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In the Left-Right Symmetric Model (LRSM), box diagrams involving the charged right-handed
gauge boson WR may affect B-B̄ mixing as well as CP asymmetries in neutral B decays. The
smallness of the ǫK parameter in the neutral K-meson system places severe constraints on the
right-handed quark mixing matrix V R, and reduces the number of its effective phases to one. WR

exchange gives a large contribution to B-B̄ mixing when the mass of the WR boson is up to or higher
than 8 TeV, depending on the V R case, the Bd,s meson, and the asymmetry. The allowed regions
of the CP violating asymmetries sin 2β, sin γ, sin 2α, and sin 2φs, as well as xs, are calculated as
a function of the WR mass. The results of the LRSM other than for the well measured sin 2β
show allowable regions that are much broader than that for the Standard Model, showing that new
experiments can indicate a presence of new physics, or significantly push up the limits on the WR

mass.
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I. INTRODUCTION

The Standard Model (SM) for strong and electroweak
interactions has achieved great success in explaining in-
teractions among the elementary particles. Nonetheless,
it is generally speculated that we may encounter richer
symmetry structures, such as supersymmetry or larger
gauge groups, as we go to higher energy scales. For ex-
ample, in the Left-Right Symmetric Model (LRSM) [1],
the right-handed quarks have gauge interactions among
themselves, just like their left-handed counterparts, and
such interactions have not yet been seen only because
they are spontaneously broken at an energy higher than
the electroweak scale. By examining such extended mod-
els to the SM, we may get a better understanding of the
mixing and mass scales whose values are not restricted
by any principle we know so far.

CP violation is an excellent realm to look for exper-
imental effects of the LRSM, because the right handed
mixings in LRSM bring in another 3 × 3 quark mixing
matrix V R which has new phases that can affect CP vi-
olation. We will see that constraints reduce the number
of effective new phases to one in the Bd or Bs systems.

The main experimental data giving or constraining CP
violation are listed in Table I [2]. Among the data listed
in Table I, the ǫK parameter in the neutral K meson sys-
tem has been known for a long time, and until recently
was the only direct evidence for CP violation. With the
advent of B factories, it is now possible to investigate
CP violating effects in the neutral B meson system as
well. Carter and Sanda [3] proposed that CP violat-
ing effects in Bq-B̄q (q = d, s) mixing can be probed
by investigating decays of Bq(B̄q) to a CP eigenstate f .
The time-dependent CP asymmetries would show an os-
cillatory behavior, with a characteristic amplitude Af .

TABLE I:

Experiments and values constraining V

|Vub| (3.6 ± 0.7) × 10−3

|Vcb| (41.2 ± 2.0) × 10−3

|ǫK | (2.282 ± 0.017) × 10−3

∆MBd
0.502 ± 0.006 ps−1

xs > 19.0 at 95% CL

sin 2β 0.735 ± 0.056

For example, in the decay B → J/ψKS, the asymmetry
AψK = sin 2β in the SM.

In this paper we investigate the possibility of larger
ranges for these CP violating asymmetries in processes
involving WR bosons and V R mixing in the LRSM. We
use two models for the right handed coupling matrix
which allow large couplings for box diagrams with two
t quark sides containing one WR and one WL exchange,
allowing effects in Bs mesons (case I), or Bd mesons (case
II). For Bs mesons, the t quark right hand couples to s
as well as to b quarks (case I), but does not also couple
to d quarks, in order to minimize the right handed effects
in K meson mixing or ǫK . For Bd mesons, the t quark
right hand couples to d as well as to b quarks (case I),
but not also to s quarks, in order to minimize the effect
in ǫK . Although several phases and one mixing angle are
present in each case, there is only one phase combination
which contributes to CP violating asymmetries, and we
vary it over all values.

We find significant effects from box diagrams contain-
ing both WL and WR exchanges for the WR mass up to
8 TeV or higher, for both coupling cases I and II. Exper-
iments on the CP violating asymmetries and on xs may
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find results outside the SM range, which would indicate
new physics, such as the LRSM.

In the next section we will give a brief review of CP
violation in the SM, and then in Sec. III of mixing in the
LRSM, and describe its implication for neutral B meson
physics. Apparently there are a few phases in the right-
handed quark mixing matrix V R which can contribute to
CP violation in the B sector, but the constraints imposed
by ǫK reduce the number of effective phases to only one,
as discussed in Sec. IV. The effects ofWR on B-B̄ mixing
is given in Sec. V, and its magnitudes shown in Sec. VI.
Effects of WR on specific CP violating asymmetries of
sin 2β, sin γ, sin 2α, and sin 2φs are presented in Sections
VII, VIII, IX, and X, respectively. xs is covered in Sec-
tion XI, and the conclusions are summarized in Section
XII.

