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Abstract

In this we design a simple and insightful way to achieve Kepler’s first two

laws for planets. The approach is quite different from what we have done for

the Earth before. It is because the planet–Sun distance can be determined only

through the Earth–Sun distance in the analysis. By applying the law of equal

areas for the Earth and the observed angular speeds of a planet over the Sun,

the law of equal areas for planets can be re-constructed. Furthermore, for the

periodicity of a planet to the Sun, the distance from each planet to the Sun may

be expressed as an angular periodic function. By coordinating with the

observed data, this periodic distance function depicts an exact elliptical path.

Here, we apply relatively easy mathematical skills to illustrate the invariant

forms of planetary motions and indicate the key factors used to analyse the

motions in complicated planetary systems.

Keywords: Kepler, law of equal areas, law of ellipses, planet

1. Introduction

Mathematical models were widely employed to describe natural phenomena during Plato’s

era (427–347 BC). Spherical geometry was also applied to astronomy. Geometry is a part of

cosmology, and its theory represents a realization of the structure of the entire universe.

Therefore, a knowledge of geometry is crucial for understanding astronomy [1].

Almagest, the cosmology literature written by Ptolemy (85–165 AD), firmly established

the Greek trigonometry theory that was in place for more than a thousand years. He took the
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concept of epicycle and deferent to depict the motion of planets, which was widely accepted

by the public to save the appearances at that time, namely, to have a mere confident geo-

metrical model to describe the phenomenon. Until his pursuit of the notion of mathematical

harmony and symmetry as perfection, Nicolaus Copernicus (1473–1543) strongly suspected

human manipulation and complexity in the epicycle, deferent, and equant. The heliocentric

doctrine was established and led to the revolution of astronomy [2, 3]. Nonetheless, he did not

fully reject epicycles, which were necessary for him to describe non-uniform motion [4].

Johannes Kepler (1571–1630) was deeply enlightened by Copernicus’ heliocentric the-

ory and fully supported the doctrine throughout his life. He rejected epicycles as non-physical

and kept equants. In particular, he considered the Sun as the dynamical centre for the motion

of planets, and further proposed three laws for the planets [5]. His theories provided a

concrete basis for Isaac Newton’s (1642–1727) dynamics. Kepler’s laws of equal areas and

ellipses were published in New Astronomy in 1609 [6]. The book’s content is very obscure for

a reader today because of his use of complicated geometry rather than simple mathematical

forms.

Most researchers have rediscovered and obtained Kepler’s laws of planetary motion,

either from Newton’s laws of motion and universal gravitation [7–9], or from the principles of

the conservation of energy and angular momentum [10–12]. To emphasize Kepler’s impor-

tant influence, others derived, algebraically or graphically, the inverse-square law of grav-

itation from Kepler’s first two laws [13–15]. However, very few articles have discussed how

Kepler originally derived his laws of planetary motion [16–19].

In Copernicus’ and Kepler’s astronomical system, the Earth is no longer stationary,

which makes the determination of planet position more complicated. Fortunately, the

establishment of the rules for the motion of the Earth, which is the law of equal areas [6, 20],

presents the Earth as the starting point for depicting the positions of other planets. This rule

has become the primary basis and powerful tool for discovering the laws for other planets.

This process, in fact, was reflected in chapter 32 of New Astronomy, where Kepler declared

the proposition: the elapsed times of the Earth over equal arcs of the eccentric were pro-

portional to the Earth’s distances from the centre whence the eccentricity originated. This law

was also named by the followers as the ‘distance rule’ [18], which was equivalent to the law

of equal areas for the Earth.

To reveal the fundamental spirit of Kepler’s first two laws, the present study uses simple

approaches, such as trigonometric functions and the law of sines, to re-establish the laws of

equal areas and ellipses for planets other than the Earth. It clarifies and simplifies the

development of planet laws, which were originally difficult to interpret, enabling researchers

to understand the intimate relations and analytical methods among geometry, astronomy, and

physics. Moreover, this study allows researchers to practically realize the plentiful insights in

major scientific developments, immerse in the joy of rediscovering scientific theories by

previous great scientists, and cultivate the extensive and deep scientific prospects of these

theories.

