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We use a minimal model to study the processive motion of coupled synthetic molecular motors along a DNA
track and we present data from Monte Carlo (MC) computer simulations based on this model. The model was
originally proposed by Bromley et al. [HFSP J. 3, 204 (2009)] for studying the properties of a synthetic protein
motor, the “Tumbleweed” (TW), and involves rigid Y-shaped motors diffusively rotating along the track while
controlled by a series of periodically injected ligand pulses into the solution. The advantage of the model is that it
mimics the mechanical properties of the TW motor in detail. Both the average first passage time which measures
the diffusive motion of the motors, and the average dwell time on the track which measures their processivity are
investigated by varying the parameters of the model. The latter includes ligand concentration and the range and
strength of the binding interaction between motors and the track. In particular, it is of experimental interest to
study the dependence of these dynamic time scales of the motors on the ligand concentration. Single rigid TW
motors were first studied since no previous MC simulations of these motors have been performed. We first studied
single motors for which we found a logarithmic decrease of the average first passage time and a logarithmic
increase of the average dwell time with increasing ligand concentration. For two coupled motors, the dependence
on ligand concentration is still logarithmic for the average first passage time but becomes linear for the average
dwell time. This suggests a much greater stability in the processive motion of coupled motors as compared to
single motors in the limit of large ligand concentration. By increasing the number of coupled motors, m, it was
found that the average first passage time of the coupled motors only increases slowly with m while the average
dwell time increases exponentially with m. Thus the stability of coupled motors on the track can be considerably
enhanced by their cooperative motion.
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I. INTRODUCTION

Biological molecular motors are mechanoenzymes which
transduce chemical energy into mechanical energy in order to
perform a plethora of biological tasks [1–4]. These include cel-
lular transport, cell division, cell migration, DNA replication,
and many other phenomena. For example, bipedal cytoskeletal
stepping motors such as kinesin and myosin V are responsible
for a variety of cellular tasks such as the transportation of
organelles and vesicles containing nutrients in neurons. These
autonomous motors are powered by adenosine-5′-triphosphate
(ATP) and they undergo both processive and directed motion
along one-dimensional tracks composed of protein fibers such
as microtubules and actin. Biological nanomotors walking on
a track often function in groups and have been characterized
by Leibler and Huse [5] as either “rowers” or “porters.”
These authors describe their properties in terms of a single
comprehensive model. Their conclusion is that porters, which
are responsible for carrying loads, spend most of their time
bound to the track and, as such, can achieve their maximum
velocity on their own or in small groups. On the other hand,
rowers such as monomeric muscle myosin spend most of
their time cycling between weakly bound and unbound states
while waiting for a power stroke. This reduces friction and
Leibler and Huse propose that such motors work best in large
uncorrelated groups. Dimeric bipedal stepping motors and
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the synthetic nanomotor concept examined in this work are
examples of porters.

Several authors [6–8] have examined situations where bio-
logical molecular motors of the porter category perform tasks
in groups of several coupled motor units either cooperatively or
competitively. Klumpp and Lipowsky [6] examine the forces
required for cooperative cargo transport by several processive
cytoskeletal motors and point out that the force generated
by a single motor of this type is only of the order of a few
picoNewtons. They state that this is not sufficient for fast
transport of loads such as large organelles, for example. For
this case they show that several motors are required. Stukalin
et al. [7] use a discrete stochastic model based on chemical
rate constants for two energetically coupled motors with each
motor moving on its own track. They show that the composite
motor is both faster and more efficient than for single motors
and they successfully apply their model to data for recBCD
helicase motors and state that their theory is quite general.
Driver et al. [8] also use a discrete stochastic model to represent
two coupled kinesin-1 motors moving on the same microtubule
track. The model is again based on chemical rate constants
which describe the individual motors as harmonic springs
which can bind to and unbind from the track at one end and are
affected by both assisting and opposing loads at the other end.
These authors study the effect of deformations in mechanical
linkages in coupled motors using this model and show that
the advantage in linking stepping motors may be smaller than
predicted by previous models. In this work we use a minimal
mechanical model of a synthetic protein motor which partially
mimics the behavior of cytoskeletal motors to examine the
effect of coupling identical motors.
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FIG. 1. Schematic representation of the setup used in our Monte Carlo simulations to investigate the motion of coupled TW motors inside
a nanochannel. The ligand pulses are represented by solid lines for lA, long dashed lines for lB, and short dashed lines for lc, and the time
sequence of ligand pulses is denoted by t = τpulse, 2τpulse, 3τpulse, . . . . The enlargements in the representation of the coupled motors show the
molecular structure of a single Y-motor bound to DNA (see Ref. [10]) and a two-dimensional representation of a Y-motor as specified by its
hub position and a rotational angle.

