of folding is essentially zero
ing only those monomers in the crystal but not those in ciliabut there are fluctuations due to finite size effects. In this
There are no folded chains in this crystal. We expect that thexample 19% of chains are folded forward, i.e., perpendicu-
surface roughness will become smaller at higher temperdar to the seed, which is surprisingly high. These forward
tures since rough extended chain crystals are less stable théoids can occur if the neighboring stems of a half attached
solution. The layer thickness of the above extended chaichain on the same layer are occupied by other chains. There-
crystal is 7.65 monomers which is close to the full chainfore the number of folds perpendicular to the seed should
length. In Fig. 5, we show the relative densitbpormalized to  increase with concentration. We suspect that the simulation
1) of the extended chain crystal. The origin is chosen to bajives a much larger fraction of forward folded chains than in
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FIG. 6. Schematic representations of surfaggsand bond configurations
(B) of a folded chain crystal obtained from the Monte-Carlo simulation with
a seed of folded chains @t=0.4. The stiffness parameter of polymer chains
is e=0.6. Both surface roughness and cilia of the crystal can be easily seel
Folds occur on both top and bottom surfaces. Defects can also be seen
where the fold direction is parallel to the crystal growth direction. FIG. 7. Schematic representations of surfagesand bond configurations

(B) of a folded chain crystal obtained from the Monte-Carlo simulation with

a seed of extended chains. Temperature and chain stiffness are as in Fig. 6.

. . . The chains have begun to fold already in the first layer and after a few layers
real crystals, but it would nevertheless be interesting to try tQ, foided chain crystal similar to Fig. 6 is seen.

measure this experimentally.

The layer thickness and relative density of folded chain
crystals are shown in Figs. 9 and 10. In Fig. 9, the thicknes$or folded chain crystals to form at this value ®ft will also
of each layer is roughly 4 monomers for the folded chainbe possible for folded chain crystals to form with lower val-
crystal growing from a folded chain seed. For the foldedues ofe and the same chain length, or for longer chain
chain crystal growing from an extended chain seed, the avengths at the same value ef However we might expect
erage layer thickness decreases from 8 monomers to 4 monohains with largere to have difficulty in forming folded
mers. In Fig. 10, for the crystal growing from a folded chain chain crystals.
seed, the density profile of the crystal has sharp boundaries at Figure 11 shows the results of a simulation using a
both top and bottom surfaces. The tails of the density profildolded chain seed witk= 0.8, and withT kept at 0.4 so that
are due to cilia. For the crystal growing from an extendedT/e is reduced to 0.5. The single chain is still flexible ac-
chain seed, the boundaries are much less sharp. The densitgrding to Fig. 2, and the angular correlation is hardly any
profile of the crystal is due to a mismatch between the lefdifferent from the previous case. However there is a substan-
and right halves of the crystal by one monong2rlattice tial difference in the crystal propertigsf. Figs. 11 and §
spacingsas shown in Fig. 7. Moreover, the density profile is There are now many defects in the crystal including some
not centered at the origin since the major half of the crystal id10les and some extended chains within the folded chain crys-
located above the center of the seed. tal. The average thickness increases from 4 at the seed to
about 5 after 10 layers due to the presence of these extended
chains. This temperature still lies below, so that we
should still expect folded chain crystals. If we begin with an
extended chain sedthickness 8the mean crystal thickness

In the previous example of folded chain crystallization decreases to about 6 after only a few layers.
e=0.6 andT=0.4, so thaflT/e=0.67. This is in the region Figure 12 shows the density of profiles in this case.
where the chains appear to be behaving as flexible selfWhenlg =4 there is a similar pattern to Fig. 10 due to
avoiding walks in solutior(see Fig. 2 Since it is possible mismatch between two blocks of crystal at different heights.

IV. EFFECTS OF CHAIN STIFFNESS PARAMETER ON
CRYSTALLIZATION
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FIG. 8. Folding asymmetry of folded chain crystals growing from a sym- ¢y 10, Density profile of folded chain crystals as a function of distance

metric seed and an asymmetric seed. In both cases, the folding asymmetty,, from the center of the seed. For the crystal with a seed of folded

becomes smaller as the crystals grow. chains, the density profile has sharp boundaries. For the crystal with a seed
of extended chains, the density profile is due to a mismatch of two half-
folded chain crystals.