2. The law of equal areas for Mars

The period of Mars orbiting around the Sun is approximately 687 days, which indicates that

Mars will return back to the same position after 687 days. This period was determined by both

Copernicus and Kepler from the data that the time interval from the one opposition—where

the Sun, the Earth, and Mars were aligned—to the next opposition was about 780 days

[6, 21]. The period of the Earth orbiting around the Sun is 365 days. The periods of these two
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planets revolving around the Sun do not have a common value and are mutually prime

numbers. This suggests the corresponding Earth position is different for every Martian year,

or when Mars returns to its original position. As indicated by figure 1, if S represents the Sun,

M is Mars or the position of Mars on the next Martian year, and Ei and Ej are the corre-

sponding positions of the Earth before and after one Martian year, respectively. Therefore, a

square (SEiMEj) can be formed by the Sun, Mars, and two other positions of the Earth. The

SEi and SEj lines represent the distance between the Sun and the different positions of the

Earth, ri and rj, respectively; this is known as the Earth–Sun distance. The SM line represents

the distance between the Sun and Mars, d, known as the Mars–Sun distance.

An approximation has been made in figure 1. Point M actually does not locate on the

same plane depicted by three points Ei, Ej and S because the inclination of Mars’ orbit with

respect to the Earth’s is 1°53′. For simplicity, we neglect the effect due to this small incli-

nation, and project the Mars’ orbit onto the ecliptic plane.

2.1. Mars–Sun distance d

We randomly selected the date of Ei as 5 a.m. on 13 May 1950, and the corresponding date of

position Ej as 4 a.m. on 30 March 1952. The time difference between Ei and Ej is a Martian year.

The angle between S and M from the Ei position is ∠SEiM=μi. Because lots of observational

data need to be applied in the study, the more convenient approach without actual measurements

is available from the astronomical data by the Multiyear Interactive Computer Almanac (MICA)

software [22], which is quite consistent with and can be regained from observations. One found

by MICA that Mars’ ecliptic longitude was 172.557°, and the Sun’s longitude was 51.901°,

which indicated that μI=172.557° –51.901° = 120.656°. Similarly, the angle between S and M at

Ej was ∠SEjM=μj=9.473°+360°− 228.333° =141.140°.

Figure 1. The illustration of the Sun (S), Mars (M), and two corresponding positions of
the Earth, (Ei) and (Ej), in an adjacent Martian year. Notice that the middle line SM is
not the opposition of Mars.
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The corresponding Sun’s longitude to the Earth is the projection point of the Sun on a

celestial sphere and is marked as an ecliptic longitude while observing the Sun from the Earth.

The longitude is set as 0° while observing the Sun from the Earth on the vernal equinox and

the Sun’s longitude is set as 90° on the summer solstice as shown in figure 2. The longitudes

of the Sun and any other planets can be determined from the Earth.

The ∠EiSEj= θ in figure 1 is observable because the observed longitude of S as seen from

the Earth at Ei and Ej were 51.901° and 9.473°, respectively. Thus

θ= = ° − ° = °E SE 51.901 9.473 42.428 . (1)i j

Hence, θ can be confirmed.

The three observable parameters, μi, μj, and θ, together with the law of equal areas for the

Earth, will be applied hereafter to calculate the Mars–Sun distance d. If ∠EjMS = αj,

∠EiMS = αi because the total internal angles are 360° for a quadrilateral; thus

μ μ θ α α α μ μ θ α+ + + + = ° = ° − − − −( ) 360 , 360 .i j i j i i j j

Let β= 360°− μi− μj – θ, β is an observable value, and

α β α= − . (2)i j

On the other hand, the quadrilateral SEiMEj can be considered as the combination of

