
PHYSICAL REVIEW E MAY 1999VOLUME 59, NUMBER 5
Theory for the bending anisotropy of lipid membranes and tubule formation
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We study the spontaneous symmetry breaking of the bending rigidity of lipid membranes in two principal
directions by a Landau mean-field theory. When the temperature is below the tilting temperature (Tc), the
coupling between molecular orientation and membrane local curvature square leads to an increase of the
bending rigidity in the tilting direction and therefore a spontaneous symmetry breaking in two principal
directions. The asymmetry (D) of the bending rigidity undergoes a continuous change upon cooling and grows
asTc2T for T,Tc . We discuss this anisotropical effect on the tilt structure of the ripple phasePb8 of a nearly
flat membrane and the sphere-to-tubule transition in a dilute solution of lipids. The transition between the
spherical vesicle phase and the tubular phase is predicted to be first order.@S1063-651X~99!15705-2#

PACS number~s!: 64.60.2i, 87.14.Cc, 68.15.1e
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Lipid molecules in water can self-assemble into bilay
membranes to shield their nonpolar hydrocarbon tails fr
contact with surrounding water. In many ways, these li
bilayer membranes are excellent model systems of biolog
membranes. Aside from their structural resemblance, m
physical properties of lipid bilayers are very similar to tho
of biomembranes, such as membrane thickness, surface
sion, refraction index, water permeability, and bending rig
ity. Furthermore, lipid bilayers can be prepared in vario
forms, such as planar membranes, stacks of lipid bilay
multilamellar vesicles~MLV’s !, small unilamellar vesicles
~SUV’s!, and large unilamellar vesicles~LUV’s !. Thus lipid
membranes provide a unique opportunity for us to inve
gate various biological functions of biomembranes, such
exocytosis and endocytosis. In addition to a basic und
standing of biomembranes, encapsulation of drugs and D
by liposomes also provides a powerful tool in controll
drug delivery and release.

The study of lipid membranes has attracted considera
attention. Helfrich has developed a theory of the curvat
elasticity of lipid bilayers@1# for studying planar membrane
as well as vesicles. Most past theoretical work has been
stricted to membranes with isotropic bending rigidity. T
assumption of isotropic membranes is sensible for system
temperatures above the tilting temperature (Tc) where the
long axes of constituent lipids are parallel to the layer n
mal. For temperatures belowTc , lipid molecules are tilted
relative to the layer normal, which leads to theLb8 phase or
the Pb8 phase@2–4#. In this case, membranes could devel
anisotropy since the isotropy of molecular orientation
spontaneously broken. It has been suggested that the an
ropy of membranes could possibly lead to a tubular ph
@5#. Indeed, tubules have been observed in various system
which the isotropy of the membrane is broken@6#. Although
there are many theories that attempt to explain the forma
of tubules@7–9#, none of them has proved to be conclusiv

In this Brief Report, we study the spontaneous symme
breaking of the bending rigidities of lipid membranes in tw
principal directions by a continuum Landau theory in whi
the molecular orientation couples to the membrane local
vature square. The origin of this coupling can be easily
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derstood from Fig. 1 in which the orientation of lipid mo
ecules and their projection on the local tangent plane
shown. Herel is the bilayer thickness,a is the diameter of
their head groups, andml is the projected length on the loca
tangent plane. It is easy to see that the in-plane isotrop
the membrane is broken in Fig. 1~b!. The anisotropy of the
bending rigidity can be represented by a coupling term
tween the molecular tilt and local curvature lik
lmambKacKb

c wherel is the coupling constant,Kab is the
curvature tensor, and the summation convention is assum
The coupling constant is the energy difference to bend
membrane parallel to the tiltm and perpendicular tom and
should be positive since it is more difficult to bend the me
brane in the tilt direction. If we take the tilt direction as on
of the principal axes (x1 axis!, this coupling term can be
simplified to lumu2(]1

2r )2 wherer is the position vector of
the membrane. Other coupling terms permitted by symme
are possible but will be ignored for simplicity. Such a co
pling enhances the bending rigidity of the membrane in
tilting direction and the symmetry in the two principal dire
tions is spontaneously broken when lipid molecules are til
upon cooling. We discuss the anisotropical effect on the
structure of the ripple phasePb8 of a nearly flat membrane

