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Abstract

The rate at which new protein and gene sequences are being discovered has grown

explosively in the omics era, which has increasingly complicated the efficient character-

ization and analysis of their biological properties. In this study, we propose a web-based

graphical database tool, SeQuery, for intuitively visualizing proteome/genome networks

by integrating the sequential, structural and functional information of sequences. As a

demonstration of our tool’s effectiveness, we constructed a graph database of G protein-

coupled receptor (GPCR) sequences by integrating data from the UniProt, GPCRdb and

RCSB PDB databases. Our tool attempts to achieve two goals: (i) given the sequence of

a query protein, correctly and efficiently identify whether the protein is a GPCR, and, if

so, define its sequential and functional roles in the GPCR superfamily; and (ii) present a

panoramic view of the GPCR superfamily and its network centralities that allows users to

explore the superfamily at various resolutions. Such a bottom-up-to-top-down view can

provide the users with a comprehensive understanding of the GPCR superfamily through

interactive navigation of the graph database. A test of SeQuery with the GPCR2841

dataset shows that it correctly identifies 99 out of 100 queried protein sequences. The

developed tool is readily applicable to other biological networks, and we aim to expand

SeQuery by including additional biological databases in the near future.

Database URL: http://cluster.phy.ntnu.edu.tw

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article-abstract/doi/10.1093/database/baz073/5522636 by  cchen@

phy.ntnu.edu.tw
 on 27 June 2019

http://creativecommons.org/licenses/by/4.0/
https://academic.oup.com/
http://orcid.org/0000-0003-1271-3588
http://orcid.org/0000-0003-2202-2318
http://cluster.phy.ntnu.edu.tw


Page 2 of 12 Database, Vol. 2019, Article ID baz073

Introduction

In recent years, the number of new genomic and proteomic
sequences being produced in laboratories has increased by
several orders of magnitude (1, 2). This explosion of new
sequences produces a demand for methods capable of effi-
ciently characterizing these sequences and of synthesizing
this information into useful knowledge in the domains of
biological complexity and human medicine. To extract such
knowledge from large quantities of experimental data, new
methods in analytics and bioinformatics are being devel-
oped to search for correlations between the evolutionary
histories, structures and functions of protein sequences
(3–6). Computational algorithms have also been developed
for integrating various genomic and proteomic data sources
to better understand rigorously regulated cellular processes
(7, 8). With the help of more advanced computational
techniques and the general availability of high-bandwidth
networking, the sharing of data in genomics and proteomics
will likely play a significant role in current explorations of
the big picture of life.

Various public repositories of genomic and proteomic
data have been established to fulfill different purposes.
Proteomic analyses are usually more complex than genomic
analyses, and original proteomic data are less frequently
described and stored in a systematic way. Repositories of
proteomic sequences can be classified into three categories:
(i) raw data repositories, (ii) peptide/protein identification
and quantification repositories and (iii) protein knowledge
bases (9–11). Here, we focus on three databases in the
third category: UniProt, RCSB PDB and GPCRdb. UniProt
is an important hub of protein information that cross-
references >150 databases. Currently, it is comprised of
∼0.6 million reviewed sequences and 116 million anno-
tated but unreviewed sequences (12). The RCSB PDB is
an archive of experimentally determined, atomic-level 3D
structures of biological macromolecules. In all, it collects
>44 000 distinct structures of protein sequences and 10 000
structures of nucleic acid compounds (13). GPCRdb is
an information system for G protein-coupled receptors
(GPCRs), which contains data, diagrams and web tools
for GPCRs. It contains information concerning >14 000
proteins from 3547 species (14). Other public databases
provide additional GPCR data (9). Most of these databases
provide detailed item-by-item descriptions of proteins, but
they all lack intuitive, panoramic representations of the
GPCR superfamily as well as the complex relationships
between proteins. Therefore, by proper analysis and inte-
gration of GPCR data from existing repositories, we aim to
construct a graphical database of GPCRs that allows users
to intuitively and interactively explore the GPCR superfam-
ily while visualizing its high-level structure and complexity.

These techniques can also be extended to document other
biological and medical systems.