II. CP VIOLATION IN THE STANDARD

MODEL

In the SM with three generations of quarks, all CP -
violating effects come from the 3 × 3 left-handed quark
mixing matrix V ≡ V L (the CKM matrix) [4]. There
are many possible ways to parameterize the phases ap-
pearing in V , but there is only one single independent
re-parameterization invariant measure. For example, in
Wolfenstein’s parameterization [5]:

V =







1 − 1
2λ

2 λ Aλ3(ρ− iη)

−λ 1 − 1
2λ

2 Aλ2

Aλ3(1 − ρ− iη) −Aλ2 1






. (1)

the CP violating phases are assigned to the smallest ele-
ments Vub ≡ |Vub|e−iγ and Vtd ≡ |Vtd|e−iβ , and therefore,
the phase angles β and γ can be sizable in spite of the
tiny intrinsic CP violation. The CP violating parame-
ter can then be taken as the area of the (d-b) unitarity
triangle, which is half of Jarlskog’s parameter J [6].

The parameter λ ≡ |Vus| = 0.221 in Eq. (1) is quite
accurately known, and we will disregard its small uncer-
tainty in subsequent analysis. The other three parame-
ters are presently known, with larger uncertainties, to be
of order 1.

On the other hand, if we normalize the base of the uni-
tarity triangle to unit length, as is usually done, the other
two sides of the triangle would be given by |Vub|/λ |Vcb|
and |Vtd|/λ |Vcb|, with β and γ as their respective oppo-
site angles. Thus the first four data listed in Table I were
sufficient to give estimates for the angles β and γ. Values
of sin 2β obtained by earlier theoretical analyses were

sin 2β =

{

0.75 ± 0.06 [7],

0.73 ± 0.20 [8].
(2)

The experimental value of AψK can then be compared
with these theoretical predictions.

Measurements of the CP violating asymmetry in the
decay B → J/ψKS now exist to high precision. The
values obtained by BaBar [9], Belle [10], and CDF [11]
are

AψK =











0.741 ± 0.067± 0.034 (BaBar),

0.719 ± 0.074± 0.035 (Belle),

0.79 ± 0.42 (CDF).

(3)

These give the world-averaged value

AψK = 0.735 ± 0.056. (4)

We see that there is excellent agreement between Eq. (2)
and Eq. (4). Besides β, the SM also has definite predic-
tions for other CP violating asymmetries.

III. THE LEFT-RIGHT SYMMETRIC MODEL

In the LRSM, one assumes that the Lagrangian for
the elementary particles obeys (apart from the SU(3)c
for strong interaction) an SU(2)L × SU(2)R × U(1)B−L

symmetry which is spontaneously broken at a scale v′ to
the electroweak gauge group SU(2)L × U(1)Y . There
would appear extra charged gauge bosons W±

R which
mediate coupling with strength gR to the right-handed
quarks. The mixing matrix V R among the latter is in
general different from V L. For models which are rele-
vant to hadron-scale physics, v′ would not be much higher
than the electroweak scale v = 250 GeV, so that the WR

mass MR = 1
2gRv

′ would not be too large either. Beall,
Bander, and Soni [12] showed that with the manifest LR
symmetry mixing matrix of V R = V L that the mass of
the WR must exceed 1.6 TeV to not overly affect ∆MK .
We have calculated that satisfying the constraints of Ta-
ble I with manifest LR symmetry gives a 2-σ lower limit
on MR of 1.5 TeV. Olness and Ebel [13] pointed out that
WR can have sub-TeV mass if V R takes on some specific
forms. The detailed analysis of Langacker and Sankar
[14] led to a similar conclusion, namely, that MR can at-
tain a lower limit of about 300 GeV if V R assumes one
of the following two forms:

V RI = eiω







1 0 0

0 ceiτ seiσ

0 −seiφ ceiχ






, (5a)

V RII = eiω







0 1 0

ceiτ 0 seiσ

−seiφ 0 ceiχ






= V RI







0 1 0

1 0 0

0 0 1






, (5b)

where for brevity we denote s ≡ sin θR and c ≡ cos θR.
In what follows, the cases where V R = V RI and V R =
V RII will be denoted as case I and case II, respectively.
Unitarity of V R implies that