ΔSEiM and ΔSEjM, where SM is a common side. By applying the law of sines

μ α μ α
= =

d r d r

sin sin
,

sin sin
,

i

i

i j

j

j

the Mars–Sun distance d can be expressed as

μ

α
=d r

sin

sin
. (3)

j

j
j

and the ratio between the sines of αi and αj may be written as

α

α

μ

μ
=
r

r

sin

sin

sin

sin
. (4)

i

j

i

j

i

j

In (4) the ratio of Earth–Sun distances r r/i j can be expressed by four observable angles

μ μ α, ,i j i and α j if SM in figure 1 is the opposition of Mars, and Ei and E j represent the

positions of the Earth one Martian year before and after SM. This relationship has assisted us

to achieve Kepler’s law of equal areas for the Earth before [20]. However, we no longer have

Figure 2. The Sun and planets can be directly or indirectly observed from the Earth at
any moment.
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the similar relationship for the Mars–Sun distance d, as indicated in (3). This difference

signifies that the method of re-establishing Kepler’s laws for planets is not a mere general-

ization from the Earth.

It is truly fortunate and helpful that the law of equal areas or the distance rule for the

Earth, as mentioned in chapter 32 of New Astronomy, has been constructed. Kepler also set

out the distances of the Sun from the Earth at 180 different positions in a table in chapter 30.

He then spoke out clearly: physicists, pick up your ears! For here is raised a deliberation

involving an inroad to be made into your province [6]. The crucial law of equal areas for the

Earth can be depicted as follows [20]

ω ω=r r/ / .i j j i
2 2

This relation implies that the ratios of the Earth–Sun distances, which were originally

difficult to measure, can be calculated by the angular speeds ωi and ω j of the Earth at different

positions, which may be measured from daily observations. Therefore, r r/i j can be obtained.

Because μi and μ j are also known, the ratio in (4) can be set as an observable value k. Then

α α= ksin sin . (5)i j

Replacing (5) with (2), we have

β α β α α− = ksin cos cos sin sin .j j j

Dividing by cosαj on both sides of the above equation, α j can be found as follow

α
β

β
=

+
−

⎛

⎝
⎜

⎞

⎠
⎟

k
tan

sin

cos
. (6)j

1

Hence, αj turns out to be an observable value because β and k are all observable.

Combining (3) and (6), the Mars–Sun distance d can be directly represented by the Earth–Sun

distance r .j For five randomly selected observation dates, the Mars–Sun distances from (6)

and (3) are listed in table 1. The Earth–Sun distance is set as rj1= r0= 100 000 on 30 March

1952 (figure 3).

2.2. Angular speed of Mars ω

The angular speed of Mars revolving around the Sun represents the angular change of Mars

with respect to the Sun within a certain period of time, such as within one day. This value

cannot be directly achieved by observation; the indirect relations with observable values must

be determined.

Two quadrilaterals SEi1M1Ej1 and SEi2M2Ej2 are formed by the Sun, the Earth and Mars

within two days, as shown in figure 4. The value of daily angular speed of Mars ω with

respect to the Sun is the value of angle φ swept by Mars moving from M1 to M2. The angles

∠SEi1M1, ∠SEj1M1, and ∠Ei1SEj1i in quadrilateral SEi1M1Ej1 denoted by μi, μj, and θ in

figure 1 are also observable. The angle ∠Ej1M1S can further be approached from (6) like αj in

figure 1. As for the ΔSEj1M1, using the relation of interior angles, as shown in table 1, we

obtained

∠ = = ° − ∠ − ∠ = ° − ° − ° = °M SE a SE M SM E180 180 141.140 22.973 15.887 .j j j1 1 1 1 1 1

Similarly, ΔSEj2M2 formed by the Sun, the Earth, and Mars on the second day gave

∠ = = ° − ∠ − ∠ = ° − ° − ° = °M SE b SE M SM E180 180 142.194 22.438 15.368 .j j j2 2 2 2 2 2
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The angle ∠Ej1SEj2 formed by the Sun to Ej1 and the Sun to Ej2 is similar to θ in figure 1.

It could be obtained from (1) as follows:

∠ = = ° − ° = °E SE c 10. 461 9.473 0.988 .j j1 2

Therefore, the angles swept by Mars with respect to the Sun within one day was

φ = + − = ° + ° − ° = °b c a 15. 368 0.988 15.887 0.469 .