FIG. 1. Schematic representations of molecular orientations o
lipid membrane~up! and their projections on the local tangent pla
~down!: ~a! aboveTc and~b! belowTc . The characteristic sizes ar
a, head group diameter;l, bilayer thickness; andml, the projected
size on the local tangent plane.
6192 ©1999 The American Physical Society
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and the sphere-to-tubule transition in a dilute solution of l
ids. Due to the enhanced rigidity in the tilt direction, the t
direction of the ripple phase is expected to be roughly p
pendicular to the ripple wave vector, in the limit of largel.
In a dilute solution of lipids, belowTc , we predict a tubular
phase with a monodisperse radius (2k/t) and widely varied
lengths by assuming a finite line tensiont. For diacetylenic
lipid systems, the tubule radius is typically 0.3–1mm,
which gives a line tension~edge energy per unit length! of
diacetylenic lipid membranes oft;1027 dyn. Our theory
also predicts a first-order transition from the spherical ves
phase to the tubular phase upon cooling.

Considering a two-dimensional bilayer membrane w
uniform molecular tilt, the free energy of the membrane
our model can be expressed as

F5E dx1dx2~ f b1 f m!,

f b5
1

2
k~]1

2r1]2
2r !21k̄~]1

2r !~]2
2r !, ~1!

f m5l~]1
2r !2umu21tumu21uumu4,

where f b is the local curvature energy density andf m is the
Landau expansion of the local free energy density with
spect to the tilting order parameterm. We have arbitrarily
chosen thex1 axis in the tilting direction. As shown in Fig. 1
the tilt field m is the projection of the molecular orientatio
n onto the local tangent plane, i.e.,m5n2n•N, whereN is
the membrane normal unit vector. Herek is the bending
rigidity, k̄ is the Gaussian rigidity,t5(T2Tc)/Tc is the re-
duced temperature, andu.0 is the coefficient of the high
order termm4 which stabilizes the tilting order paramete
The coupling constantl is expected to increase withl /a. For
a nearly flat fluid membrane with thermal fluctuations, w
adopt the ansatzr5„j1x1 ,j2x2 ,h(x1 ,x2)… @10# where
h(x1 ,x2) is the membrane height profile relative to a refe
encex1-x2 plane. At t.0, the tilt field m vanishes every-
where andf m50. At t,0, the minimization off m leads to

umu252
t1l~]1

2h!2

2u
~2!

and

f b1 f m5
1

2
k8~]1

2h!21
1

2
k~]2

2h!21k~]1
2h!~]2

2h!

1k̄~]1
2h!~]2

2h!, ~3!

where the renormalized bending rigidity in thex1 direction is
k85k2tl/2u. Immediately, we see that the symmetry
the bending rigidity in thex1 direction andx2 direction is
broken ast,0. Here we define the asymmetry of the ben
ing rigidity as D[k82k. The asymmetry vanishes att>0
and is linear in2t for t,0. This corresponds to a continu
ous phase transition in the spontaneous symmetry brea
of the bending rigidity with respect to temperature. Since
asymmetry is predicted to be linear inutu andl, one expects
that the rigidity in the tilt direction is much enhanced for
-

r-

le

-

-

-

ng
e

thick membrane at low temperatures. The persistence le
in the tilt direction is enhanced by a factoreutul/2ukT. For such
a membrane, ripple phases undulating along the tilt direc
are not favored compared to those undulating along the o
direction. Previously we have proposed a theory@4# for the
ripple phase of lipid bilayers without including the couplin
between the molecular orientation and local curvat
square. We predict the existence of various tilt structu
with similar one-dimensional ripple shapes. Taking the a
isotropic effect into consideration, ourPb8

(1) phase, whose tilt
direction is roughly perpendicular to the wave vector, will
favored in the limit of largel. Indeed, this is consistent with
the experimental results of Hentschel and Rustichelli@3#.

Furthermore, we consider this symmetry breaking p
nomenon in a dilute solution of lipids. Particularly, we foc
on the transition from the spherical vesicle phase to the
bular phase upon cooling. For a dilute lipid solution, clos
vesicles are preferred in order to minimize their edge ene
@11#. Minimizing the edge energy leads to a spontaneo
curvature or equivalently a preferred area difference of t
monolayers of vesicles which can be expressed asDA
. l rdA@(]1

2r )1(]2
2r )# as long as the bilayer thickness

much smaller than the overall vesicle size@12#. The effective
spontaneous curvature can be derived by considering
relative free energy of vesicles to flat membranes with fin
surface area. Setting the surface energy of a flat membran
be zero, the local surface energy density of a vesicle can
expressed as

f b5
1

2
k~]1

2r1]2
2r !21k̄~]1

2r !~]2
2r !2

t

2
~]1

2r1]2
2r !, ~4!