GPCRs are the largest protein superfamily encoded
by mammalian genomes. They share a common counter-
clockwise bundle structure of seven transmembrane (TM)
helices associated with heterotrimeric G proteins (15). Upon
ligand binding, the conformational changes of GPCRs acti-
vate the G protein to allosterically modulate the activities of
various downstream effector proteins; they regulate a wide
variety of physiological functions, including smell, taste,
vision, secretion, neurotransmission, metabolism, cellular
differentiation and growth, and inflammatory and immune
responses (16–18). Consequently, malfunctions in GPCR
signaling pathways can cause various diseases, including
cancer, diabetes, obesity, inflammation, cardiac dysfunction
and central nervous system disorders. An increasing number
of analyses have linked the abnormal expression of GPCRs
and their autocrine/paracrine activation by agonists to
various types of maladies in humans. For instance, it has
been experimentally demonstrated that many GPCRs could
function as biomarkers for the early diagnosis of cancer, and
the pharmacological inhibition of GPCRs could interrupt
cancer progression and metastasis (2, 19, 20). Therefore,
GPCRs play a crucial role in developing a strategy for
cancer prevention and treatment. The clinical importance of
GPCRs is further demonstrated by their current pharmaceu-
tical applications; ∼34% of the Food and Drug Adminis-
tration (FDA)-approved drugs affect GPCRs, and ∼20% of
drugs for which clinical trials were performed in 2017 col-
lectively target 66 GPCRs that currently have no approved
drugs (21). Understanding the structure, functions and
therapeutic antibodies of the remaining GPCRs, particu-
larly the ∼120 orphan GPCRs whose ligands are currently
unknown (22), could fuel the advance in GPCR-based drug
discovery.

Due to the diverse roles of GPCRs in cellular regula-
tion and signal transduction, the proper identification and
classification of GPCRs are crucial to understanding their
biological and pharmaceutical applications (23, 24). By
integrating GPCR data from UniProt, GPCRdb and RCSB
PDB and applying analytical methods such as minimum
span clustering (MSC) method and graph centrality, we con-
structed a web-based graphical database, SeQuery (http://
cluster.phy.ntnu.edu.tw), which allows users to efficiently
identify GPCR sequences and to intuitively visualize their
sequence, structure, function and centrality relationships
in the GPCR sequence similarity network. We classify our
dataset of 2841 GPCRs at three characteristic resolutions in
SeQuery based on MSC results and functional annotations
for sequences from GPCRdb and UniProt. Users can classify
a newly discovered GPCR by comparing its sequence with
those in SeQuery’s GPCR dataset. A test of SeQuery with
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the GPCR2841 dataset shows that it correctly identifies 99
out of 100 queried protein sequences and that it can provide
a bottom-up visual exploration of the sequence similarity
network by contextualizing the structural and biological
properties of individual GPCR sequences. SeQuery also
offers a top-down visual exploration of the GPCR super-
family, which shows the sequence/function relationships of
GPCRs at the three resolution levels that we identified. For
each functional GPCR family, SeQuery presents graphical
views and centrality measures. Currently, SeQuery does not
support the bulk insertion of a large number of GPCR
sequences for computer-aided analyses; however, users can
use the methods that we describe in the following section to
analyze large sets of sequences.

Materials and methods

Dataset preparation

For this study, 3105 reviewed GPCR sequences were
retrieved from UniProt in December 2018. We first
searched UniProt with the query string ‘GPCR AND
reviewed:yes’ and downloaded data of all 3653 matches.
From the downloaded data, we then used MATLAB to
isolate 3145 sequences by searching ‘G-protein coupled
receptors’ in ‘Keywords’ or ‘G-protein coupled receptor’
or ‘G protein-coupled receptor’ in ‘Protein Names’. After
verifying these sequences against published literature, we
obtained a set of 3105 GPCR sequences. Among this
set, 2841 GPCR sequences (dataset GPCR2841) were
used to construct SeQuery’s interactive graph database;
the remaining sequences were used to test the validity
of SeQuery in identifying GPCR sequences. These GPCR
sequences originate from >300 organisms and contain both
orthologs and paralogs (25). According to the annotations
in GPCRdb and UniProt, the dataset contains 2297 class A
receptors (rhodopsin-like), 182 class B receptors (secretin-
like), 68 class C receptors (metabotropic glutamate), 40
class D receptors (vomeronasal), 172 type 2 taste receptors
(T2R), 4 class E receptors (cAMP) and 78 frizzled receptors
(26). In the Supporting Information, Supplementary data
Table S1 shows the MSC cluster label, UniProt ID and
GPCRdb labels of each sequence. Every MSC cluster is
labeled by the first two or three alphanumeric characters
of the receptor group, followed by a three-digit number.
We note that the proposed graph database needs to be
rebuilt when the dataset is changed significantly, since the
calculated distance matrix from BLASTp and the detailed
network properties of the dataset may be altered by the
addition of new sequences. An expanded GPCR3105
dataset containing 3105 reviewed sequences will be released
in the near future.