Figure 3. The Earth–Sun distance r can be used to represent the Mars–Sun distance d.
(rj1= r0 = 100 000 is set to be a normalized value.)

Figure 4. Two quadrilaterals SEi1M1Ej1 and SEi2M2Ej2 are formed by the Sun, Earth,
and Mars within two days. The angle swept by Mars within one day from M1 to M2

is φ= b+ c− a.
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Furthermore, its value was the same as that of angular speed ω of Mars on that day.

Table 2 lists the calculated angular speeds ω per day of Mars on five different dates from

table 1.

2.3. The law of equal areas for planets

The area ΔA with spanned angle Δθ swept out by the line joining a planet and the Sun with

distance d in a small periods of time can be expressed as

Δ Δθ=A d
1

2
.2

The area velocity is then

θ
ω= =

A

t
d

t
d

d

d

1

2

d

d

1

2
,2 2

where ω is the instantaneous angular speed of a planet around the Sun. Hence, to prove the

law of equal areas for a planet, it is necessary to only show that the product of the square of

the distance from a different planet to the Sun and the corresponding angular speed of that

planet is a constant. Namely, for a planet at any two arbitrary positions i and j

ω ω=d d . (7)i i j j
2 2

This method is the same as that employed to inspect the equivalence of d d/j i
2 2 and ω ω/ .i j

Combining the Mars–Sun distances and angular speeds of Mars on different dates from

tables 1 and 2, the corresponding values of the ratios of d d/j i
2 2 and ω ω/i j can be obtained, as

shown in table 3, where the referenced date is set as 13 May 1950.

The ratios of d d/j i
2 2 and ω ω/i j for Mars differ up to only 0.3% from the last two columns

in table 3. The difference arises from the fact that the values ωi and ω j used in table 3 are

Table 2. The calculated angular speed ω of Mars on five different dates from the
observed data shown in table 1.

Time ω

13 May 1950 0.469

21 June 1952 0.534

15 August 1954 0.620

1 November 1956 0.603

7 January 1959 0.504

Table 3. The ratios of the square of the Mars–Sun distance d d/  j i
2 2 and the corre-

sponding ratios of angular speeds ω ω/i j on five different dates obtained from tables 1

and 2.

Time d ω d d/j i
2 2 ω ω/i j

13 May 1950 160 750 0.469 1.000 1.000

21 June 1952 150 805 0.534 0.880 0.878

15 August 1954 139 993 0.620 0.758 0.756

1 November 1956 141 804 0.603 0.778 0.778

7 January 1959 155 079 0.504 0.931 0.931
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average angular speeds per day instead of instantaneous angular speeds per second. This

small deviation indicates that Mars obeys Kepler’s law of equal areas from the acknowledged

astronomical data. This is an exciting and unsurprising result. Furthermore, since any region

on the Mars’ orbital plane projected onto the ecliptic plane is constantly reduced by the same

factor of ° ′ = ≈cos(1 53 ) 0.9995 1, the ratio of any two areas on the Mars’ orbital plane and

that of the corresponding areas on the ecliptic plane are identical. Hence, the law of equal

areas for Mars works on the Mars’ orbit plane as well as on the ecliptic plane.

3. The law of ellipses for Mars

From the perspective of analytical geometry, the relationships between the Cartesian coor-

dinates (x, y) and polar coordinates (r, θ) for an ellipse with one of the foci located at (−c, 0),

as shown in figure 5, are

θ θ= − =x r c y rcos , sin . (8)

The equation of an ellipse in Cartesian coordinates is

+ =
x

a

y

b
1, (9)

2

2

2

2

where a and b are the semi-major and semi-minor axis respectively, or

+ − =b x a y a b 0.2 2 2 2 2 2

Substituting (9) with (8) gives

θ θ− − = + + =r a c b r a c b( cos ) 0; ( cos ) 0.2 2

Taking the positive value of r

θ
θ=

−
= −

r

a c

b

a

b
e

1 cos
(1 cos ),

2 2

where e= c/a = − b a1 ( / )2 is the eccentricity [23]. For general situations, where θ≠ 0 along

the x-axis, the equation of the ellipse in polar coordinates can then be expressed as