Biological nanomotors have inspired several research
groups to design and construct synthetic molecular nanomo-
tors whose energy sources are either chemical or optical.
Recently Bromley et al. [9] introduced a novel concept for
a synthetic molecular motor, the Tumbleweed (TW), which is
constructed from nonmotor protein building blocks. The TW
is designed to be a protein motor moving on a synthesized
DNA track controlled by three ligand gated repressor proteins.
Binding to and dissociation from the track is controlled by
three ligand pulses per time period, resulting in directional
motion along the track. The repressor proteins (feet) are each
connected to a small flexible oligopeptide hub by a rigid coiled
coil of length ∼5 nm. The connection between the repressors
and their respective coiled coils is also flexible. The details of
the TW are shown in Fig. 1. In a second TW article, Kuwada
et al. [10] simulated a minimal model of the TW called the
“Y-motor” in order to determine how design details could be
tuned to optimize motor performance. The aim of the work
of Kuwada et al. was to investigate synthetic protein motors
both theoretically and experimentally in order to examine the
basic operations of biological molecular motors in a controlled
manner.

The purpose of our work is to elicit the properties of coupled
synthetic protein motors with a view to understanding the basic
operations of the multimotor complexes found in biology. To
this purpose, we use the Y-motor model for the TW of Kuwada
et al. and for simplicity we take a version of the Y-motor which
is completely rigid and exactly matches the specifications of
the track. The Y-motor model is described in detail in Sec. II
and the metropolis Monte Carlo (MC) used in this work is
presented in Sec. III. Section IV contains both simulation
results and the discussion. In Sec. IV A, we extend the analysis
of Kuwada et al. by simulating the rigid Y-motor in detail

so as to allow for a comparison with the simulation results
for Y-motors coupled by rigid chemical bonds in Sec. IV B.
Particular emphasis is placed on the average first passage time
and motor processivity. Here the “first passage time” tFPT is
defined as the time between the release of the lagging foot
of the motor and the binding of the leading foot to the track
once the ligand pulse has been switched [10]. The average first
passage time τFPT, which is a measure of the time taken for the
diffusion step of the motor, is defined to be the arithmetic mean
of the values of first passage times which we calculate from
MC simulations. The processivity of the motor is measured by
the average dwell time τdwell, this being the arithmetic mean of
the dwell time tdwell during which the motor remains bound to
the track with no complete dissociation. Section V concludes
the article with a summary of the main results and suggestions
for further work.

II. MODEL

In the present study, we begin by using the coarse-grained
Y-motor model for a rigid TW [9–11] in conjunction with
the metropolis Monte Carlo method for the simulation of its
processive and directional motion along a DNA track. As
shown in Fig. 1, the rigid Y-motor has three legs (coiled
coil plus repressor) and the length of each leg (L = 7 nm)
was chosen to match the length of the appropriate protein
components. Each foot is taken to be a different ligand-gated,
DNA-binding repressor protein that interacts specifically and
controllably with a DNA track [9]. Note that repressor proteins
are allosteric proteins. Ligand-repressor binding enhances the
affinity of the repressors to bind to DNA specifically by either
conformational change in the repressors themselves or by
modifying the electrostatic potential between the repressor
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and the DNA backbone. It has been shown that the binding
affinity of repressors to DNA increases 100 ∼ 1000 fold in the
presence of excess ligand [12,13]. The repressors, therefore,
in the first approximation only bind to the operator sequence
of base pairs (specific binding site) on the DNA track during
a ligand pulse and dissociate rapidly after the removal of bulk
ligand.

We estimate the probability Pbound of a ligand binding to the
corresponding repressor by using a lattice model of N such
ligands in solution, represented as a lattice of � boxes and
one receptor. We define two macrostates, the holo-state (H)
for which the appropriate ligand is bound to the repressor and
the apo-state (A) for which no ligand is bound to the repressor
[11]. We write the energy difference between these two states
as �ε = εbound − εunbound. A straightforward calculation gives
the probability of the bound state as

Pbound =
N
�

e−β�ε

1 + N
�

e−β�ε
=

[N]
Kd

1 + [N]
Kd

, (1)

where [N ] ≡ N/(�v) is the ligand concentration, v is the
volume of each box, β−1 ≡ kBT is the thermal energy
(about 4 pN nm at room temperature), and Kd = eβ�ε/v

is the equilibrium dissociation constant. Alternatively, the
probability given by Eq. (1) can be derived by the law of
mass action (LMA). Let [H] be the concentration of the
repressor protein in the holo-state, let [A] be the concentration
of the same repressor in the apo-state, and let [N ] be the
concentration of the corresponding ligand (L). From the LMA
for the ligand binding process A + L ↔ H, we have the
dissociation constant Kd = [A][N ]/[H]. Here Kd = koff/kon,
where kon and koff are the rate constants for ligand binding to
and ligand unbinding from the repressor protein, respectively.
Since the probability that the repressor is in the holo-state
is Pbound = [H]/([A] + [H]), by substituting for [A] and [H],
we derive the probability of the bound state as Pbound =
[N ]/(Kd + [N ]) = [N ]kon/(koff + [N ]kon). A full treatment
of rate constants and time scales for the TW in terms of holo-
and apo-states can be found in Ref. [11].