τ + χ = φ+ σ (6)
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for both cases.
It has been pointed out that both cases for V R can

lead to sizeable contributions to CP violations for K and
B mesons [15]. For the neutral B mesons, deviation
from SM predictions can occur through modified B-B̄
mixing effects, where we have additional box diagrams
with one WL and one WR exchange [16]. In what fol-
lows, we will examine how these “indirect” effects gives
the corrections to SM predictions for the K-K̄ and B-B̄
systems. While direct CP violating effects involve long
distance effects and final state interactions which are not
very well understood, the long distance effects in box-
diagrams have been extensively studied by various groups
with methods such as the 1/N expansion or lattice gauge
calculations, and are conveniently summarized in terms
of the so-called bag-parameters.

It is clear from Eqs. (5) that interchanging the roles
played by dR and sR means swapping V I and V II. Specif-
ically, since V I has non-zero mixing angle factors in the
second and third (s and b) columns only, we expect that

case I will give substantial corrections to the SM predic-
tion for the Bs-B̄s system, but not for the Bd-B̄d one.
The reverse is true for case II. These matrices can also
be derived if one first looks for those with large right
handed coupling of t or c quarks in box diagrams of mix-
ings for Bd or Bs, and then constrains them to not have
right handed t or c couplings in ǫK . The u quark right
handed couplings do not count in the B systems, due to
the small u quark mass, and are conveniently left out of
the mixing matrix except where needed for unitarity.

IV. CONSTRAINTS FROM THE ǫK
PARAMETER

The parameter ǫK for CP violations in the K-K̄ sys-
tem is given as ǫK ≈ Im〈K0|H∆S=2|K̄0〉/

√
2∆mK . In

the SM, the operator H∆S=2 is given by the box dia-
grams with WL-WL exchanges [17]:

H∆S=2 =
G2
FM

2
L

4π2
[ηccS(xc)ζ

2
c + ηttS(xt)ζ

2
t + 2ηctS(xc, xt)ζcζt](d̄LsL)(d̄LsL) + h. c. (7)

HereML is theWL mass, xi = m2
i /M

2
L, and ζi ≡ ζLLi = V Lid

∗
V Lis . The QCD correction factors are ηcc = 1.38, ηtt = 0.59,

and ηct = 0.47 [18], and the phase space factors [17] are

S(x) = x

[

1

4
+

9

4(1 − x)
− 3

2(1 − x)2

]

− 3

2
(

x

1 − x
)3 lnx, (8a)

S(xc, xt) = xc

[

ln
xt
xc

− 3 ∗ xt
4(1 − xt)

(1 +
xt

1 − xt
lnxt)

]

. (8b)

The effective Hamiltonian in Eq. (7) gives

ǫK =
G2
FM

2
L(f2

KBK)mK

12
√

2π2∆mK

[ηccS(xc)Icc + ηttS(xt)Itt + 2ηctS(xc, xt)Ict], (9)

where Iij ≡ Im(ζiζj).
In the LRSM, there are additional contributions to the

operator H∆S=2 in which one or both of the WL in the
box diagram are replaced by the WR. For the mixing
matrices as given by Eq. (5), there are no contributions

fromWR-WR exchanges, since the factors ζRRi = V Rid
∗
V Ris

all vanish. On the other hand, the WL-WR exchanges
give an additional piece δH∆S=2 ≡ HLR to H∆S=2 [19]:

HLR =
2G2

FM
2
L

π2
(
gR
gL

)2βR
∑

i,j=u,c,t

ζLRi ζRLj J(xi, xj , βR)(d̄RsL)(d̄LsR), (10)

where ζLRi = V L∗id V Ris and βR = (ML/MR)2. Moreover, the loop functions are given by

J(xi, xj , βR) ≡
√
xixj

4
[(4η

(1)
ij + η

(2)
ij xixjβR)J1(xi, xj , βR) − (η

(3)
ij + η

(4)
ij βR)J2(xi, xj , βR)], (11)



4

with

J1(xi, xj , βR) =
xi lnxi

(1 − xi)(1 − xiβR)(xi − xj)
+ (i↔ j) − βR lnβR

(1 − βR)(1 − xiβR)(1 − xjβR)
, (12a)

J2(xi, xj , βR) =
x2
i lnxi

(1 − xi)(1 − xiβR)(xi − xj)
+ (i↔ j) − lnβR

(1 − βR)(1 − xiβR)(1 − xjβR)
. (12b)

TABLE II: The non-vanishing mixing-angle factors Xij =
Xji ≡ Im(ζLR

i ζRL
j ) + (i ↔ j) in HLR

∆S=2.

