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Theory for the bending anisotropy of lipid membranes and tubule formation
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We study the spontaneous symmetry breaking of the bending rigidity of lipid membranes in two principal
directions by a Landau mean-field theory. When the temperature is below the tilting tempefajyréhé¢
coupling between molecular orientation and membrane local curvature square leads to an increase of the
bending rigidity in the tilting direction and therefore a spontaneous symmetry breaking in two principal
directions. The asymmetn() of the bending rigidity undergoes a continuous change upon cooling and grows
asT.—T for T<T.. We discuss this anisotropical effect on the tilt structure of the ripple ppgsef a nearly
flat membrane and the sphere-to-tubule transition in a dilute solution of lipids. The transition between the
spherical vesicle phase and the tubular phase is predicted to be first[@H@83-651X99)15705-3

PACS numbd(s): 64.60—i, 87.14.Cc, 68.15:e

Lipid molecules in water can self-assemble into bilayerderstood from Fig. 1 in which the orientation of lipid mol-
membranes to shield their nonpolar hydrocarbon tails fromecules and their projection on the local tangent plane are
contact with surrounding water. In many ways, these lipidshown. Here is the bilayer thicknessa is the diameter of
bilayer membranes are excellent model systems of biologicdheir head groups, ami| is the projected length on the local
membranes. Aside from their structural resemblance, maniangent plane. It is easy to see that the in-plane isotropy of
physical properties of lipid bilayers are very similar to thosethe membrane is broken in Fig(d. The anisotropy of the
of biomembranes, such as membrane thickness, surface tdpending rigidity can be represented by a coupling term be-
sion, refraction index, water permeability, and bending rigid-tween the molecular tilt and local curvature like
ity. Furthermore, lipid bilayers can be prepared in varioush m*m°K, K& where\ is the coupling constank ., is the
forms, such as planar membranes, stacks of lipid bilayerssurvature tensor, and the summation convention is assumed.
multilamellar vesiclesSMLV’s), small unilamellar vesicles The coupling constant is the energy difference to bend the
(SUV’s), and large unilamellar vesiclékUV’s). Thus lipid = membrane parallel to the tith and perpendicular ton and
membranes provide a unique opportunity for us to investishould be positive since it is more difficult to bend the mem-
gate various biological functions of biomembranes, such abrane in the tilt direction. If we take the tilt direction as one
exocytosis and endocytosis. In addition to a basic underef the principal axes X; axig, this coupling term can be
standing of biomembranes, encapsulation of drugs and DNAimplified to\|m|?(#2r)? wherer is the position vector of
by liposomes also provides a powerful tool in controlledthe membrane. Other coupling terms permitted by symmetry
drug delivery and release. are possible but will be ignored for simplicity. Such a cou-

The study of lipid membranes has attracted considerablpling enhances the bending rigidity of the membrane in the
attention. Helfrich has developed a theory of the curvatureilting direction and the symmetry in the two principal direc-
elasticity of lipid bilayerq 1] for studying planar membranes tions is spontaneously broken when lipid molecules are tilted
as well as vesicles. Most past theoretical work has been ratpon cooling. We discuss the anisotropical effect on the tilt
stricted to membranes with isotropic bending rigidity. Thestructure of the ripple phas}éﬁ, of a nearly flat membrane
assumption of isotropic membranes is sensible for systems at
temperatures above the tilting temperatuiie)(where the Nﬁn
long axes of constituent lipids are parallel to the layer nor- m
mal. For temperatures beloW,;, lipid molecules are tilted f
relative to the layer normal, which leads to thg phase or B O T 7 2
the P4 phasg2—-4]. In this case, membranes could develop g J
anisotropy since the isotropy of molecular orientation is
spontaneously broken. It has been suggested that the anisot-

ropy of membranes could possibly lead to a tubular phase O al >
[5]. Indeed, tubules have been observed in various systems in - - +<—>
which the isotropy of the membrane is broKén. Although ml

there are many theories that attempt to explain the formation b
of tubules[7-9], none of them has proved to be conclusive. @ (b)

In this Brief Report, we study the spontaneous symmetry giG. 1. Schematic representations of molecular orientations on a
breaking of the bending rigidities of lipid membranes in two jipid membrangup) and their projections on the local tangent plane
principal directions by a continuum Landau theory in which (down): (a) aboveT, and(b) below T, . The characteristic sizes are
the molecular orientation couples to the membrane local cura, head group diametel; bilayer thickness; anchl, the projected
vature square. The origin of this coupling can be easily unsize on the local tangent plane.