A repressor can bind to the DNA track through a specific
interaction to the corresponding operator sequence during the
appropriate ligand pulse if it is in the holo-state or through a
nonspecific interaction to the DNA track. In vitro experiments
have shown that there exists a large difference between the
specific and nonspecific equilibrium constants, about 10−10 :
10−4 [14]. Equivalently, the specific interaction is stronger
than the nonspecific interaction by an amount of 13.8 kBT . We
therefore neglect the nonspecific interaction in this study. The
specific interaction between a repressor i and its corresponding
operator sequence [10] is modeled by a Gaussian potential
function

VSB(ri) =
{−V0 exp

(−r2
i

/
ξ 2

)
repressor in the holo - state

0 repressor in the apo - state.

(2)

Here V0 is the interaction strength (in units of kBT ), ξ is the
effective range of interaction (in units of L), and ri is the
distance between the repressor i and its nearest corresponding
operator sequence on the track (in units of L).

By properly choosing the three repressors (A, B, and C)
on the feet of a TW motor and the operator sequences (a,
b, and c) along the DNA track, it is possible to control the
motion of the motor by changing the bulk concentration of the
corresponding ligand (lA, lB, and lC). For example, consider
a DNA track with an operator sequence (a, b, c, a, b, c, . . .)
and the distance between two operator sequences is set to√

3L. When the bulk solution contains a time series of ligand
(lA + lB, lB + lC, lC + lA, lA + lB, . . .), the TW motor will be
driven toward the right-hand side of the DNA track by this
time changing ligand concentration.

The protocol for binding is as follows: Consider, for
example, the pulse sequence (lA + lB, lB + lC). When the pulse
is switched from the earlier pulse to the latter one, the lagging
foot A is immediately released as the specific binding potential
[Eq. (2)] for its binding sites a is switched off (V0 → 0).
The specific binding potential for binding sites b, however, is
retained so that B′ can remain bound. In addition, the binding
potential for binding sites c is switched on so that the leading
foot C′ is able to bind during the pulse time for ligand pulse
(lB + lC). Here we use A′, B′, and C′ to denote the ligand-bound
state of repressors A, B, and C, respectively. The characteristic
time for unbinding of a foot is zero while that for binding is
controlled by the value of V0, which is made high enough to
ensure binding when a ligand is bound to the foot. The specific
binding potential of Eq. (2) controls binding when it has been
switched on.

As stated in the introduction, the main purpose of this study
is to investigate the constrained motion of m coupled TW
motors along the DNA track caused by the time series of
ligand changes. These TW motors are constrained through
connections between their hubs by an elastic polymer chain
or a more rigid helix. The elastic energy associated with this
connection is modeled by the following harmonic interaction:

Vel =
m−1∑
j=1

1

2
k(lj,j+1 − 3

√
3L)2, (3)

where k is a spring constant and lj,j+1 is the hub distance
between motors j and j + 1. The total energy of m coupled
motors can then be expressed as follows:

E = Vel +
m∑

j=1

3∑
i=1

V
j

SB (ri). (4)

III. SIMULATION METHOD

The motion of single and coupled Y-motors in our Monte
Carlo simulations takes place inside a nanochannel, as
schematically illustrated in Fig. 1. The nanochannel has no
limit in the x direction, while hard wall boundary conditions
are imposed in the z direction (0 � z � 70 nm) in the case
of two-dimensional (2D) simulations, and in both the y and
z directions (−70 nm � y � 70 nm) for three-dimensional
(3D) simulations. The DNA track is grafted on the lower
surface (z = 0) in the nanochannel and has a periodic series of
operator sequences (a, b, c, a, b, c, . . .) along the x axis. For
rigid motors, if the repressors and the hub are strongly linked,
the rotation of motors is preferentially along the DNA track due
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to the binding of repressors to the operator sequences on the
track. In this case, the processive motion of the motors along
the track can be investigated by simplified 2D simulations.
However, if the repressors are linked to the hub by flexible
loops, the motors can undergo 3D rotations along the track.
3D simulations are therefore more realistic in this case.