Xuc Xut

case I −λ2c sin τ −Aλ4{(1 − ρ)2 + η2}1/2 · s sin(β + φ)

case II −c sin τ −Aλ2s sin φ

The η
(1)−(4)
ij are QCD correction factors, whose explicit

forms are given in Ref. [19].
The contribution of HLR to ǫK is given by terms con-

taining the factors Im(ζLRi ζRLj ), which involves parame-

ters from both V L and V R. The choices of V R in Eqs. (5)
eliminate the WL-WR box diagrams with the (t, t), (c, t),
(t, c), and (c, c) quark sides. For leading terms in λ, the
non-vanishing mixing angle factors are given in Table II,
with (u, t) and (u, c) sides, and the WL-WR diagrams are
suppressed by mu/mt or mumc/m

2
t , respectively.

The mixing factors shown in Table II have generic val-
ues much larger than their counterparts in the SM, which
are suppressed by the factors λ10 for (t, t), λ6mc/mt for
(c, t), or λ2m2

c/m
2
t for (c, c). Hence we see that con-

straints need to be imposed on them for low mass WR in
order that the experimental value |ǫK | = (2.28± 0.02)×
10−3 not be exceeded. These constraints are readily read
off from Table II as [20]:

case I : τ ≈ 0, φ ≈ −β. (13a)

case II : τ ≈ 0, φ ≈ 0. (13b)

The constraint conditions also have solutions which can
have π added separately to the values above. The impor-
tant effects of these extra π choices can be included by
allowing θR to vary from 0 to π. Taking these constraints
and the unitarity condition Eq. (6) into account, Eqs. (5)
reduce to

V RI = eiω







1 0 0

0 c seiσ

0 −se−iβ cei(σ−β)






, (14a)

V RII = eiω







0 1 0

c 0 seiσ

−s 0 ceiσ






(14b)

The case II here is more general than that considered
in a previous paper, Ref. [21], since it now has a phase
and an angle parameter. The previous case II [21] is

equivalent to the special value c = 0 here, with only a
phase parameter. The overall phase ω does not appear
in the K-K̄ or B-B̄ diagrams. Thus in the cases there
is only one relevant free phase left, which we have taken
to be σ. Together with the effective right-handed gauge
boson mass MR and the mixing angle θR, we have three
more parameters in addition to those in the SM, or two
more mixing parameters, to the four in the SM.

For large MR where the constraints Eqs. (13) are not
as stringent, the leading (t, t) LR contributions from
Eqs. (5) for Bd and Bs systems still have only one ar-
bitrary phase, (σ−τ), whose variation through all values
is included in the form of Eqs. (14), thus maintaining
the generality of the analysis without the specific form of
Eqs. (14).

V. B0-B̄0 MIXING IN THE LRSM

The mixing effect in the B0
q -B̄

0
q system is given by

xq ≡
∆m

Γ

∣

∣

∣

∣

Bq

= 2τBq
|Mq,12|, (15)

where q = d or s, and Mq,12 is the dispersive part of the
mixing matrix element 〈B0

q |H∆B=2|B̄0
q 〉. The operator

H∆B=2 is similar in form to H∆S=2. In the SM, it is
dominated by the box diagram with two internal t-quarks

H∆B=2 =
G2
FM

2
L

4π2
ηttS(xt)

∑

q=d,s

(V L∗tq )2(q̄LbL)(q̄LbL)

+h. c., (16)

where S(xt) is defined in Eq. (8a) and the QCD correc-
tion factor ηtt = 0.59 in this case. Eq. (16) then gives

MLL
q,12 =

G2
FM

2
L

12π2
(f2
BBB)mBηttS(xt)(V

L∗
tq )2, (17)

where we have used the fact that V Ltb ≈ 1. The evalua-
tion of the hadronically uncertain factor f2

BBB has been
the subject of much work, and recent lattice results are
summarized in Ref. [22], giving

fBq
B

1/2
Bq

=

{

228 ± 32 MeV, for q = d,

276 ± 36 MeV, for q = s,
(18)

and also B̂K = 0.86 ± 0.13.
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TABLE III: Values of the QCD-factors η
(a)
ij in J(xi, xj , βR).