Figure 5. The relationships between the Cartesian coordinates (x, y) and polar
coordinates (r, θ) for an ellipse.
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θ α θ θ= − + = + +
r

a

b
e c c c

1
[1 cos( )] cos sin , (10)

2
0 1 2

where

+ =c c a e b/1
2

2
2 2 2 4

or

= + = +e b c c a c c c/ / . (11)2
1
2

2
2

1
2

2
2

0

Therefore, (10) has the same form of ellipse as that of (9).

From the other side of the perspective, because the motion of Mars around the Sun is

periodic, the distance function d from a planet to the Sun, or its reciprocal 1/d, can also be

described as a period function of the polar angle θ. That is, it can be expressed as an infinite

Fourier series of sines and cosines with different multiple angles as follows [24]:

∑ θ θ= + +
=

∞

[ ]
d

a a n b n
1

cos( ) sin( ) .

n

n n0

1

In the ideal case, this function can be approximated by a single period of the trigonometric

functions:

θ θ= + +
d

a a b
1

cos sin . (12)0 1 1

That is, this simplified periodic (12) is equivalent to the equation of the ellipse in polar

coordinates as shown in (10).

To determine the three unknown a0, a1, and b1 as shown in (12), three sets of data are

required to set up simultaneous linear equations with three unknowns. After solving these sets

of equations, the equation for the ellipse and its corresponding eccentricity can be obtained.

The law of ellipses for a planet will be spontaneously revealed.

The position of Mars M1 on 13 May 1950, is now selected as a reference point

(figure 6; table 1). In ΔSEj1M1, the angle ∠SEj1M1 = μj1 is observable, and ∠SM1Ej1 = αj1 is

Figure 6. The angle ψ is defined as the angle spanned by two sides connecting Mars
and the Sun on two different Mars positions. The line connecting M1 to S was set to be
the horizontal axis.
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calculable, which can be achieved from (6) and is listed in table 1. Therefore,

θj1= 180° − μj1− αj1− 180.000°− 141.140° – 22.973° = 15.887°. Similarly, θj2= 180.000° –

130.592° – 30.593° = 18.815° from the observed μj2 and calculated αj2 with respect to Mars

M2 on 21 June 1952, from table 1. Furthermore, the angle swept by the Earth from Ej1 to Ej2

was ∠Ej1SEj2= 38.394° by the two observable angular positions of the Earth to the Sun.

Finally, the angle swept by Mars from M1 to M2 is defined as ψ, which could be obtained

by ∠M1SM2=ψ=∠Ej1SEj2+ θj2− θj1= 38.394° + 18.815° – 15.887° = 41.322°, where the line

connecting M1 to S was set to be the horizontal axis. The angles ψ swept by Mars on 15

August 1954, and 1 November 1956, shown in table 1 could also be determined in a similar

manner (table 4).

By replacing (12) with the Mars–Sun distances d and the corresponding angles ψ swept

by Mars on 21 June 1952, 15 August 1954, and 1 November 1956, respectively, we have

ψ ψ= + +
d

a a b
1

cos sin ,
1

0 1 1 1 1

ψ ψ= + +
d

a a b
1

cos sin ,
2

0 1 2 1 2

ψ ψ= + +
d

a a b
1

cos sin .
3

0 1 3 1 3

Solving the simultaneous linear equations in three unknowns, we obtain

= = − =a a b0.00 000 662, 0.00 000 040, 0.00 000 047.0 1 1

Thus, the periodic equation of the reciprocal of the Mars–Sun distance is

ψ ψ
′
= − +

d

1
0.00 000 662 0.00 000 040 cos 0.00 000 047 sin . (13)

Table 4. The angle ψ swept by Mars moving from the referenced position, which was
selected on 13 May 1950, to the other three positions shown in table 3.