The coupled Y-motors were initially placed at a random
position and they then were allowed to diffuse in the
nanochannel. For the 2D simulations, each Y-motor was
specified by the position (x, z) of its hub, the rotational angle
θ , and the state of three repressors. For the 3D simulations,
each Y-motor was specified by the hub position (x, y, z), three
Euler angles (θ1, θ2, θ3), and the state of three repressors.
In our Monte Carlo simulations, the binding between
the repressors of each Y-motor and their corresponding
ligands was first investigated for the bulk concentration of
ligands and the probability of binding given by Eq. (1).
The instantaneous motion of each Y-motor was simulated
by an attempted movement of its hub with an arbitrary
translation between zero and 0.05 nm and an arbitrary rotation
between zero and 0.3 degrees. This move was accepted
with probability w = min[1, exp(−�βE)], where �E is
the change of system energy in Eq. (4). In our simulations,
unless otherwise specified, the parameter set is given by
ξ = 0.71 nm, V0 = 100kBT (400 pN nm), [N ]/Kd = 100,
and k = k0 = 0.082 pN/nm. The details of the units are given
in the next section. After the coupled Y-motors first bind to
the DNA track, they walk along the DNA track under the
control of a time series of bulk ligand pulses. As shown in
Fig. 1, this time series of ligand pulses (lA, lB, lC) is set to
{([N ],[N ],0), (0,[N ],[N ]), ([N ],0,[N ]), ([N ],[N ],0), . . .},
where [N ] is the ligand concentration. The duration of each
pulse (τpulse = 2 × 107 MC steps) is the same in all our
simulations and is taken to be longer than tFPT for a
ligand-bound repressor to find its corresponding operator
sequence on the DNA track by rotational diffusion after the
change in ligand composition. For example, in the presence
of ligands lA and lB in the solution, the probability that the
repressors will have ligands bound to them is given by Eq. (1).
When the ligand pulse is switched to lB + lC, the repressor
A′ will dissociate from the track due to the unbinding of
lA, while the repressor B′ still remains bound to the track.
A transition from C to C′ is assumed to occur directly with
the probability Pbound after switching the ligand pulse from
lA + lB to lB + lC, and the coupled motors would then move
one step in the positive x direction. With the above time
series of ligand pulses, the coupled Y-motors move three steps
(3

√
3L) ahead in a complete cycle. For simplicity, we assume

a step function profile of ligand concentration. We note that
hydrodynamic flow will affect the rotational diffusion of
the motors more significantly in 3D simulations than in 2D
simulations. However, in the present study, we have neglected
hydrodynamic effects in order to simplify the simulations.

Monte Carlo simulations of nonequilibrium processes can
be interpreted in terms of the time evolution of a Markov chain,
since the correlations between successive configurations in the
Markov chain can be understood from a dynamic interpretation
of the Monte-Carlo process in terms of a master equation
describing a dynamic model with stochastic kinetics [15–18].
However, an absolute measure of physical time is not provided

in this approach. We calibrate the physical time in Monte
Carlo simulations by measuring the self-diffusion constant of
a Y-motor in solution from both Monte Carlo simulations and
Langevin dynamics. The details of the Langevin dynamics
method together with the values of the parameters used
in the Langevin dynamics simulations and those of the
calculated diffusion constants are given in the Appendix.
In detail, measurement of the self-diffusion constant using
Langevin dynamics, DLD, and calculation of the mean square
displacement per MC step, 〈�r2〉MC, allows us to obtain the
physical time per MC as follows:

τ = 〈�r2〉MC

DLD
, (5)

We found that, for our model, each MC step is 25 ps for 2D
MC simulations and is 27 ps for 3D MC simulations.

IV. RESULTS AND DISCUSSION

A. Single Y-motors

We began our investigation of the processive motion of
single and coupled Y-motors by first examining the processive
behavior of single Y-motors. In particular, we calculated the
average first passage time (τFPT) and the average dwell time
(τdwell) of these motors on the DNA track under various
conditions. The units of length and time used in this study
were set as {L, MC step} = {7 nm, 25 ps}. In Fig. 2, we
show three traces for the motion of both a single Y-motor
[Fig. 2(a)] and two coupled motors [Fig. 2(b)], corresponding
to V0 = 100kBT (400 pN nm), 10kBT (40 pN nm), and kBT

(4 pN nm), respectively. Trace I in Fig. 2(a) gives the calculated
stepping data (i.e., the x coordinate) for the Y-motor’s center of
mass for V0 = 100kBT , demonstrating a perfectly processive
motion of the single rigid Y-motor model along the DNA track
provided τpulse is long enough for the Y-motor to diffuse to the
next binding site. For a lower binding potential (V0 = 10kBT ),
the motion of the Y-motor along the track becomes less regular.
In trace II of Fig. 2(a), the motor sometimes detaches from
the track, particularly when the ligand pulse changes. At
t = 500 μs, the Y-motor makes two backward steps; while
at t = 5 ms, it moves forward three steps. When the binding
potential is weaker than the thermal energy, as shown in trace
III of Fig. 2(a), the Y-motor diffuses in the nanochannel instead
of walking along the track.