η
(a)
cc η

(a)
ct η

(a)
tt

a = 1 0.61 1.27 1.98

2 0.04 0.27 0.75

3 0.55 1.03 1.93

4 0.45 0.84 1.58

In the LRSM, H∆B=2 receives additional contribution
when one or both of the WL in the box diagrams are
replaced by WR, just as for H∆S=2 in the K-K̄ system.
As a result we can write

Mq,12 = MLL
q,12 +MLR

q,12 +MRR
q,12, (19)

where the element MRR
q,12 is essentially the same as MLL

q,12

as given by Eq. (17) but with the replacement L → R
everywhere (and of course we must retain V Rtb , which need
not equal to 1):

MRR
q,12 =

G2
FM

2
L

12π2
(
gR
gL

)4(f2
BBB)mBβRηttS(xtR) ·

(V R∗

tq V Rtb )2, (20)

where xtR = (mt/MR)2. In case I, this vanishes in Bd-
B̄d mixing because V Rtd = 0, but it has a contribution to
Bs-B̄s mixing due to the non-zero values of V Rts and V Rtb .
In case II, this contributes to Bd-B̄d mixing, but vanishes
for Bs-B̄s mixing since V Rts = 0 there.

On the other hand, the matrix element MLR
q,12 is

MLR
q,12 =

G2
FM

2
L

2π2
(
gR
gL

)2(f2
BBB)(

mB

mb
)2mBβR ·

∑

i,j=u,c,t

ξLRq,i ξ
RL
q,j J(xi, xj , βR), (21)

where ξLRq,i = V L∗iq V Rib , ξRLq,j = V R∗
jq V

L
jb , and the function

J(xi, xj , βR) is defined in Eqs. (11)–(12). The QCD-

factors η
(1)−(4)
ij in J(xi, xj , βR), like all RG correction

factors, depend on the relevant mass scales only logarith-
mically, and hence are relatively insensitive to changes
of these masses. Their values at MR = 2.5 TeV and
mt = 175 GeV, at the scale µ = 4.5 GeV, are given in
Table III [23]. These will be the values we use for subse-
quent analyses. We also calculate plots for the left-right
symmetry limit gR = gL.

In the summation in Eq. (21), only terms which involve
at least one t quark need be considered, mainly due to
the quark mass factors

√
xixj . The other terms amount

to at most 10−3 in magnitude relative to these dominant
terms.

To statistically weight the V L [24] and V R matrix el-
ements angles s23, s13, and s, and phases δ and σ, we
apply six present experimental values, which are those
for |Vcb|, |Vub/Vcb| = 0.087 ± 0.017, ǫK in the neutral

K system, Bd-B̄d mixing with ∆MBd
, (which are listed

in Table I), as well as the probability of each calculated
xs from the LEPBOSC data average [25], and sin 2β as
given in Eq. (4). Complete sets of V L and V R angles
s23, s13, s, and phases δ and and σ are generated, and
the results of fitting the experiments are evaluated for
each set using χ2 [26]. χ2 is formulated as

χ2 =
∑

i

(fi(s23, s13, δ, s, σ) − 〈fi〉)2
σ2
i

, (22)

where 〈fi〉 and σi are the experimental central values and
deviations for |Vcb|, |Vub/Vcb|, ǫK , ∆MBd

, sin 2β, and in
1 − A for each calculated xs, and fi(s23, s13, δ, s, σ) are
the corresponding values evaluated in the LRSM cases.

VI. THE SIZE OF THE LRSM

CONTRIBUTIONS TO B MIXING

A. Bd systems

In case I, the loop functions in the WL-WR box dia-
grams as given by Eq. (21) are, like their SM counter-
parts, increasing functions of the quark masses. Due to
the vanishingly small mass of the u quark, only contribu-
tions from the c- and t-exchanges need be considered. It
turns out that, for V RI of the form as given in Eq. (5a),
the mixing angle factors ξRLd,c and ξRLd,t both vanish. Hence

there is essentially no effect of WR on Bd-B̄d mixing in
case I.