Figure 1. Flowchart of the construction of the SeQuery. Hexagons

denote the source databases, and ovals denote computational methods.

Intermediate data derived during computation is represented by dashed

squares, while the generated graphs for visualization are represented

by solid squares.

Figure 2. Receiver operating characteristic and AUC in the GPCR

detection with SeQuery for the 100 tested protein sequences.

Methods

As shown in Figure 1, SeQuery’s interactive graph database
for the GPCR superfamily is constructed based on two
modules: the data module, which consists of the sequence,
function and structure information of GPCRs retrieved
from UniProt, GPCRdb and RCSB PDB; and the software
module, which contains BLAST, MSC, Cytoscape.js and
graph-theoretic methods. Future expansions will incorpo-
rate more biological data in the data module. To con-
struct the database, the sequence data are first analyzed by
BLASTp to generate the distance matrix for the sequence
similarity network of GPCRs. This distance matrix is ana-
lyzed using MSC to cluster the GPCR superfamily at three
resolution levels. The cluster information is then provided
as input to Cytoscape.js to display graphs of the GPCR
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Figure 3. Third-level minimum spanning tree diagram of the GPCR superfamily with the base dataset. Each node represents a GPCR family. The

legend shows the scheme of nodes’ colors and shapes that is used to distinguish GPCR functions annotated in GPCRdb (also labeled on the nodes).

clusters at these resolutions. Additionally, the functional
classification of GPCRdb is used to annotate the GPCR
sequences in each graph, so as to demonstrate the rela-
tionship between the sequences and functions of GPCRs
in the sequence similarity network. We also add func-
tional information from UniProt and known structures
from RCSB PDB to each graph. Finally, we calculate various
centrality measures of the sequence similarity network by
graph-theoretic methods and display graphs of each GPCR
family for different node-pair distance threshold values. The
computations performed by SeQuery are detailed in the
following paragraphs.

BLASTp, using the general scoring matrix BLOSUM62
with default parameters (27), is used to calculate the dis-
tance matrix of the network based on the GPCR sequence
data. We define the symmetrized sequence distance between
protein sequences i and j as di,j = √

Ei,jEj,i, where Ei,j is the
BLASTp E-value, a parameter that describes the expected
number of matches due to chance when searching for the
best-aligned region between sequences i and j in a database
of a particular size. This definition of sequence distance
is not unique, and other definitions have also yielded
informative predictions in analyses of protein networks
(4, 28). For detecting distant relationships between protein

sequences, we also employ the PSI-BLAST (Position-
Specific Iterative Basic Local Alignment Search Tool) algo-
rithm, which iteratively uses an updated position-specific
scoring matrix to search the dataset for new matches
(29). We similarly define the distance between distant
sequences as d′

i,j =
√

E′
i,jE

′
i,j, where E′

i,j is the PSI-BLAST

E-value.
We cluster the GPCR superfamily by applying MSC to

the distance matrix
({

di,j
})

. MSC provides a hierarchical
approach to clustering and visualizing the structure of a
complex network at various resolution levels. It does not
require hyper-parameterization nor a priori knowledge of
the number of clusters and outperforms other clustering
algorithms in efficiency and accuracy in the clustering of
large networks. These attributes make MSC an ideal tool
for network analysis in a large web-based database. A more
detailed description of the MSC algorithm is available in
our previous work (3).

In our previous analysis, the MSC clustering of pro-
tein sequences exhibited a disparity in sequence distances
between GPCR-GPCR pairs and GPCR-non GPCR pairs
(3). Here, we assume that a protein sequence is a GPCR if
its shortest distance to GPCR sequences in the base dataset
is smaller than a threshold of 0.0009, which maximizes the
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Figure 4. Minimum spanning tree diagram of the GPCR network in the dataset GPCR2841 (outliers not shown). Each circle represents an MSC cluster,

which is colored according to the functions of its constituents. The lengths of the edges are not proportional to their distances, but the distances

between subfamilies and classes are labeled to visualize their sequence similarities.