1063-651X/99/566)/61924)/$15.00 PRE 59 6192 ©1999 The American Physical Society



PRE 59 BRIEF REPORTS 6193

and the sphere-to-tubule transition in a dilute solution of lip-thick membrane at low temperatures. The persistence length
ids. Due to the enhanced rigidity in the tilt direction, the tilt in the tilt direction is enhanced by a fac®f*2T. For such
direction of the ripple phase is expected to be roughly pera membrane, ripple phases undulating along the tilt direction
pendicular to the ripple wave vector, in the limit of large  are not favored compared to those undulating along the other
In a dilute solution of lipids, below ., we predict a tubular direction. Previously we have proposed a thefgtyfor the
phase with a monodisperse radius«(z) and widely varied ripple phase of lipid bilayers without including the coupling
lengths by assuming a finite line tensienFor diacetylenic between the molecular orientation and local curvature
lipid systems, the tubule radius is typically 0.3-dm, square. We predict the existence of various tilt structures
which gives a line tensiofiedge energy per unit lengtlof ~ with similar one-dimensional ripple shapes. Taking the an-
diacetylenic lipid membranes af~10~’ dyn. Our theory isotropic effect into consideration, omﬁ,) phase, whose tilt
also predicts a first-order transition from the spherical vesiclgjirection is roughly perpendicular to the wave vector, will be
phase to the tubular phase upon cooling. favored in the limit of largex. Indeed, this is consistent with
Considering a two-dimensional bilayer membrane withthe experimental results of Hentschel and Rustictia]li
uniform molecular tilt, the free energy of the membrane in  Furthermore, we consider this symmetry breaking phe-

our model can be expressed as nomenon in a dilute solution of lipids. Particularly, we focus
on the transition from the spherical vesicle phase to the tu-

F:f dxdxo( Fot fro), buIa}r phase upon coolling. For a dil_u'ge !ipid sqlution, closed
vesicles are preferred in order to minimize their edge energy

[11]. Minimizing the edge energy leads to a spontaneous
(1) curvature or equivalently a preferred area difference of two
monolayers of vesicles which can be expressedA#s
=I$dA[(d3r)+(dr)] as long as the bilayer thickness is
frn=N(32r)2Im|2+t|m|2+um|4, much smaller than the overall vesicle sfa€]. The effective
spontaneous curvature can be derived by considering the
wheref, is the local curvature energy density afiglis the  relative free energy of vesicles to flat membranes with finite
Landau expansion of the local free energy density with resyrface area. Setting the surface energy of a flat membrane to

spect to the tilting order parametar. We have arbitrarily  pe zero, the local surface energy density of a vesicle can be
chosen the; axis in the tilting direction. As shownin Fig. 1, expressed as

the tilt field m is the projection of the molecular orientation

n onto the local tangent plane, i.ea=n—n-N, whereN is 1, 22— 2 ) T o, 5

the membrane normal unit vector. Hekeis the bending fo=25 k(917 +931) "+ k(91r)(92r) = 5(dar +92r),  (4)

rigidity, « is the Gaussian rigiditt=(T—T.)/T, is the re-

duced temperature, and>0 is the coefficient of the high- where the integration of the third term gives the edge energy

order termm* which stabilizes the tilting order parameter. of the corresponding flat membranes. Here we have explic-

The coupling constar is expected to increase witha. For  itly broken the bilayer symmetry in order to minimize the

a nearly flat fluid membrane with thermal fluctuations, weedge energy of the vesicles. For a sphere with raBy)sts

adopt the ansatzr=(&;x;,£,%2,h(X1,X,)) [10] where  corresponding flat membrane has an edge energRy4.

h(x;,x,) is the membrane height profile relative to a refer-For a tubule with radiu®,/2 and length., it can be obtained

encex;-X, plane. Att>0, the tilt field m vanishes every- by mergingNs=L/(4R,) spheres and its corresponding flat

where andf,=0. At t<0, the minimization off , leads to =~ membranes have an edge energymtfr. The fact that the
tubule radius is half of the sphere radius is obvious from Eq.