In case II, there is a strong leading WL-WR box di-
agram with a (t, t) pair of t quark exchanges, with
ξLRd,t ξ

RL
d,t = Aλ2(1 − ρ + iη)(−cs)ei(σ−τ), with phase

(β+σ−τ), from Eq. (5b). That is followed by a (c, t) pair
of order mtmcλ whose coefficients are thus about 1/6 of
the leading (t, t) term. We thus have MLR

d,12 ∼ MLL
d,12 at

low MR. χ2 contours for the ratio of the LR contribu-
tion |MLR

d,12| from aWL-WR pair over the SM contribution

|MLL
d,12| as a function of MR are presented in Fig. 1 for

case II. The upper 1-σ, 90% CL, and 2-σ contours show
the largest LR contributions that still fit the six exper-
imental constraints with one degree of freedom for the
three SM V L and two LR V R parameters, at χ2 = 1.0,
χ2 = 2.71, and χ2 = 4.0, respectively. We see that the
right-handed gauge boson WR can contribute nearly as
much to the Bd-B̄d mixing as the SM for MR out to at
least 12 TeV. In case II, the lower limit on MR is 600
GeV from a large 120◦ ≤ δ ≤ 160◦ region, and 900 GeV
from the normal 40◦ ≤ δ ≤ 80◦ region. The V R mixing
angle θ prefers regions around 0◦, 90◦, and 180◦ below 4
TeV, where the leading (t, t) contribution is smaller. All
values of the V R phase σ are allowed above 2 TeV, while
σ ≤ 180◦ is allowed below 2 TeV.
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∣

∣

∣

∣

∣

MLR
d,12

MLL
d,12

∣

∣

∣

∣

∣

MR (TeV)

FIG. 1: Plot of
∣

∣MLR
d,12/M

LL
d,12

∣

∣ as a function of MR for case II

B. Bs systems

In Bs-B̄s box diagrams for case I, in MLR
s,12, four

terms from (t, t), (c, t), (t, c) and (c, c) pairs contribute.
They are dominated by the (t, t) pair, with ξLRs,t ξ

RL
s,t =

Aλ2csei(σ−τ). The χ2 contours (again, for one degree of
freedom) for the scaled ratio |MLR

s,12|/(|MLL
s,12| + |MLR

s,12|)
is presented in Fig. 2 for MR in the range of 0 to 10
TeV. This gives MLR

s,12 ∼ MLL
s,12 for MR ≤ 2.5 TeV, and

MLR
s,12 ∼ 0.1MLL

s,12 for MR = 10 TeV. The WR contribu-

tion to Bs-B̄s mixing cannot be ignored if MR ≤ 5 TeV.
Although two WR’s also appear in the Bs-B̄s box dia-
grams for case I, with (V R∗

ts V Rtb )2 = s2c2e2i(σ−τ), their
effect is small due to the extra βRS(xtR) factor. In case
I, the lower MR limit is about 100 GeV. All σ is allowed.
All θ are allowed down to 500 GeV, and below that, the
regions around 0◦ and 180◦ are preferred.

In case II, the (t, t), (t, c), (c, t), and (c, c) contributions
vanish from the structure of Eq. (5b). The leading non-
vanishing term in MLR

s,12 comes from the (t, u) pair, which
is suppressed from the SM contribution by λmu/mt. WR

thus gives no effective contribution to Bs-B̄s mixing in
case II.

VII. CP VIOLATING ASYMMETRY SIN 2β IN

B0 DECAYS

The time dependent CP violating phase in B → ψKS

decays is related to the mixing matrix element Md,12 and

|MLR
s,12|

(|MLL
s,12| + |MLR

s,12|)

MR (TeV)

FIG. 2: Plot of |MLR
s,12|/(|M

LL
s,12| + |MLR

s,12|) as a function of
MR for case I

the decay amplitudes as follows [16],

sin 2β ≡ −Im

[

M∗

d,12

|Md,12|
A(B̄ → ΨKs)

A(B → ΨKs)

]

. (23)

In addition to the tree graphs, the penguin diagrams,
dominated by internal top-quarks, also contribute to
B → ψKS decays in case I. The phase for the WR pen-
guin amplitude, V Rtb V

R∗
ts = −csei(σ−τ), is exactly the

same as that for the WR tree amplitude, V Rcb V
R∗
cs =

csei(σ−τ). In the SM with WL, the penguin and tree
phases are also equal. Accordingly,

A(B̄ → ψKS) ∝ V LcbV
L∗
cs (1 − P )

+βgRV
R
cbV

R∗

cs (1 − P ′), (24)

where βgR ≡ (gR/gL)2βR, and P and P ′ are the ratios
of the WL and WR penguin contributions over the tree
amplitudes, respectively. The first order approximation
P ∼= P ′ ∝ αsln(m2

t /m
2
c) is applied to reach the simplifi-

cation of P = P ′ [20]. This makes

sin 2β = −Im

[

M∗

d,12

|Md,12|
V LcbV

L∗
cs + βgRV

R
cbV

R∗
cs

V L∗cb V
L
cs + βgRV R∗

cb V
R
cs

]