F-measure of identifying GPCRs to be 0.9998. In SeQuery,
we utilize this assumption to assess if a query sequence (not
in the base dataset) is a GPCR. For simplicity, the distances
between the query sequence and the base sequences are
calculated using the base dataset instead of the base + query
dataset. This simplification could in principle lead to a small
deviation in calculated sequence distances due to a change
in the dataset size (1/2842). To demonstrate this conjecture,
we examined the effect of a small size change by calculating
the distances of the 2841 base sequences to 10 query
sequences with lengths ranging from 132 to 4568 amino
acids (a.a.), listed in Supplementary data Table S2. For all
query sequences, we defined the normalized root mean
square deviation (NRMSD) of its distances to the 2841 base

sequences as NRMSD =
√

1
2841

∑2841
i=1

(
1 − db

i /db+q
i

)2
,

where db
i and db+q

i are the calculated sequence distances
to sequence i using the base dataset and using the base
+ query dataset, respectively. As shown in Supplementary
data Table S2, the value of NRMSD is less than 2 × 10−5

for all queried sequences, suggesting that db
i is a valid

approximation of db+q
i . We also note that longer query

sequences affect the NRMSD more strongly.
For interactive visualization of GPCRs, clusters and net-

work graphs based on MSC clustering results are prebuilt
and presented using the JavaScript library Cytoscape.js
(30). These graphs illustrate the GPCR superfamily at three
different resolution levels; the first level shows the relation-
ships among receptor sequences, the second level shows the

relationships among receptor clusters and the third level
shows the relationships among receptor families.

Nodes with high centrality are highly involved in the
structure of a network. To evaluate the centrality of
important nodes in the GPCR sequence similarity network,
SeQuery uses four different centrality measures, namely the
weighted degree (CWD), closeness (CC), betweenness (CB)
and eigenvector (CEV) centralities. We consider an all-to-all,
undirected, weighted graph G:= (V, E) with |V| nodes and
|E| edges; the weight matrix W of G has weights wuv for
the edge connecting each pair of nodes (u, v), ∀u, v ∈ V.
Equivalently, we can define a distance matrix D for G
with elements d̃uv, where d̃uv ≡ w−1

uv − 1. To calculate
the centrality measures for the GPCR network and avoid
numerical errors, we consider the relation d̃uv ≡ duv

0.01 + δ,
where δ = 10−200 is an arbitrarily small distance and duv are
the sequence distance matrix elements for GPCR pairs (u,
v), ∀u, v ∈ V. Diagonal elements in both W and D have a
value of 0. For G, the weighted degree centrality of a node
u ∈ V is defined as

CWD(u) =
∑
v∈V

wuv. (1)

The closeness centrality of a node u ∈ V is defined as

CC(u) = (|V| − 1) ·
[∑

v∈V

d̃ (u, v)

]−1

, (2)
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where d̃(u, v) is the shortest distance between nodes u and
v. The betweenness centrality of a node u ∈ V is defined as

CB(u) =
∑
j,k

j�=k �=u

gjk(u)

gjk
, (3)

where j and k are other nodes in the network such that j �=
k �= u, gjk is the number of shortest paths between node j
and node k and gjk (u) is the number of those paths that pass
through the node u. The definition of betweenness centrality
of a node in Equation (3) can be extended to calculate the
betweenness centrality of an edge by calculating gjk (e), the
number of shortest paths that pass through the edge e. The
eigenvector centrality of a node u ∈ V is defined as

CEV(u) = 1
λ

∑
v∈V

wuvCEV(v), (4)

where λ is an eigenvalue. This equation can be rewritten in
vector notation as the eigenvector equation Wx = λx, where
xu = CEV(u). As the elements of W are nonnegative, there
is a unique largest eigenvalue, which is real and positive.
The eigenvector x corresponding to this eigenvalue yields
the desired centrality measure.

In studying the sequence similarity network of GPCRs,
we compute and interpret the above centrality indices to
characterize important nodes or edges within the network.
The weighted degree centrality CWD(u) of node u is used
to characterize its overall connectivity to other sequences
in the network. The closeness centrality CC(u) of a node
u measures the reciprocal of the sum of the length of the
shortest paths between u and all other nodes; the more
central a node is, the closer it is to all other nodes. In
graph theory, the eigenvector centrality is a measure of
the influence of a node in a network; a high eigenvector
centrality means that a node is connected to many other
nodes of high centralities. Lastly, the betweenness centrality
of a node or edge is the number of the shortest paths that
pass through it; a node or edge with high betweenness
centrality exerts more control over the network. In general,
the closeness, weighted degree and eigenvector centralities
have similar patterns in a complex network, while the
betweenness centrality fundamentally differs from the other
measures and represents the dynamic information flow
of the network (31). For our study of GPCRs, the first
three centrality measures can be used to find the most
representative or influential sequences in a GPCR cluster,
sub-family or family. The betweenness centrality can be
used to find sequences (nodes) or sequence pairs (edges) that
bridge different domains in the sequence space of GPCRs;