Time ψ

13 May 1950 0.000°

21 June 1952 41.337°

15 August 1954 98.458°

1 November 1956 174.976°

Table 5. Five randomly selected dates comparing the Mars–Sun distance d′ from
periodic (13) with the Mars–Sun distance d from (3) by the law of equal areas for the
Earth.

Time d ψ d′ (d′− d)/d (%)

7 January 1959 155 090 235.697° 154 866 −0.144

21 February 1961 164 125 277.814° 163 935 −0.116

25 March 1963 166 678 310.942° 166 587 −0.055

29 April 1965 163 511 345.914° 163 462 −0.030

6 June 1967 155 039 24.493° 155 018 −0.014
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To demonstrate the generality of the above periodic equation built by four Mars posi-

tions, we randomly selected five additional dates and calculated the corresponding angles ψ

swept by Mars, as shown in the first two columns of table 5. The Mars–Sun distances d′ were

estimated from periodic (13). By comparing d′ with d, which were calculated by the Mars–

Sun distance (3), we found the relative error less than 0.2%. This small discrepancy mainly

results from the fact that the periodic function 1/d′ is expressed by only three terms, and the

rest of terms of sines and cosines with higher multiple angles are omitted. The validity of

periodic equation 1/d of ψ in (13) can hence be asserted.

Equations (12) or (13) have the same form as (10). Therefore, the elliptical motion of

Mars revolving around the Sun as one of the foci can be verified, and the eccentricity of Mars

can also be obtained by (11) as

=
+

=
+

=
− +

=e
c c

c

a b

a

( 0.00 000 040) (0.00 000 047)

0.00 000 662
0.0932.

1
2

2
2

0

1
2

1
2

0

2 2

The result is almost exactly that of the well-known eccentricity of Mars, 0.0935, thus

again confirming the law of ellipses for Mars. General speaking, the eccentricity

e= − b a1 ( / )2 for Mars on the Mars’ orbital plane will be different from ′ = − ′ ′e b a1 ( / )2

for its projection on the ecliptic plane. The length of projected semi-major axis ′a may

not strictly equal ° ′a cos (1 53 ), neither does that of ′b . Nevertheless, the ratio of ′ ′b a/

will always be within two extreme values, namely, α= ⩽ ′ ′⩽b a b a b a0.9995 / cos / /

α =b a b a/ cos 1.0005 / , where α = ° ′1 53 . It denotes that ′ ′b a/ is very close to b/a. The

difference of the square of two eccentricities at the extreme case is

α α′ − = − = ≈ ⩽− −( )e e b a b a b a1 cos ( / ) sin ( / ) 10 ( / ) 10 ,
2 2 2 2 2 2 3 2 3 which makes ′e and e

differ by a factor of −10 2 only.

The concise method for Mars can also be applied to the other four planets including

Jupiter, Saturn, Mercury, and Venus to determine the laws of equal areas and ellipses. Here

we propose the internal planet, Mercury, as an example to describe its conformity and

completeness.

4. The laws of planet for Mercury

4.1. The law of equal areas

Referring to figure 7, which is similar to figure 1 for Mars, and combining (3) and (6), the

Mercury–Sun distance d can also be represented by the Earth–Sun distance rj, where the

Earth–Sun distance is set to be rj1 = r0 = 100 000 on 27 April 1950. For the other four ran-

domly selected observation dates, the calculated Mercury–Sun distances d from (3) and (6)

are listed in table 6.

Applying the relationships as shown in figure 4, one may obtain the angular speed ω of

Mercury at the different dates shown in table 6. By verifying whether the product d2
ω is a

constant as shown in (7), or whether the identity ω ω=d d/ /j i i j
2 2 holds (table 7), we can

establish the law of equal areas for Mercury. From table 7, the law of equal areas for Mercury

can be certified.

4.2. The law of ellipses

After the position of Mercury on 27 April 1950 was selected as a reference point in figure 7,

the angles ψ swept by Mercury on 6 August 1951, 21 November 1952, and 19 February 1954
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shown in table 7 could be determined by the same method as that employed in the case of

Mars. The results are listed in table 8.