1 —
fo=5 K(JAr +351) 2+ K(J4r) (957,

) t+A(d2h)? (5). Including the configurational entropy of vesicles will
m|*=— T ou () Jead to a broader distribution in the sphere radius but not in
the tubule radius since the tubule length can vary widely.
and Minimizing the local free energy densityf {+ f,,,) with re-

spect tom att<<0, we have

1 e L oo 2 2

fb+fm:§;< (a1h) +§K((92h) + k(d1h)(d5h) 1 , , 12 o
fb+fm:§K (&lr)+(azr)—ﬂ +Kk(97r)(d5r)
+k(7th)(d5h), 3

tA
_ N 22
where the renormalized bending rigidity in thedirection is 2u(r91r) +const. ®)

k'=k—tN2u. Immediately, we see that the symmetry of

the bending rigidity in thex; direction andx, direction is In Eq. (5), the term7/(2«) is equivalent to the so-called
broken ag<0. Here we define the asymmetry of the bend-spontaneous curvature in the spontaneous curvature model
ing rigidity as A=«'— k. The asymmetry vanishes &0 [1]. Our model predicts the same effective spontaneous cur-
and is linear in—t for t<0. This corresponds to a continu- vature for both spheres and tubules, which only depends on
ous phase transition in the spontaneous symmetry breakirte bending rigidity and line tension. This prediction is con-
of the bending rigidity with respect to temperature. Since thesistent with numerical results of lither and Lipowsky{13].
asymmetry is predicted to be linear|irh and\, one expects If the components of two monolayers of membranes are dif-
that the rigidity in the tilt direction is much enhanced for a ferent from each other, additional spontaneous curvature
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should be added to the free energy density. In addition, wéhe density of very small tubules will be strongly suppressed
include the free energy contributions from the entropyNof by molecular packing effects. We then obtain the equilibrium
vesicles constrained in a volurveat temperaturd, which is  size distribution by minimizindr,; with respect td\,, in the
given by the Sackur-Tetrode equation aSgnyop™ presence of a constraint on the total number of lipids. The
—NKT{3/2+ In(w/\3)} [14]. Here,uv=VIN, Ay=h/\2zmT size distribution is given by

is the thermal wavelength of a vesicle with magsandh is )

Planck’s constant. To study the instability of the spherical Ny (V)= AR = (201 °At uM} (8
vesicle phase as the temperature decreases, we compare its

overall free energy to that of possible equilibrium phases. TavhereA is the surface area of tubules apdis a Lagrange

nontrivial topologies and only consider spherical vesiclesfem. In the thermodynamical limitu—0. The radius(R)

tubules, and flat membranes. For0, the minimization of  distribution is _given by p(R)= exp — Sx(1/R— 7/21)?A]
Eq. (5) éives ' which indicates a monodisperse distribution of tubules’ ra-

dius (R~2«/7) since the line tensiom is the same for all
C;irzo, vesicles. The length(L) distribution is given byp(L)
6) « exp(—BuL) which shows no length dependence in the
. thermodynamical limit. For diacetylenic lipid systems, the
a§r= PP tubule radius is typically 0.3—1um, and the tubule length is
typically 50—200 xm and can be as long as 12Q0m. This

which corresponds to a tube with radiug/2. A flat phase is ~ Corresponds to a line tension of diacetylenic lipid mem-
less stable than the tubular phase since it has a higher frdanes,7~10"" dyn, which is consistent with the estima-
energy. Furthermore, as the temperature decreases furtié@n (7~kiy) from standard liquid crystal theory, wheke,
below T, the third term in Eq(5) favors the tubular phase IS the splay elastic constant. _

over the spherical vesicle phase. In the following we will ~ Tubules have been observed in a variety of systems, such
only consider the transition of the spherical vesicle phase t§S diacetylenic lipids, bile, surfactants, and glutam@6ds

the tubular phase as temperature decreases. We then defih@e formation of tubules has attracted many theoretical con-
the free energy difference of these two phasesAds siderations. In the literature, there have been three general

=F ¢ynere- Frupuie, Which is given by approaches to the theory of tubule formation. First, de
P Gennes argued that a spontaneous electrostatic polarization
AF [4mk—KT[3/2+In(v/\)], t>0, can induce a narrow strip of membrane to buckle into a cyl-

= _ inder [7]. However, experimental results of Chappell and
N | 4aa]—t\/(2u) + k] -KT[3/2+In(v/\)],  t<0, Yager have shown that electrolytes in solution do not affect
7 the radius of tubule$17]. Second, the model proposed by
where we have ignored the entropy of tubules which is smaIFUbenSk.y and Prost predicts a scaliRg L resulting from
compared with that of spheres. FAE <0 the equilibrium competition between the curvature energy and the edge en-
' ergy[8]. Nevertheless, experimental results of Geoegeal.