Figure 5. Tree diagrams of the first-level GPCR clusters, showing

member sequences of cluster Pe001, which has a conservative core (A);

and member sequences of cluster Ol001, which has no conservative

core (B). In (A), the 3D protein structure of P51681 is displayed in its

node, and a line segment is used to represent a zero-distance edge

connecting two nodes in the core. In (B), a double-headed arrow is used

to represent the shortest edge connecting two nodes in the core, and a

single-headed arrow (directed toward the node closer to the core) is

used to represent all other edges connecting two nodes in the cluster.

Each edge is labeled with its length.

these sequences or sequence pairs could play a key role in
the evolution of GPCRs.

Results and discussion

We intend SeQuery to be a web-based graph database for
understanding complex proteome and genome networks.
To demonstrate this functionality, we implemented SeQuery
as an interactive graph database of GPCRs, which identifies
possible GPCR sequences and offers a bottom-up-to-top-
down panoramic view of the GPCR superfamily. To verify
the ability of SeQuery to identify GPCR sequences, we
submitted 100 query sequences randomly selected from a
test dataset (the probability of selecting a GPCR sequence
is 0.5), which included 46 newly reviewed GPCR sequences
and 54 non-GPCR proteins. Among the randomly chosen
non-GPCR proteins, 25 sequences were membrane pro-
teins with chain lengths from 132 a.a. to 731 a.a., and
29 sequences were 7TM non-GPCRs with chain lengths
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Figure 6. Flowchart of the two navigation interfaces of the SeQuery database, including the top-down navigation scheme (A) and the bottom-up

navigation scheme (B). Source databases are represented by hexagons. In the top-down and bottom-up interface designs, we use solid squares to

represent generated MSC graphs and ovals to represent alternative centrality graphs or warnings of detected non-GPCR. Dashed squares represent

modal boxes providing information about a GPCR sequence when its corresponding node is clicked.

from 232 to 627 a.a. 7TM non-GPCR sequences have the
same 7TM helix topology as GPCRs but do not couple to
G proteins. Soluble proteins were not considered in this
test since they can be easily distinguished by secondary
structure prediction tools such as TMHMM (32). Sup-
plementary data Table S3 provides detailed information
regarding the selected test sequences. Figure 2 shows the
receiver operating characteristic curve that we constructed
to test our GPCR predictor; we utilize the area under the
curve (AUC) to evaluate its predictive ability (0.5 for a
random predictor and 1 for an excellent predictor). The
validity of our method is supported by its AUC value of
1.0, which would be lowered by the presence of remote
GPCR homologs or sequences from a novel GPCR class in
the test dataset. A close examination of the 100 predictions
in Supplementary data Table S3 reveals one false negative
(O45767, pheromone receptor activity in GO: molecular
function). Our sequence analysis shows that O45767 is
distant from sequences in the vomeronasal receptor class
that putatively function as receptors for pheromones; the
shortest distance (E value) is 1022, and the average distance
is 13 649.

To detect distant relationships between GPCRs, we
applied PSI-BLAST to calculate the smallest distance (d’)
between the query sequence and sequences in the dataset if
d > 0.0009 in its initial BLASTp calculation. The smallest
BLASTp distance for the sequence O45767 is d = 0.002,
and its smallest PSI-BLAST distance is d’ = 2 × 10−114 after
10 iterations, with the closest protein being P53452. Thus,
the sequence is remotely related to aminergic receptors. For

almost all non-GPCR sequences in the test dataset, their
smallest PSI-BLAST distance was larger than the threshold
distance. Therefore, PSI-BLAST can be used to check if
a query sequence is distantly related to GPCRs. The sole
exception was sequence Q8LD98, which had d = 0.02 and
d’ = 10−61 after 10 iterations.