By replacing (12) with the Mercury–Sun distances d and the corresponding angles ψ

swept by Mercury on 6 August 1951, 21 November 1952, and 19 February 1954, respec-

tively, we obtain simultaneous linear equations with three unknowns. By solving them, the

periodic equation of the reciprocal of the Mercury–Sun distance can then be achieved as

ψ ψ
′
= + −

d

1
0.000 02 67 0.000 000 872 cos 0.00 000 544 sin . (14)

By comparing the Mercury–Sun distances d′ estimated from periodic (14) with d cal-

culated by the Mercury–Sun distance (3) at five different selected dates, we can determine that

d′ and d are approximately the same with relative error less than 0.6% as shown in table 9.

Thus, the validity of periodic equation 1/d of ψ in (14) can be confirmed, and the elliptical

motion of Mercury revolving around the Sun as a focus may also be asserted by combining

(10) and (14).

The eccentricity of Mercury can be calculated by (11) as

=
+

=
− + −

=e
a b

a

( 0.000 000 872) ( 0.00 000 544)

0.0000267
0.206.

1
2

1
2

0

2 2

The result is precisely the same as the well-known eccentricity of Mercury, 0.206. Thus

again verifies the law of ellipses for Mercury.

5. Conclusions

In this study, we treat the Earth as a reference point to determine the law of motions for the

other planets. The fact that the Earth has regular motion, which fulfills the law of equal area,

enables us to establish the mathematical relation of planet–Sun distance and Earth–Sun

Figure 7. An illustration of the Sun (S), Mercury (H), and two corresponding positions
of the Earth, (Ei) and (Ej), in an adjacent Mercurian year.
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distance, as shown in (3). The laws of equal areas for the other planets can be easily and

naturally constructed by combining this relation with the angular speed of the planet around

the Sun.

The periodicity of the planet around the Sun indicates that the planet–Sun distance can be

represented as the periodic function of an angle. The angular position of the observing planet

and the law of equal areas are used to determine the distance of the planet to the Sun and to

build the periodic function of each planet. The trajectory equation of planet distance may thus

be obtained. The planet orbits are proved to be ellipses, which take the Sun as a focus; thus,

the law of ellipses for planets is rediscovered.

We have applied relatively simple geometry, trigonometry, and basic algebra to describe

the invariant properties of planetary motion. These procedures allow researchers to com-

prehend the magnitude of the mathematical approaches for analysing the complicated and

substantial planetary system, thus enabling an appreciation of the harmony and simplicity

behind the natural phenomenon. The actual examples in this paper may be used by young

students to establish and extend the essence and confidence applied toward scientific research.

Table 7. The ratios of the square of Mercury–Sun distance d d/j i
2 2 and the corre-

sponding ratios of angular speeds ω ω/i j on five different dates obtained from table 6.

Time d ω d d/j i
2 2 ω ω/i j

27 April 1950 38802 4.015 1.000 1.000

6 August 1951 47274 2.746 1.484 1.462

21 November 1952 34043 5.369 0.770 0.748

19 February 1954 31847 5.994 0.674 0.670

7 June 1955 42296 3.390 1.188 1.185

Table 8. The angle ψ swept by Mercury moving from the referenced position selected
on 27 April 1950, to the other three positions shown in table 7.

Time ψ

27 April 1950 0.000°

6 August 1951 80.512°

21 November 1952 200.370°

19 February 1954 291.629°

Table 9. Five randomly selected dates used to compare the Mercury–Sun distance d′

from periodic (14) with the Mercury–Sun distance d from (3) by the law of equal areas
for the Earth.

Time d ψ d′ (d′− d)/d (%)

6 June 1954 42 296 23.258° 42 104 −0.454

28 September 1955 42 235 113.923° 42 477 0.573

6 January 1957 31 173 268.060° 31 088 −0.273

4 April 1958 38 296 356.560° 38 232 −0.167

10 July 1959 46 560 59.121° 46 332 −0.49
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