Whenl .. 8 the profile is extremely broad. Both of these
profiles represent extremely irregular crystals in comparisoty. CRYSTALLIZATION OF EXTREMELY LONG
to those obtained wite=0.6. This indicates that the crys- POLYMER CHAINS IN DILUTE SOLUTION

tallization process in the simulation is extremely sensitive to

the rates of the different types of Monte-Carlo moves which In the crystal_hzaﬂon of mqn9d|sperse polymer' chains,
) L .~ the chain length is a characteristic length scale which deter-
occur. Increasing generally makes reorganization of chain

! . i mines the crystal thickness, i.e., a marked preference for in-
configurations on the surface more difficult, and leads tq Ll L X
teger folding is observed. For infinitely long polymer chains

more irregular, less energetically favorable configurations : . . -
being frozen into the crystal. or polydisperse polymer chains, there is no charact_erlsnc
length scale of the system and we expect a continuous
change of crystal thickness when the temperature varies. In
this section, we study the crystallization of long polymer
chains in dilute solution in which case the chain length of
polymers is much greater than the crystal thickness. The
simulations were done by depositing a polymer chain on a
5 @ folded chain seed . seed and allowing it to crystallize due to attraction between
+ extended chain seed bonds. In a very dilute solution, there is only one chain at-
tached on the surface of a crystal at a time. In the simulation,
R . a long polymer chain is treated in such way that it consists of
. a crystallized, folded chain part plus a dangling end of a few
-, T effective monomers. An additional monomer is addedoto
s | | removed from the dangling end whenever a monomer is
LICIPUR IR N . crystallized (or dissolvedl, such that the number of mono-
Fe®e®00e0®0 0808 4,41 mers in the dangling end is constant. Another chain can land
on the surface of the crystal only when the previous chain
has crystallized. This would correspond to a terrace growth
= . of the crystal. This simulation results in a crystal with one
long chain in each layer. These simplifications have been
introduced into the program in order to speed it up. Dealing
ol v v with simultaneous motion of many long chains would be too
0 5 10 15 20 slow to simulate with our currently available computers.
layer number Figure 13 shows the resulting crystal from simulation at
FIG. 9. Layer thickness of folded chain crystals growing from a seed ofT:O'55 ande=1.0, and the thickness of the seedJg.~6

folded chains and a seed of extended chains. The thickness of both crystdonomers. The average thickness of this crystal is 5.6 mono-
is about 4 monomers. mers. The crystal surfaces are rough and there are many

10 LN B B B NN B B B B R SN BN BN N RN BEN BN R

layer thickness (monomers)
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FIG. 12. Density profile of folded chain crystals as a function of distance
away from the center of the seed. Simulations were perform@&e-&t.4 and
e=0.8. For the crystal with a seed of folded chains, the density profile is due
to a mismatch of two half-folded chain crystals bridged by extended chains.
For the crystal with a seed of extended chains, the density profile shows a
broad peak. Both density profiles are much broader and the boundaries are
much less sharp than those in Fig. 10.

perimented with varying the length of the dangling end and
found that increasing the length led to very much slower
FIG. 11. Schematic representations of surfa@esand bond configuration simulations bl_Jt did not change the chain conflguratlons_at the
(B) of a folded chain crystal obtained from the Monte-Carlo simulation with fold surface, i.e., large loops almost never occurred in the
a seed of folded chains &t=0.4. The stiffness parameter of polymer chains simulations. It was also found that occasionally very short
is e=0.8. Both extended chains and folded chains present in this crystalstems became incorporated into one Crysta| |ayer_ These be-
The crystal also contains a few holes. have as defects which strongly slow down the rate of growth

loops on the surfaces. Large loops are possible if we use a
long dangling end. Figure 14 shows the layer thickness o
crystals growing from three different seeds of thickness 5, 6
and 7 monomers respectively. As demonstrated in the Sadle
Gilmer modeP~! the average layer thickness is determined
by the competition between an energetic driving term and ai
entropic barrier term. Fdi..=5 monomers, the layer thick-
ness of the crystal increases as the crystal grows due to tt
energetic driving term. Fotg .76 monomers, the layer
thickness of the crystals decreases as the crystals grow due
the entropic barrier term. The dependence of the averag
crystal thickness on temperature is shown in Fig. 15. The
average thickness increases with temperatuaad diverges
at T=T,=0.675. The theoretical minimum stable thickness
(I min) for the crystal is calculated in the Appendix. The dif-
ference between the average thickness lgpfddecreases as
T approached ., . This is because the barrier term becomes
more important at high temperatures, while the driving term
becomes more important at low temperatures. Therefore, fc
T close toT.., the average thickness of the crystal is ap-
proximatelyl i, - , _ _ _