Figure 3 shows the third-level minimum spanning tree
diagram of the GPCR superfamily in SeQuery, based on
the MSC clustering results. At this resolution level, nodes
in the network graph represent receptor families, and edges
represent minimum spanning connections between receptor
family nodes. The colors and shapes of the nodes are
used to distinguish their functions, which are based on
GPCRdb annotations and are also labeled on the nodes.
The shortest sequence distance between two families is
represented by the edge that connects them (the short-
est distance is marked on the corresponding edge). The
GPCR superfamily in the GPCR2841 dataset is clustered
into seven classes, including rhodopsin-like, secretin-like,
glutamate, vomeronasal, cAMP, frizzled and T2R receptors.
The largest class of GPCRs is the rhodopsin-like receptors,
which contains 21 families (503 clusters). Figure 4 shows
the second-level minimum spanning tree diagram of the
GPCR2841 dataset, in which each node represents a first-
level MSC cluster. The classification of GPCRs in SeQuery
is generally comparable with the A-F and GRAFS systems,
which are two common GPCR classification schemes (33,
34). For instance, among the taste receptors, T1R belongs
to class C (glutamate), while T2R is a putative GPCR
class. In the A-F classification, T2R is distantly related to
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class A; in GRAFS, it represents a distinct cluster within
the frizzled/taste 2 class. In SeQuery, frizzled receptors and
T2R belong to two different sequence classes. Vomeronasal
receptors are putatively identified as pheromone receptors
and are remotely related to the receptors of the main
olfactory system.

The graph-based visualization of the GPCR superfamily
can allow users to observe the biological properties of
GPCRs. In Figure 5, we show the network graphs of the
largest cluster (Pe001) in the peptide receptor family (A) and
the largest cluster (Ol001) in the olfactory receptor family
(B). The nodes in the graphs represent GPCR sequences,
and the edges represent minimum spanning connections
between sequences (the shortest distance is marked on the
corresponding edge). We found that the conservative core of
Pe001 contains 51 similar peptide receptors, for which the
pairwise sequence distances are all zero; meanwhile, Ol001
contains only pairs of sequences with non-vanishing dis-
tances. These network characteristics suggest that peptide
receptors have a much smaller intra-cluster selection pres-
sure than olfactory receptors. On the other hand, Figure 4
shows that peptide receptors are decomposed into three
groups and several clusters, while all olfactory receptor
clusters form a single group. This suggests that peptide
receptors have a larger intra-family (inter-cluster) selection
pressure than olfactory receptors. These findings are consis-
tent with our previous calculations using the Nei–Gojobori
method of the evolutionary pressures placed on GPCRs (3).

We note that our automatic sequence-based clustering
of GPCRs could be helpful in elucidating relationships
between the sequence, structure, function and evolution of
GPCR sequences, particularly orphan GPCRs for which
natural ligands are currently unknown. For example,
the MiR002 cluster contains Q923Y7, Q5QD15 and
Q5QNP2. In GPCRdb, the first two sequences were
annotated as aminergic receptors (trace amine-associated
receptor 4), while Q5QNP2 was annotated as a class A
orphan/other. The E-value between the first two sequences
is negligibly small but is 10−99 between Q5QD15 and
Q5QNP2. It is reasonable to infer that Q5QNP2 is a
different type of trace amine-associated receptor. Indeed,
Q5QNP2 is annotated as a trace amine-associated receptor
13c in the most recent version of UniProt. So far, only
Q5QD15 has been found to have a ligand phenethylamine
in GLASS (35); thus, phenethylamine-type compounds are
probable ligands of Q923Y7 or Q5QNP2.

The utility of the database

SeQuery provides two navigation interfaces for exploring
the GPCR superfamily, as illustrated in Figure 6. We rec-
ommend users to use the Google Chrome browser for

Figure 7. Thresholded sequence similarity network graphs of the

cannabinoid receptor family with threshold distances of 10−20 (A), 10−50

(B), 10−80 (C) and 10−100 (D). Nodes and edges are colored by the values

of their closeness and betweenness centralities, respectively, according

to the legend. Upon clicking on a node such as Q98894, the user is

presented with a modal box showing both the protein information and

the centrality data of the node.

optimal viewing quality. At the SeQuery homepage (http://
cluster.phy.ntnu.edu.tw), users can select the GPCR2841
dataset and explore the GPCR superfamily from the top
down. Alternatively, users can also submit a query sequence
and explore its role in the GPCR superfamily from the
bottom up.