. (25)

In case II, WR does not contribute to both the tree and
penguin diagrams in B → ψKS due to V RcbV

R∗
cs = 0 and

V Rtb V
R∗
ts = 0. Therefore, we have

sin 2β = −Im

[

M∗
d,12

|Md,12|
V LcbV

L∗
cs

V L∗cb V
L
cs

]

. (26)

For both cases, since sin 2β is a strongly constrained
input parameter, the results are largely compatible with
that obtained from the SM, whose range for the same
data is 0.63 ≤ sin 2β ≤ 0.82, and no plot is shown. An
earlier study of LRSM effects in sin 2β is in S. Nam [27].
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VIII. SIN γ IN Bs DECAYS

Another asymmetry angle in B meson systems is de-
fined from Bs → D+

s K
− decays as [28]

sinγ ≡ Im

(

Ms,12

|Ms,12|
A(Bs → D+

s K
−)

A(B̄s → D+
s K−)

)

. (27)

The penguin contribution is absent in both Bs → D+
s K

−

and B̄s → D+
s K

− decays. Because of the LRSM contri-
bution, γ as defined above is no longer an angle of the
unitarity triangle.

The contributions from WR to both decay modes in
case I vanish since V R∗

ub V
R
cs = 0 and V RcbV

R∗
us = 0. There-

fore, the CP asymmetry for this decay mode can be sim-
plified as

sin γ = Im

(

Ms,12

|Ms,12|
V L∗ub V

L
cs

V LcbV
L∗
us

/ ∣

∣

∣

∣

V L∗ub V
L
cs

V LcbV
L∗
us

∣

∣

∣

∣

)

. (28)

The allowed χ2 contours for the CP asymmetry sin γ
as a function of MR is shown in Fig. 3 for case I. We see
that all values of sinγ are allowed for MR ≤ 2 TeV, and
that the 1-σ range does not limit itself to the SM range
of 0.55 ≤ sin γ ≤ 0.96 until MR ∼ 6 TeV.

Because WR can contribute to B̄s → D+
s K

− for case
II, we have

sin γ = Im

(

Ms,12

|Ms,12|
V L∗ub V

L
cs

V LcbV
L∗
us + βgRV RcbV

R∗
us

/ ∣

∣

∣

∣

V L∗ub V
L
cs

V LcbV
L∗
us + βgRV RcbV

R∗
us

∣

∣

∣

∣

)

. (29)

The sin γ values allowed in case II range from 0.64 →
0.95 at 1-σ above MR = 7 TeV, with a wider 1-σ region
extending down to sin γ ≥ 0.4 for MR up to 7 TeV (graph
not shown), which comes from a large 125◦ ≤ δ ≤ 160◦

region..

IX. THE SIN 2α ASYMMETRY IN Bd → ππ

Measurement on the asymmetry in Bd → ππ can pro-
vide the other CP asymmetry, namely [16],

sin 2α ≡ −Im

[

M∗

d,12

|Md,12|
A(B̄ → ππ)

A(B → ππ)

]

. (30)

In case I, there is no right handed tree nor penguin
diagram for Bd → ππ since V RubV

R∗

ud = 0, V Rcb V
R∗

cd =
0, and V Rtb V

R∗

td = 0. On the other hand, the penguin
pollution for this decay mode in the SM can be removed
by isospin analysis [30]. Consequently, we have

sin 2α = Im

(

M∗

d,12

|Md,12|
V L∗ud V

L
ub

V LudV
L∗
ub

)

. (31)

In case II, there are right handedWR penguin diagrams
for Bd → ππ from b→ d through virtual t and c quarks.

sin γ

MR (TeV)

FIG. 3: Plot of sin γ as a function of MR for case I

The mixing product for these two processes, which are
given in V Rtb V

R∗

td = −csei(σ−τ) and V RcbV
R∗

cd = csei(σ−τ),
respectively, are equal and opposite, but the amplitudes
do not cancel since mt and mc are different. They are
included with the WL penguins to be isolated by isospin
analysis. We note that the right handed penguins might
be appreciable since the left handed penguins are sup-
pressed by Aλ3. There is no right handed tree diagram
in this case since V Rub = 0. We still use Eq. (31) to cal-
culate for case II, although again, α is not the angle in
the unitarity triangle in the LRSM. Fig. 4 shows the χ2

contours for sin 2α from −1 up to 1 for MR ≤ 7 TeV in
case II, and approximating the 1-σ SM range for sin 2α
of −0.9 ≤ sin 2α ≤ 0.33 for larger MR. There is a large
125◦ ≤ δ ≤ 160◦ region that contributes out to 7 TeV.
The positive sin 2α region results from the larger δ region
where α ≤ 90◦ and 2α ≤ 180◦.