In Fig. 3, we show the distributions of the first passage time
for ξ = 3.16 nm, 2.24 nm, and 1.58 nm (a) and for 2D and
3D simulations (b). As inferred from Eq. (2), the motor takes
a longer time to search for the binding site by diffusion for
a smaller value of ξ and this search time is independent of ξ

for small enough ξ . Indeed our MC simulations show that the
value of τFPT increases as ξ decreases and saturates for small
ξ values [see Fig. 4(a)]. For the same reason, it can be seen
in Fig. 3(a) that the fluctuations of the distributions of τFPT

decrease with ξ . In Fig. 3(b), we compare the distribution
curves of τFPT in 2D and 3D simulations. The overlap of
these two distribution curves indicates similarity in the general
behavior of the motor’s processive motion along the DNA
track in 2D and 3D simulations. However, the tail of the
3D distribution curve is slightly higher than that of the 2D
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FIG. 2. Two-dimensional simulation results for the hub position
of a single Y-motor (a) and coupled Y-motors (b).

distribution curve, implying slightly larger values of τFPT in 3D
simulations. Since there is no significant difference between
results from 2D and 3D simulations, we will focus on results
from 2D simulations in the following discussion.

Figure 4(b) shows the average first passage time as a
function of V0. For V0 > 10kBT , the average first passage
time is almost a constant. During this process, one foot of
the motor is tightly bound to the DNA track and τFPT is
mainly determined by the rotational diffusion of the motor.
For V0 < 10kBT the value of τFPT increases exponentially as
V0 decreases, as shown by the solid fitting curve. In this case,
the motor undergoes both translational and rotational diffusion
due to a weaker binding of repressors to the appropriate binding
sequences on the DNA track, which increases the average first
passage time. Figure 4(c) shows a logarithmic decrease of
the average first passage time on ligand concentration [N ]. In
principle, larger values of [N ] mainly stabilize the repressor
binding onto the track, which leads to shorter search times for
the next binding site by rotational diffusion. For [N ]/Kd >

500, the probability of ligand binding to the repressors is 99.8%
and the average first passage time decreases slightly with [N ].
The experimental values of Kd for different repressors are as
follows: Kd = 7 μM for PurR [19], 200 μM for MetJ [20],
and 42 μM for TrpR [21]. A typical value of [N ]/Kd used in
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our simulations is 100 [see Fig. 4(c)] and the equivalent ligand
concentrations for this value are 0.7 mM for PurR, 20 mM for
MetJ, and 4.2 mM for TrpR.

Two factors affect the value of τdwell: the strength V0 of
the binding potential and the effective range ξ of the binding
interaction. For weaker binding, the average dwell time is
relatively short due to early detachment of the motor from the
track. On the other hand, a larger effective range of binding
reduces the average first passage time and thus increases
the average dwell time. The average dwell time of a single
motor on the track as a function of ln(V0) and [N ]/Kd is
shown in Figs. 5(a) and 5(b), respectively. Figure 5(a) shows
that the average dwell time increases exponentially with V0

initially and saturates for V0 > 100kBT . The initial growth
of τdwell with V0 is exponential (solid line) as shown in the
inset of Fig. 5(a). This is consistent with Maxwell-Boltzmann
statistics, in which case the time of ligand binding to a repressor
(τlb) is considerably longer than that of repressor binding to
the track (τdwell). For larger values of V0, τlb is comparable to
the average value of τdwell and the unbinding of the repressor
from the track sometimes results from detachment of ligand
from the repressor. For V0 > 100kBT , τlb 
 τdwell and the
detachment of the motor from the track is mainly due to
the unbinding of ligand from its bound foot. In this case,
although the binding potential in Eq. (2) increases with V0,
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the average dwell time remains constant. Figure 5(b) shows
that the average dwell time of the Y-motor on the track
increases logarithmically with ligand concentration, since high
ligand concentration facilitates repressor binding to the track.
Figure 6 shows the average dwell time of the Y-motor on the
track as a function of the range ξ of the binding potential
[Fig. 6(a)] and the dwell time histograms for various values of
ξ [Fig. 6(b)]. The average dwell time increases slightly with ξ

for ξ < 2.21 nm and ξ > 3.83 nm, but decreases significantly
with ξ for 2.21 nm < ξ < 3.83 nm. As shown in the inset of
Fig. 6, for ξ < 2.21 nm, the binding potential is localized and
strong. Increasing ξ increases the effective range of the binding
interaction and thus increases the probability for the Y-motor to
find the next binding site by rotational diffusion. Indeed, from
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FIG. 5. Average dwell time of a two-dimensional Y-motor on a
DNA track for various values of (a) interaction strength V0 and (b)
ligand concentration [N ]. In panel (a), the average dwell time has
a different dependence on V0 in each of three regimes: In regime I
τlb � τdwell, in regime II τlb ∼ τdwell, and in regime III τlb 
 τdwell.
The average dwell time increases exponentially with V0 in regime I
as shown in the inset, while it is saturated in regime III. Regime II is
a crossover from regime I to regime III.