In the top-down navigation interface, SeQuery first
displays a panoramic view of the GPCR superfamily at
the third level of clustering, as shown in Figure 3. The same
scheme of colors and shapes shown in the legend is used
to denote the functions of GPCRs at all three levels of
resolution in SeQuery. Each node in the graph represents a
GPCR family. When users click a node, SeQuery shows
the second-level clustering of the network centered at
the clusters that comprise the selected GPCR family. At
the second level of clustering, the GPCR superfamily
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Figure 8. Partial minimum spanning tree of olfactory receptors near the hub sequence Q8VFK7. Nodes are colored based on their closeness centrality

values, which are also labeled in parentheses. Edges are colored based on their betweenness centrality values. Thin edges in the graph represent

zero-distance sequence pairs.

is represented by a minimum spanning tree of receptor
clusters as predicted in the first-level MSC clustering.
Users can explore the second-level graphs by dragging
and zooming the graph or by locating a GPCR family
of interest by clicking it in the legend on the left-hand
side. When a user clicks on a node in the second-level
graph, SeQuery shows the constituent sequences of the
selected cluster in a first-level graph. Each node in a
first-level graph is a GPCR sequence, and the detailed
information for each sequence can be viewed in a modal
box by clicking the corresponding node. At the first
level of clustering, receptor clusters are represented by a
network graph that may or may not contain a core of
zero-distance sequences, as shown in Figure 5(A) and (B).
If a sequence has a known protein structure, such as
P51681 in Figure 5(A), its structure will be displayed on
the node.

Alternatively, users can select the ‘Centrality’ button
to access the centrality networks in the third-level graph.
When users click on a node in the third-level graph, SeQuery
displays a centrality graph (with a threshold centrality
value of 10−100) showing the statistical properties of the
corresponding receptor family. Centrality graphs for other
threshold values and the MST centrality graph are available
by using the slider to adjust the threshold and by clicking
the ‘MST Graph’ button, respectively. As an example, in
Figure 7, we show the thresholded centrality graphs of the
cannabinoid receptor family in the rhodopsin-like class.

Nodes are colored according to their closeness centrali-
ties, and edges are colored according to their betweenness
centralities. The threshold sequence distance values for the
subgraphs of Figure 7 are 10−20 (A), 10−50 (B), 10−80 (C) and
10−100 (D); edges longer than the threshold are not shown
in each subgraph. From Figure 7, it is clear that the edge
connecting Q98894 and P47936 has the largest between-
ness centrality, and thus the largest potential to disconnect
a sequence similarity network if it is removed. Therefore,
these two sequences could play a key role in the evolu-
tion of cannabinoid receptors. As the cannabinoid receptor
family has a large core of zero-distance sequences (Q98894
and other nodes colored in purple), these sequences have
the same closeness and eigenvector centralities. However,
Q98894 has the largest weighted degree and betweenness
centralities, suggesting that this sequence is more central to
the family. To further demonstrate the utility of centrality
measures, we display a partial minimum spanning tree of
the olfactory receptor family in Figure 8, which shows the
neighborhood of the most connected hub (Q8VFK7) in
the family. Nodes are colored and labeled according to
the values of their weighted degree centralities (sequence
IDs are also labeled), and edges are colored according to
the values of their betweenness centralities. Evidently, the
hub has the largest value of centrality measures among
its immediate neighborhood (see also the closeness and
eigenvector centralities in Supplementary data Figures S1
and S2). These results suggest that hub sequences are more
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representative, influential and connected in a GPCR family.
Figures 7 and 8 can only be reproduced by starting from the
‘Centrality’ tab.

In the bottom-up navigation interface, the base dataset
GPCR2841 is selected by default, and the user uploads or
enters the query sequence at the homepage in the FASTA
format. SeQuery determines if the sequence is a GPCR
based on its BLASTp distance to sequences in the base
dataset. If so (d < 0.0009), as shown in Figure 9, SeQuery
will display the graph consisting of connections between
the query sequence and its neighbors at the first level
of clustering, alongside information related to the overall
cluster and the closest neighbor of the query sequence. The
role of the cluster in the GPCR superfamily can be further
investigated at the second or third levels of clustering. If not
(d > 0.0009), SeQuery will run PSI-BLAST for 10 iterations
to calculate the smallest distance (d’) between the query
sequence and sequences in the GPCR2841 dataset and
verify if any remote relationships exist.