Since the length of the dangling end is kept fied and i1, 1% Schenete presenaton of bend confatons of it b

relatively short, there iS_, no_poss_ibi_lity of forming large 100PS chains(one chain per layer The stiffness parameter of polymer chains is
at the fold surface which in principle could occur. We ex- e=1. The crystal has a rough surface with many loops.
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rule for removal of defects. If the growth surface of the crys-

8 SRR AL AL tal contained stems which were much smaller thap, and
&=-—0[_, =5 monomers ] which remained so for a long time, we increased their length
- ) | = 6 monomers ] to the average stem length of the layer. We note that the
- &=—-4 ] =7 monomers growth rate of the crystal will be greatly affected by this
N ¥ average thickness . simplification, and therefore a more realistic mechanism for
g B ] thickening those short stems would be required if we wished
E _3\ A to measure the growth rate. However we checked that this
g v \!f"\ ‘i s ] procedure did not have much effect on the crystal thickness.
%’6 % \ [3‘&\1\\ fA\ P A 2{@ 3 For this reason o_nly results on crystal t_hickness and not on
_g R . ) ; o : . growth rate are given here for long chains.
2 Fi STRWAATCAYNEAY IS ST ]
‘é : 2 I\Q‘ é\}goﬁm \ G{ ;9‘@4’ Y gzm’\gﬁ Eé»a ] VI. DISCUSSION AND CONCLUSIONS
=5 'J@ b S Ay Y 3 In this paper, we have used the three-dimensional bond
- . fluctuation model to study the crystallization of monodis-
C ] perse polymers and extremely long polymers in dilute solu-
] tion. We believe that these are the first simulations of crys-
4 AT TR TN T tallization which take into account realistic motions of chain
0 10 20 30 40 50 segments and which deal with the simultaneous motions of

layer number many chains. Previous simulations such as those of Sadler
and Gilme? and our own previous wotk only considered
FIG. 14. Layer thickness of crystals crystallized from long chains with alattice sites in the crystal as occupied or empty. They did not
seed of thickness,.s~ 5, 6, and 7 monomers. Simulations were done at properly account for the kinetics of the chains as they adsorb
T:O.55_ ande:_l. T_he average thickness is_ 5.64 monomers. If the initial {5 the CryStaI. Alternative approaches using molecular
23}eudstt2 'tcclf Tﬁessp'rsefsé'r?gélyvzﬂgw or above this value, the thickness gr"’ldualIfflynamic§3 deal_with atomic scale motions rgalistigally but
cannot cope with large scale phenomena involving many
chains. The level of resolution given by the bond fluctuation
of the next layer past this point. In a real crystal we wouldmodel is therefore very useful for this problem. Each bond
expect some degree of chain sliding and evening out ofiector of the model represents a length of the real chain
monomers between adjacent stems. The probability for slidapproximately equal to its persistence length. Such a coarse-
ing a stem within the crystal in this simulation is extremely grained model can greatly improve the speed of simulations
small, so that short stem defects can never heal themselvesithout losing important information.
In order to prevent the simulation getting stuck at such de- The dominant driving force of the crystallization comes
fects for extremely long times we introduced the following from the short range attraction between polymer segments.
We model this attractive force by an interaction between
parallel bonds, rather than between neighboring effective
monomers. This type of interaction is important for polymer
15 T T T T T T T T crystallization since the bond—bond interaction breaks the
i ! 1 isotropic symmetry and leads to the formation of a lamellar

—_ 1
- L * 1 crystal. On the other hand, the monomer—monomer interac-
!
I
)
/

¢ average thickness . tion does not break the isotropic symmetry and hence a
. three-dimensional crystal is preferred. We experimented with
10 | ° — a range of models including only monomer—monomer inter-
s . | - action and combinations of monomer—monomer and bond—
s / - bond interactions. All these tended to lead to irregular three
| / - dimensional aggregates with no preferred chain orientation.
K ° / - For simulations with interactions including both monomer—
5k o ° / 4 monomer and bond—bond attraction, we always see three-
7 dimensional crystals consisting of domains of two-
- dimensional crystals in three directions as the crystals grow.
- Bond—bond interaction alone was therefore used for the re-
sults presented here. It has been shown that lamellar crystals
ol e are observed in various experiments, which shows the impor-
0.4 0.5 0.6 tance of chain connectivity. Our model has properly consid-
T ered both the entropic barrier and chain connectivity during
polymer crystallization.