where the integration of the third term gives the edge ene
of the corresponding flat membranes. Here we have exp
itly broken the bilayer symmetry in order to minimize th
edge energy of the vesicles. For a sphere with radiusR0, its
corresponding flat membrane has an edge energy 4pR0t.
For a tubule with radiusR0/2 and lengthL, it can be obtained
by mergingNs5L/(4R0) spheres and its corresponding fl
membranes have an edge energy ofpLt. The fact that the
tubule radius is half of the sphere radius is obvious from E
~5!. Including the configurational entropy of vesicles w
lead to a broader distribution in the sphere radius but no
the tubule radius since the tubule length can vary wide
Minimizing the local free energy density (f b1 f m) with re-
spect tom at t,0, we have

f b1 f m5
1

2
kF ~]1

2r !1~]2
2r !2

t

2kG2

1k̄~]1
2r !~]2

2r !

2
tl

2u
~]1

2r !21const. ~5!

In Eq. ~5!, the termt/(2k) is equivalent to the so-called
spontaneous curvature in the spontaneous curvature m
@1#. Our model predicts the same effective spontaneous
vature for both spheres and tubules, which only depends
the bending rigidity and line tension. This prediction is co
sistent with numerical results of Ju¨licher and Lipowsky@13#.
If the components of two monolayers of membranes are
ferent from each other, additional spontaneous curva
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should be added to the free energy density. In addition,
include the free energy contributions from the entropy oN
vesicles constrained in a volumeV at temperatureT, which is
given by the Sackur-Tetrode equation asFentropy5

2NkT$3/21 ln(v/lT
3)% @14#. Here,v[V/N, lT[h/A2pmT

is the thermal wavelength of a vesicle with massm, andh is
Planck’s constant. To study the instability of the spheri
vesicle phase as the temperature decreases, we compa
overall free energy to that of possible equilibrium phases.
simplify our problem, foruk̄u comparable withkT, we ignore
nontrivial topologies and only consider spherical vesicl
tubules, and flat membranes. Fork̄.0, the minimization of
Eq. ~5! gives

]1
2r50,

~6!

]2
2r5

t

2k
,

which corresponds to a tube with radius 2k/t. A flat phase is
less stable than the tubular phase since it has a higher
energy. Furthermore, as the temperature decreases fu
below Tc , the third term in Eq.~5! favors the tubular phas
over the spherical vesicle phase. In the following we w
only consider the transition of the spherical vesicle phas
the tubular phase as temperature decreases. We then d
the free energy difference of these two phases asDF
[Fsphere2F tubule, which is given by

DF

N
.H 4pk̄2kT@3/21 ln~v/l!#, t.0,

4p@2tl/~2u!1k̄ #2kT@3/21 ln~v/l!#, t,0,
~7!

where we have ignored the entropy of tubules which is sm
compared with that of spheres. ForDF,0 the equilibrium
phase is the spherical vesicle phase, while forDF.0 the
equilibrium phase is the tubular phase. As predicted in
model, the phase boundary between the spherical ve
phase and the tubular phase strongly depends on the v
of k̄ andt. The tubular phase is favored at largek̄ and small
t. Moreover, in this model, larger values ofl favor the tu-
bular phase. Notice that, for a nonvanishing line field on
closed surface of a topological sphere, there are at least
singular points@15# which could lead to a rupture of th
spheres upon cooling. The extra energy due to these si
larities can further destabilize the spherical vesicle phase
therefore shift the phase boundary toward the spher
vesicle phase. We predict that the sphere-to-tubule trans
is first order.

The above theory predicts the existence of a stable tub
phase. It is also of general interest to describe the equ
rium distribution of tubules with different radii and length
@16#. Here we consider a dilute suspension of many tubu
The total Helmholtz free energyF tot for a system of nonin-
teracting tubules in a box of volumeV is given by the ideal
gas free energybF tot5(M5Mmin

` NM@ ln(NM)211FM(V)#,

where NM is the number of tubules ofM lipids on each
tubule andFM(V) is the free energy of a single tubule ofM
lipids whose center of mass is constrained in a volumeV.
The lower cutoffMmin is introduced to include the fact tha
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the density of very small tubules will be strongly suppress
by molecular packing effects. We then obtain the equilibriu
size distribution by minimizingF tot with respect toNM in the
presence of a constraint on the total number of lipids. T
size distribution is given by