the histogram of tdwell for ξ = 0.49 nm, 0.70 nm and 2.21 nm
shown in Fig. 6(b), these distributions for tdwell < 1.5 ms are
very similar, but the distribution for ξ = 2.21 nm tends to be
more populated for tdwell > 2 ms than that for ξ = 0.49 or
0.70 nm. The rapid decrease of average dwell time with ξ

for 2.21 nm < ξ < 3.83 nm can also be understood from the
distance dependence of the binding potential shown in the
inset. In this case the binding potential of repressors to the
track is less localized, leading to easier dissociation of the foot
of the Y-motor from the track as ξ increases. The dwell time
distribution for ξ = 3.13 nm is substantially more populated
at tdwell < 1.5 ms than that for ξ = 2.21 nm. For ξ > 3.83 nm,
the foot of the Y-motor is seen to be bound to the track over a
wider range of dwell times as ξ increases. The average dwell
time therefore increases again with increasing ξ .
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FIG. 6. Dependence of the average dwell time on the effective
range of interaction ξ for a single Y-motor on a DNA track.
(a) Average dwell time as a function of ξ . The inset shows the
distance profile of the specific binding potential for ξ = 0.70, 2.21,
and 4.95 nm. Here r is the distance between a foot of the Y-motor and
the center of the binding site. (b) Dwell time histogram for several
values of ξ . The inset is an enlargement of the histogram for dwell
times between 2 and 5 ms.

B. Coupled motors

Coupled molecular motors are used to transport cargo
in a cooperative manner and are expected to have a small
τFPT and a large τdwell [17,18] for practical applications.
In order to investigate if this holds for synthetic coupled
motors, we investigated the processive kinetics of coupled
Y-motors along a DNA track by MC simulations. In our
simulations, the coupling between Y-motors is implemented
by the harmonic potential of Eq. (3). Figure 2(b) shows six
traces of two coupled motors for V0 = 100kBT , 10kBT , and
kBT , respectively. Traces I-1 and I-2 show the positions of the
center of mass on the x axis for two coupled Y-motors with
V0 = 100kBT , demonstrating perfectly processive motion for
the coupled Y-motors along the track. For a lower binding
potential (V0 = 10kBT ), thermal fluctuations became more
significant but the two coupled Y-motors still remained on the
track, as seen in traces II-1 and II-2. In many cases, one of
the two coupled motors detached from the track but the other
remained on the track. Therefore the processivity of the two
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FIG. 7. Average first passage time (a) and average dwell time
(b) for two coupled Y-motors walking on a DNA track as a function
of the spring constant k. Here k0 = 0.082 pN/nm.

coupled Y-motors is more robust than that of a single Y-motor
as seen in the trace II of Fig. 2(a). For an even lower binding
potential (V0 = kBT ), as shown in traces III-1 and III-2 of
Fig. 2(b), the motor diffuses in the box rather than walking on
the track.

In Fig. 7, we show τFPT [Fig. 7(a)] and τdwell [Fig. 7(b)] for
two coupled Y-motors walking along the track as a function of
the elastic constant k. The coupling between Y-motors tends
to suppress individual rotational diffusion of the individual
Y-motors and enhance cooperative motion of the coupled Y-
motors. As shown in Fig. 7(a), the average first passage time
increases logarithmically with k. In the limit of rigid coupling
between Y-motors, all Y-motors move in the same way in
their search for the next binding site. The dependence of the
average dwell time on k, as shown in Fig. 7(b), is, however,
nontrivial. It decreases logarithmically with k initially, reaches
a minimum at k/k0

∼= 100, and then increases linearly with k.
Near this minimum, the coupling potential is not strong enough
to restrain any of the coupled Y-motors from dissociating from
the track. As a result, the Y-motor which is detached from the
track is likely to drag the bound Y-motor away from the track.
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FIG. 8. Dependence of the average first passage time on the
binding interaction strength V0 for two coupled Y-motors on a
DNA track. (a) Average first passage time as a function of V0.
(b) Cumulative distribution of first passage times for several values
of V0. For comparison purposes, the solid line in (a) schematically
shows the average first passage time of a single motor.