FIG. 15. The average thickness of crystals crystallized from extremely long Our model also confirms the previous idea of the self-
chains as a function of temperatufe The data are results from Monte-

Carlo simulation of crystallization of extremely long chains. The dashed linePOiSONINg effect on the cry;tallization of monodisperse p0|y.'
is a theoretic curve of the minimum growth thickness of the crystal. mers. Both extended chain crystals and once-folded chain

thickness (monomers)
°
~
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crystals are seen in our simulations. The temperature range
for both crystals to grow are estimated in the Appendix, and
are found to be consistent with the simulation results. Fur-
thermore, our simulations show that the folding kinetics of 55
polymer chains during crystallization is also related to the
stiffness parameteior kink energy of polymers, in addition
to the global flexibility of polymer chains. In our simula- 20
tions, we have shown that polymer chains with small stiff- .
ness parameter can lead to a once-folded chain crystal with §-
5

30 T T T T !

® exact values
approximation

sharp boundary and few defects at temperature bélgw

However, polymer chains with a large stiffness parametel
form irregular crystals with both folded and extended chains. 10
Since the extended chains in the crystal can bridge twc
folded chain crystals, mismatch can happen easily for sucl

—
9]
TT T [ 7T T Tt v rrTrrrerr[ryrrrrrrritg

crystals. 3
Long polymer chains can fold many times in the crystal.
The crystal thickness diverges @s»T,, . At low tempera- 0 . i : 1 .
tures, the energetic driving term is more important than the 0 2 4 6
entropic barrier term, and the average crystal thickness i number of bonds

larger than the minimum crystal thickndsg,. At high tem- _ _ _
peratures, the entropic barrier term becomes dominantly in:'C- 16 The entropy of polymer bond configurations (i.el'pas a func-

' . . tion of number of bonds. The data points from exact numerical calculation
portant and th.e average thickness is closk{p. . fit almost perfectly with the approximation in EA2).

In conclusion, we have demonstrated the importance of
folding kinetics on polymer crystallization by three-
dimensional Monte-Carlo simulations using the bond fluc- _ .
tuation model. Both entropic barrier and chain connectivityhave neglected energetic terms in the free energy of polymer
play an important role during crystallization. We have alsochains in solution since these terms have negligible effect
shown that large stiffness of polymer chains increases th@ver the range of temperatures of interest Hasewas shown
amount of defects in folded chain crystals. The characteristiéh Fig. 2. _ _ _
properties of monodisperse chains have been shown to lead The free energy of a perfect crystal is entirely energetic.
to an “integer folding” of polymer crystallization, which is For a perfect extended chain crystal with chaing gimono-
absent for extremely long chains or polydisperse chains. Mmers, the free energy per chain is
Fexm= —2n,+2—e(np,—2). (A3)
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APPENDIX: CALCULATION OF CRYSTALLIZATION or hy=4 if attraction between folded bonds is neglected. For

TEMPERATURES resulting folded chain crystals from the simulations, the

The crystallization temperaturdg and T, can be esti- number of folds of the chains on top and bottom surfaces is
mated as follows. The free energy per chain in a solution ca/Mmost the same, and we expect By<4.

be approximated by To calcul_ate‘lf1 and T_2, we compare the free energy of
polymer chains in solutionHg,) and in crystals ., or
Fso= =T INIy+TIn ¢, (A1) Fi0). The crystallization temperaturg, for an extended

whereT 'y, is the number of configurations of a self-avoiding ¢hain crystal can then be expressed by

walk of N steps N=n,,—1, wheren,, is the number of 2n,,— 2+ (n,—2)e

monomers per chajpand ¢ is the concentration of chains. T,= - . (AB)
From the theory of self-avoiding wallé,we expect that Inc+ % In(n,—1)+(npy—1)InZ—1In ¢

[ =cN*"1ZN, (A2) Similarly, the temperature for a once-folded chain crystal is
where y=7/6 in three dimensions, and should be some- 2n,—hi+(n,—4)e
what less than 108 due to excluded volume constraints. We T2= (AB)

= A - - == .
obtainedI'y by exact enumeration fdd<6, and found that In ¢+ & In(Np=1)+(np=1)In z=In ¢

Eq. (A2) fits the data almost perfectly wher=1.26 and  For n,=8, e=0.6, ¢$=0.006, and h;=3.5, we have
'Z=85.2, as shown in Fig. 16. The second term in@q4.) is  T;=0.48 andT,=0.41.

the translational entropy of the chains in the ideal gas ap- For long polymer chains, the relationship between mini-
proximation, which is reasonable for a dilute solution. Wemum crystal thicknesk,,;, and T can be expressed as
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