NM~V!.e2b$k[(1/R)2(t/2k)] 2A1mM %, ~8!

whereA is the surface area of tubules andm is a Lagrange
multiplier to constrain the total number of lipids in the sy
tem. In the thermodynamical limit,m→0. The radius~R!
distribution is given by r(R)} exp@2bk(1/R2t/2k)2A#
which indicates a monodisperse distribution of tubules’
dius (R;2k/t) since the line tensiont is the same for all
vesicles. The length~L! distribution is given by r(L)
} exp(2bmL) which shows no length dependence in t
thermodynamical limit. For diacetylenic lipid systems, t
tubule radius is typically 0.3–1mm, and the tubule length is
typically 50–200 mm and can be as long as 1200mm. This
corresponds to a line tension of diacetylenic lipid me
branes,t;1027 dyn, which is consistent with the estima
tion (t;k11) from standard liquid crystal theory, wherek11
is the splay elastic constant.

Tubules have been observed in a variety of systems, s
as diacetylenic lipids, bile, surfactants, and glutamates@6#.
The formation of tubules has attracted many theoretical c
siderations. In the literature, there have been three gen
approaches to the theory of tubule formation. First,
Gennes argued that a spontaneous electrostatic polariz
can induce a narrow strip of membrane to buckle into a c
inder @7#. However, experimental results of Chappell a
Yager have shown that electrolytes in solution do not aff
the radius of tubules@17#. Second, the model proposed b
Lubensky and Prost predicts a scalingR}AL resulting from
competition between the curvature energy and the edge
ergy @8#. Nevertheless, experimental results of Georgeret al.
have found no correlation betweenR andL @18#. More pre-
cisely, R is quite monodisperse whileL varies widely. A
third approach to tubule formation based on the chiral pa
ing of molecules in a membrane has been proposed by
frich and Prost as well as many other authors@9#. Although
this approach seems to be more consistent with the exp
mental results, the major drawback comes from the pre
tion of the radius dependence on the chirality of the me
brane and molecular tilt. So far, experiments show
evidence that the tube radius diverges as the untilted pha
approached or the radius can be varied by changing the m
nitude of the chirality@19#. In fact achiral amphiphiles can
also form stable tubules@20#. Therefore there are still man
open questions about the formation of tubules. Neverthel
in a more recent work by Seifertet al. @21#, achiral tubules of
radius aboutk/b can be obtained by unlocking the tiltin
directions of the two monolayers, whereb is the coupling
between the curvature tensor and the tilting directions
has dimensions of energy/length. This unlocking of the t
tilting directions can be induced, for example, by an ed
energy of the membrane in dilute solutions of lipids, andb
;t/2 in our case. Our model has tried to answer the ab
questions and seems to be consistent with the experime
results so far. We note that chiral terms have not been
cluded in the free energy for simplicity; they are believed
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be responsible for the helical patterns observed in some
bules and have been extensively discussed by many au
@9,22#.

In summary, we have presented a Landau theory for
bending anisotropy of membranes upon cooling. The be
ing rigidity is enhanced in the tilt direction, but not affecte
in the other one. Our theory predicts a continuous ph
transition of the asymmetry of the bending rigidity as t
temperature decreases and the asymmetry grows asTc2T
below Tc . This bending anisotropy can have a profound
fect on the tilt structure of the ripple phase and we exp
that the tilt direction of thePb8 phase is roughly perpendicu
lar to the ripple wave vector. We also discuss the transit
between the spherical vesicle phase and the tubular ph
Spherical vesicles become unstable to tubules as molec
tilt develops belowTc . The transition from spheres to tu
bules is predicted to be first order. Those tubules hav
radius 2k/t which is independent of the chirality and mo
-

u-
ors

e
d-

e

-
ct

n
se.
lar

a

lecular tilt, while their length can vary widely. These predi
tions seem to be consistent with experimental results.
also predict the line tension of diacetylenic lipid membran
to be about 1027 dyn. To further test our theory, one ca
measure the asymmetry of the bending rigidity of a bla
membrane by using differential confocal microscopy~DCM!
@23#. DCM uses one laser beam to create optical excitati
of the membrane and another laser beam to measure
driven membrane motion. Due to the high resolutions~2 nm
in depth resolution and 0.3mm in lateral resolution! of
DCM, the bending rigidity of the membrane in two princip
directions can be accurately measured at various temp
tures and one expects to see the asymmetry increasin
Tc2T below Tc .
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