pha.s.e IS the sphencal vesicle phase, while Zicﬁf'>0 th_e . have found no correlation betwe&andL [18]. More pre-
equilibrium phase is the tubular phase. As predicted in this isely, R is quite monodisperse while varies widely. A

model, the phase boundary between the spherical vesic fird approach to tubule formation based on the chiral pack-

phase and the tubular phase strongly depends on the valultla,]sg of molecules in a membrane has been proposed by Hel-

of k andt. Thg tupular phase is favored at largeand small  frich and Prost as well as many other authi®@ Although
t. Moreover, in this model, larger values bffavor the tu-  this approach seems to be more consistent with the experi-
bular phase. Notice that, for a nonvanishing line field on anenta| results, the major drawback comes from the predic-
closed surface of a topological sphere, there are at least Wy of the radius dependence on the chirality of the mem-
singular points[15] which could lead to a rupture of the prane and molecular tilt. So far, experiments show no
sp_h_eres upon cooling. Tht_a extra energy due t_o these singyidence that the tube radius diverges as the untilted phase is
larities can further destabilize the spherical vesicle phase a”&bproaohed or the radius can be varied by changing the mag-
therefore shift the phase boundary toward the sphericglit,de of the chirality[19]. In fact achiral amphiphiles can
yesflcle phase. We predict that the sphere-to-tubule transitiogisg form stable tubulel20]. Therefore there are still many
is first order. . . open questions about the formation of tubules. Nevertheless,
The above theory predicts the existence of a stable tubulgp 3 more recent work by Seifeet al.[21], achiral tubules of
phase. It is also of general interest to describe the equilibyagiys about</3 can be obtained by unlocking the tilting
rium distribution of tubules with different radii and lengths girections of the two monolayers, whegis the coupling
[16]. Here we consider a dilute suspension of many tubulesyetyeen the curvature tensor and the tilting directions and
The total Helmholtz free enerdy, for a system of nonin- a5 gimensions of energy/length. This unlocking of the two
teracting tubules in a box of voluméis given by the ideal iiting directions can be induced, for example, by an edge
gas free energyBFiu=Zy_y _ Nu[IN(Nw)—1+FuM].  energy of the membrane in dilute solutions of lipids, ghd
where Ny, is the number of tubules oM lipids on each ~7/2 in our case. Our model has tried to answer the above
tubule andF, (V) is the free energy of a single tubule f  questions and seems to be consistent with the experimental
lipids whose center of mass is constrained in a voline results so far. We note that chiral terms have not been in-
The lower cutoffM i, is introduced to include the fact that cluded in the free energy for simplicity; they are believed to
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be responsible for the helical patterns observed in some tdecular tilt, while their length can vary widely. These predic-
bules and have been extensively discussed by many authdiens seem to be consistent with experimental results. We
[9,22]. also predict the line tension of diacetylenic lipid membranes
In summary, we have presented a Landau theory for thé&o be about 10" dyn. To further test our theory, one can
bending anisotropy of membranes upon cooling. The bendmeasure the asymmetry of the bending rigidity of a black
ing rigidity is enhanced in the tilt direction, but not affected membrane by using differential confocal microscéPCM)
in the other one. Our theory predicts a continuous pha5523]- DCM uses one laser beam to create optical excitations
transition of the asymmetry of the bending rigidity as the©f the membrane and another laser beam to measure the
temperature decreases and the asymmetry grows, ag driven membrane motion. Due to the high resoluti@sim
belowT,. This bending anisotropy can have a profound ef-IN_depth resolution and 0.3:m in lateral resolution of
fect on the tilt structure of the ripple phase and we expecPCM' the bending rigidity of the membrane in two principal

that the tilt direction of theé® 5, phase is roughly perpendicu- ?Jigt'g?]z g?lr; I?;( i%i:r?;elsiemtehislg:dm?;e\;?n?xgretggﬁer;
lar to the ripple wave vector. We also discuss the transitionl_ " T below T P y y 9

between the spherical vesicle phase and the tubular phaset ¢
Spherical vesicles become unstable to tubules as molecular We thank J.V. Selinger, F.C. MacKintosh, and J. Wang
tilt develops belowT.. The transition from spheres to tu- for stimulating discussions. This work was supported by the
bules is predicted to be first order. Those tubules have #&lational Science Council of Taiwan under Grant No. NSC

radius /7 which is independent of the chirality and mo- 88-2112-M-003-012.
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