For large values of k, the detachment of a single Y-motor from
the track is significantly suppressed by the coupling potential.
Therefore, the average dwell time increases with k for k/k0 >

100.
Figure 8 shows the average first passage time of two coupled

Y-motors [Fig. 8(a)] and the cumulative distributions of first
passage time [Fig. 8(b)] for V0 between 5kBT and 5000kBT .
When V0 < 50kBT , the value of τFPT increases as V0 decreases
since the coupled Y-motors undergo both translational and
rotational diffusion due to weaker binding of repressors to the
DNA track. However, when V0 > 50kBT , the value of τFPT

increases linearly with V0. This V0 dependence of τFPT is quite
different from that of a single Y-motor, as seen in Fig. 4(b)
(schematically represented by the solid line). To understand
the above V0 dependence of τFPT, we display the cumulative
distributions of first passage time for several values of V0

in Fig. 8(b). It is seen that the cumulative distributions of
first passage time is highly populated (90%) at tFPT < 62.5 μs
for 10kBT � V0 � 100kBT , and becomes broader distributed
for larger values of V0. For V0 = 5000kBT , 90% cumulative
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FIG. 9. Dependence of the average dwell time on the binding
interaction strength V0 for the procession of two coupled Y-motors
on the DNA track. (a) Average dwell time as a function of V0.
(b) Cumulative distribution of dwell times for several values of V0.
For comparison purposes, the solid line in (a) schematically shows
the average dwell time of a single motor.

distribution occurs at about tFPT = 200 μs. We conclude that,
for a larger value of V0, it is more likely for the coupled
Y-motors to be trapped at a less favorable configuration for
finding the next binding sites on the track, hence τFPT increases
with V0 for V0 > 10kBT . The comparison of τFPT of a single
motor with that of two coupled motors in Fig. 8(a) suggests
that large binding strengths tend to slow down the processive
motion of coupled motors. In Fig. 9, we show the average dwell
time of two coupled Y-motors [Fig. 9(a)] and the cumulative
distributions of dwell time [Fig. 9(b)] for V0 between 5kBT and
5000kBT . For V0 < 50kBT , τdwell decreases as V0 decreases
due to a less strong binding with the track. When V0 > 50kBT ,
the average dwell time also decreases as V0 increases and
saturates at about τdwell = 1.5 ms, which is quite different
from the case of a single Y-motor [as schematically illustrated
by the solid line in Fig. 9(a)]. The cumulative distribution in
Fig. 9(b) shows that, for V0 > 50kBT , the dwell time of two
coupled Y-motors are mostly populated at τdwell = 1.5 ms.
However, for 50kBT � V0 � 100kBT , a significant portion of
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of two coupled Y-motors walking on a DNA track as a function of
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in panels (a) and (b) schematically show the average first passage time
and the average dwell time of a single motor, respectively.

the distribution of dwell times is observed at τdwell = 3 ms.
This cooperative effect results from the fact that, for the two
coupled Y-motors to detach from the track completely, both
ligands bound to the two coupled Y-motors must unbind at
the same time. The comparison of τdwell of a single motor
with that of two coupled motors in Fig. 9(a) suggests that the
stability of the processive motion of the motors is not affected
significantly by their coupling over a wide range of binding
strengths.

In Fig. 10, we show the dependence of τFPT [Fig. 10(a)]
and τdwell [Fig. 10(b)] on [N ]/Kd . The average first passage
time of two coupled Y-motors in Fig. 10(a) has a very similar
logarithmic dependence on ligand concentration as that of a
single Y-motor shown in Fig. 4(c) [solid line in Fig. 10(a)].
However, the average dwell time of two coupled Y-motors
in Fig. 10(b) increases linearly with ligand concentration due
to the cooperative effect of two coupled Y-motors. This is
quite different from the logarithmic increase of the average
dwell time of a single Y-motor shown in Fig. 5(b) [solid line
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FIG. 11. Average first passage time (filled circles) and average
dwell time (filled squares) for m coupled Y-motors where m increases
from 1 to 4. The solid line shows an exponential fit of the average
dwell time, while the dashed line is the best fit of the average dwell
time using the formula (am − b)/m with a = 1.743 and b = 1.232.

in Fig. 10(b)]. The comparison of τFPT and τdwell of a single
motor with those of two coupled motors in Fig. 10 suggests
that the speed of processive motion of motors is only slightly
affected by the coupling, while the stability of processive
motion is significantly enhanced in the limit of large ligand
concentration.

To study the cooperative effects of coupled Y-motors
further, we calculated both τFPT and τdwell for m coupled
motors, where m = 2, 3, and 4. In Fig. 11, it is shown that the
average first passage time of m coupled Y-motors increases
slowly with m, while the average dwell time increases rapidly
with m. To clarify the dependence of τdwell on m, we fit
our data of τdwell with an exponential curve (solid line) and
the curve of (am − b)/m derived from a recent theoretical
prediction of the average walking distance of m coupled
cytoskeletal motors (dashed line) [6]. With our available data,
the average dwell time of m coupled motors is better fit by the
exponential curve for m � 4. The difference between these two
curves is not significant for m � 10, but becomes noticeable
for m � 10. Therefore, for m � 10, the generic feature of
cooperative transport by several molecular motors is similar
although the fundamental mechanism for motors walking
along a track is quite different in our model in comparison
with that for cytoskeletal motors of reference [6]. For any
realistic application of our model motors, it is desirable that
the average first passage time be as short as possible and the
average dwell time be as long as possible. The characteristic
time scales found in Fig. 11 for m coupled motors therefore
suggest that a train of molecular motors could be designed to
transport cargoes.