To demonstrate the functionality of SeQuery, we sub-
mitted a query sequence (UniProt ID: G3M4F8, the sample
data for SeQuery at the homepage) in the bottom-up nav-
igation interface. SeQuery determines that it is closest to
Q4LBB9 with a distance of 1.4 × 10−156 and should belong
to cluster Am038 in the aminergic receptor family. As
shown in Figure 9, SeQuery shows the network graph con-
sisting of G3M4F8 and cluster Am038, as well as informa-
tion about the cluster and the protein most closely related to
G3M4F8. When each node in the graph is clicked, informa-
tion about the corresponding sequence is shown in a modal
box. UniProt describes Q4LBB9 as the octopamine receptor
beta-2R from Drosophila melanogaster; it acts as a neu-
rotransmitter, neurohormone and neuromodulator. In the
cluster Am038, Q4LBB9 has a greater distance of 8 × 10−111

to Q9VCZ3, which is the octopamine receptor beta-1R
from D. melanogaster. Based on this sequence information
alone, the query sequence is predicted to be an ortholog of
Q4LBB9, which is consistent with its UniProt annotation as
the octopamine receptor beta-2R from Chilo suppressalis.
Further analysis of G3M4F8 and Q4LBB9 using sequence
alignment shows that they have 42.2% sequence identity, as
shown in Supplementary data Figure S3. The two sequences
also have very similar GO annotations; 9 out of 20 GO
terms are common to both sequences, as shown in Supple-
mentary data Table S4.

As an interesting exercise, we entered the recently
identified sequence of heliorhodopsins (UniProt ID:
A0A2R4S913) in SeQuery (36). SeQuery determined that
the heliorhodopsin sequence is not a GPCR since its
distance to the closest GPCR sequence (P46090, a peptide
receptor) is 0.4. Indeed, heliorhodopsins are a subclass of
microbial rhodopsins, the sequences of which share no

Figure 9. Query result for the submitted sequence G3M4F8 in SeQuery,

showing the first-level cluster graph. Information about both the cluster

and the closest proteins are shown on the left-hand side. Upon clicking

on a node such as Q9VCZ3, the user is presented with a modal box

showing both the protein information and the cluster information of

the node. A double-headed arrow is used to represent the shortest

edge connecting two nodes in the core, and a single-headed arrow

(directed toward the node closer to the core) is used to represent all

other edges connecting two nodes in the cluster. The edge connecting

the query sequence to its closest adjacent sequence is also represented

by a single-headed arrow. Each edge is labeled with its length.

clearly detectable identity with animal rhodopsins (the
GPCR rhodopsin family). The closest sequence in the GPCR
rhodopsin family to A0A2R4S913 is P2868, a blue-sensitive
opsin, and the sequence distance is 150. However, in the
rhodopsin family, 73% of intra-cluster sequence pairs have
zero distance, and the median intra-family sequence-pair
distance is 7.7 × 10−63. Therefore, at the sequence level, we
found no evidence that heliorhodopsins are related to the
GPCR rhodopsin family.

We also evaluated GPCR isoforms using SeQuery. As
shown in Supplementary data Table S5, we considered var-
ious isoforms of two human corticotropin-releasing hor-
mone receptor (CRHR) sequences, Q13324 (CRHR2) and
P34998 (CRHR1). Among these sequences, Q13324-1 and
P34998-1 have been chosen as the canonical sequences of
the human CRHR2 and CRHR1. It was found that all six
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human CRHR2 isoforms are most similar to their canonical
sequence, and four human CRHR1 isoforms have almost
zero distance to Q76LL8 (CRHR1 sequence of Macaca
mulatta) or P34998. Among the potential computationally
mapped isoforms of human CRHR1, three are most similar
to P34998 (human), three are most similar to Q76LL8 (M.
mulatta), one is most similar to P35353 (Rattus norvegicus)
and one is most similar to O62772 (Ovis aries). We note
that all CRHR orthologs in the base dataset are highly
similar to each other and form a core in the first level MSC
cluster Co001, suggesting that the CRHR family is highly
conserved.

Conclusions and outlook

GPCRs recognize an exceptional variety of extracellular
stimuli and consequently serve as essential transporters in
eukaryotic signal transduction. Understanding the GPCR
superfamily is valuable to theoretical research on cell sig-
naling and molecular recognition, as well as to applied
research in drug discovery and disease treatment. We have
developed a web-based graph database, SeQuery, which
provides an interactive tool for identifying GPCR sequences
and visualizing the GPCR superfamily at various charac-
teristic resolutions. By integrating and analyzing GPCR
data from three existing databases with our software mod-
ule, SeQuery is able to respond to queries rapidly and to
provide an interactive visual interface for users to under-
stand the properties of GPCR sequences through bottom-
up-to-top-down navigation. Our tool is readily extensi-
ble to other biological networks, and we aim to expand
SeQuery by integrating additional biological databases in
future work.
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