X. THE SIN 2φs ASYMMETRY IN Bs MIXING

The mixing in Bs-B̄s is the same as sin 2φs, where φs is
the small angle in the SM (b-s) unitarity triangle. Since
this involves Bs mixing, it only appears in case I, and is
given by [21]

sin 2φs = −Im

(

Ms,12

|Ms,12|
V L∗cb V

L
cs + βgRV

R∗

cb V
R
cs

V LcbV
L∗
cs + βgRV RcbV

R∗
cs

)

. (32)

Here, WR can also contribute to b̄ → c̄cs̄ decays. In
the LRSM, with the asymmetry defined as above, φs is
no longer the angle in the V L unitarity triangle. The
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sin 2α

MR (TeV)

FIG. 4: Plot of sin 2α as a function of MR for case II

sin 2φs

MR (TeV)

FIG. 5: Plot of sin 2φs as a function of MR for case I

χ2 contours for sin 2φs in case I are shown in Fig. 5 and
show sin 2φs from −1 to 1 forMR up to 3 TeV, and above
the SM range up to 8 TeV. The SM 1-σ sin 2φs range for
the same data runs from 0.025 ≤ sin 2φs ≤ .041. This
measurement could provide dramatic evidence for new
physics.

xs

MR (TeV)

FIG. 6: Plot of xs as a function of MR for case I

XI. xs, THE Bs OSCILLATION RATE

Since xs measures the Bs oscillation rate, it is only
affected in case I. It is given by its ratio to xd as [21]

xs = 1.034xd

∣

∣

∣

∣

Ms,12

Md,12

∣

∣

∣

∣

, (33)

where Ms,12 contains the WR box diagrams, and xd =
0.77.

The χ2 contours for xs are shown in Fig. 6 for case I.
They show xs from 20 to greater than 100 for MR ≤ 2
TeV. There is no experimental upper limit to xs. In the
LRSM, the order unity V Rts matrix element for the WR

exchange replaces the SM suppressed V Lts = −Aλ2 =
−0.04 matrix element, giving low mass WR an initial
advantage. The SM 1-σ range is 24 ≤ xs ≤ 53, which is
approached for case I for MR above 5 TeV.

XII. CONCLUSIONS

In the Left-Right Symmetric Model, the right-handed
quark mixing matrices can be parametrized into two
cases as described in Eqs. (5), which provide a reason-
able lower limit for the WR mass [14]. We suppress the
large contributions to ǫK from the WL-WR box diagram
by effectively taking some parameters of V R to vanish, as
shown in Eqs. (14), so that the quite small experimental
value of ǫK can be achieved and WR may give the most
substantial effects on CP asymmetries in B decays [20]
[21].
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In this paper we have given the detailed calculations,
as a function of MR, of the total mixing matrix element
Mq,12 and of its components MLL

q,12, M
RR
q,12 and MLR

q,12,
where twoWL, twoWR and aWL-WR pair are exchanged
in the box diagrams, for both Bd and Bs systems. The
effects of WR are depicted by the ratios |MLR

q,12|/|MLL
q,12|

in both Bd-B̄d and Bs-B̄s mixing, which are plotted in
Figs. 1 and 2 for cases II and I, respectively. In case I
the LRSM shows significantly larger allowed regions for
MR ≤ 6 TeV in Bs oscillation related xs and sin γ, and
beyond for sin 2φs. It effects Bd asymmetries out to 1

TeV. In case II, the second quandrant δ region can affect
the unitarity triangle angles and its vertex for MR ≤ 8
TeV in the LRSM. It also affects sin 2φs and xs at 90%
CL beyond 8 TeV.

Whereas sin 2β as a function of MR is compatible with
that obtained from the SM, much larger allowed regions
for sinγ, sin 2α, xs, and sin 2φs are found when the LR
amplitudes are large, as stated above.

Consequently, measurements of the additional CP vio-
lating asymmetries beyond sin 2β can provide interesting
tests for the new physics given by the LRSM.
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