V. CONCLUSIONS

In this work, we proposed a simple model for studying
the processive motion of single and coupled synthetic protein
motors along a DNA track. MC simulations were carried out
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to investigate their processive dynamics. Although an absolute
measure of physical time is not provided in MC simulations,
we calibrate the MC time unit (one MC step) by measuring
the self-diffusion coefficient of a Y-motor in solution from
both MC simulations and Langevin dynamics simulations,
which gives one MC step ∼25 ps in two dimensions and
27 ps in three dimensions. The processive motion of motors
along the DNA track is controlled by a time series of bulk
ligand pulses (lA, lB, lC). We investigated τFPT and τdwell by
varying the ligand concentration [N ] as well as the effective
range ξ and the strength V0 of the binding interaction between
motors and the track. For single motors, it was found that
τFPT decreases logarithmically with [N ], while τdwell increases
logarithmically with [N ]. It was furthermore found that τFPT

increases as ξ decreases and saturates for small values of ξ . The
value of τdwell increases with ξ for ξ < 2.21 nm and ξ > 3.83
nm but decreases significantly with ξ for 2.21 nm < ξ <

3.83 nm. Our simulation results also show that τFPT decreases
exponentially with V0 for V0 < 10kBT and reaches a constant
value for V0 > 10kBT , while τdwell increases exponentially
with V0 for V0 < 10kBT and saturates at V0

∼= 100kBT .
The examination of the processive dynamics of coupled mo-

tors is the principal aim of this work. For two coupled motors
with a coupling strength k, the coupling between neighboring
motors tends to increase the value of τFPT logarithmically. The
value of τdwell for coupled motors decreases logarithmically
with k for k < 8.2 pN/nm and increases linearly with k for k >

8.2 pN/nm. In particular, we investigated the experimental
conditions for robust processive motion of coupled motors, in
which case the value of τFPT is minimized and the value of
τdwell is maximized. Our MC simulations for coupled motors
show that, by increasing ligand concentration, the value of
τFPT for coupled motors is similar to that of single motors, but
the value of τdwell for coupled motors is much larger than that
of single motors. Furthermore our simulations of m coupled
motors show that τFPT only increases slowly with m whereas
τdwell increases exponentially with m. These characteristic time
scales for m coupled motors suggest that a train of molecular
motors could be designed to transport cargoes over larger
distances than for single motors. We plan to extend the work
in this paper to the case when the coupled TWs are completely
flexible in 3D.
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APPENDIX

The Langevin simulations used to calculate the diffusion
coefficient of the single rigid TW are identical in method to
those used by Kuwada et al. [10]. In brief the over-damped
discretized Langevin equation can be written as follows. Let
�xi

(j ) be the change in the value of the ith coordinate of the
j th monomer of the TW in increment �t at time t . Here i

(=1 to 3) are coordinate indices, j = 1(A′), 2(B′), and 3(C′),
for the repressor “feet” of the TW and j = 4 for the hub. The
Langevin equation can then be written as

�x
(j )
i = F

(j )
i �t/γ + (2kBT �t/γ )1/2ξ

(j )
i . (A1)

In Eq. (A1) F
(j )
i is the ith component of the force on the

j th monomer at time t , γ is the drag coefficient for each
monomer, and ξ

(j )
i is a Gaussian random number. Assuming

that the monomers (repressors) are spheres of radius 2 nm [10]
and using the viscosity of water at room temperature, Stokes’
law gives γ = 1.2π 10−11 kg/s. The force F

(j )
i acting on each

monomer is derived from the following potential:

V = VH + Vb. (A2)

VH is a harmonic potential which fixes the length of the bonds
between the hub and the three feet of the TW and is given by

VH = kH

∑
i

(|r4 − ri | − L)2 /2. (A3)

Here, r4 is the position vector for the hub, ri is the position
vector for the feet (i = 1 to 3) and L = 7 nm is the bond length.
We take kH = 16kBT /nm2. The bending potential Vb, which
maintains the angle between neighboring bonds of the TW at
close to 120◦, is given by

Vb = kb

∑
i,i ′

{1 − cos(ϑi,i ′)} (A4)

Here ϑi,i ′ is the angle between neighboring bonds i and i ′. We
take kb = 2000kBT . The values of the self-diffusion constants
for the single TW in two and three dimensions were found from
the Langevin simulations to be D(2D) = 7.8 × 10−12 m2/s
and D(3D) = 6.7 × 10−12 m2/s, respectively.
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