
Ferromagnetism and antiferromagnetism

• ferromagnetism (FM)
• exchange interaction, Heisenberg model

• spin wave, magnon

• antiferromagnetism (AFM)

• ferromagnetic domains

• nanomagnetic particles
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Ferromagnetic insulator (no itinerant electron)

• FM is not from magnetic dipole-dipole interaction, nor the SO 
interaction. It is a result of electrostatic interaction!

• Estimate of order:
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• Because of the electrostatic interaction, some prefers 
↑↑, some prefers↑↓(for example, H2).



• Effective interaction between a pair of spinful ions
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• J is called the exchange coupling const. 
(for 2-e system, the GND state must be a singlet)

• FM has J>0, AFM has J<0

• The tendency for an ion to align the spins 
of nearby ions is called an exchange field
HE (or molecular field, usually much 
stronger than applied field.)

• Weiss mean field HE = λM for FM

( ),  where = /  is  susceptibility

= (Curie-Weiss law, for  

P

on )

M

ly

p E p

C
c

M H H C T

M C C
H T C T T

T T
λ

χ χ

χ

= +

⇒ >= ≡
− −

G G G

For iron, Tc ～1000 K, g～2, S～1

∴λ～5000 (no unit in cgs)

Ms ～1700 G, HE ～103 T.
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Temperature dependence of magnetization
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Spin wave in 1-dim FM (classical approach)

Heisenberg model 1
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• Ground state energy  E0 =－2NJS2

• Excited state:                                                  
Flip 1 spin costs 8JS2. But there is a cheaper way to create excited state. 
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Dispersion of spin wave

• Quantized spin wave is called magnon (     boson)

• magnon energy  

• magnons, like phonons, can interact with each other 
if nonlinear spin interaction is included.
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Thermal excitations of magnons
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FM in Fe, Co, Ni (with itinerant electrons) 

Cu, 
nonmagnetic

Ni, 
magnetic T > Tc T < Tc

ℓ=0



• ferromagnetism (FM)

• antiferromagnetism (AFM)
• susceptibilities

• ferrimagnetism

• ferromagnetic domains

• nanomagnetic particles



• many AFM are transition metal oxides.

• net magnetization is zero, not easy to 
show that it’s a AFM. First confirmed by 
Shull at 1949 using neutron scattering.

Antiferromagnetism (predicted by Neel, 1936)

MnO, transition 
temperature=610 K

Neel 1970 Shull 1994

Neel 
temperature



T-dependence of susceptibility for T > TN

Consider a AFM consists of 2 FM sublattices A, B.
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• Susceptibility for T < TN (Kittel, p343)

• Dispersion relation        
for AFM spin wave                           
(see Kittel, p344 for details)

M Hχ⊥=

//M Hχ=

Linear dispersion at small k 
(Cf, FM spin wave)

H
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Magnetite (Fe3O4 or FeO．Fe2O3)

• Curie temperature 585 C

• belong to a more general class of ferrite MO．Fe2O3

(M=Fe, Co, Ni, Cu, Mg…)

Hematite 赤鐵礦磁鐵礦

磁性氧化物

Ferrimagnetic materials

Iron garnet
• Yttrium iron garnet (YIG) Y3Fe2(FeO4)3, or Y3Fe5O12 釔鐵石榴石

is a ferrimagnetic material with Curie temperature 550 K.

• YIG has high degree of Faraday effect, high Q factor in microwave
frequencies, low absorption of infrared wavelengths up to 600 nm …
etc (wiki)

鐵石榴石

e.g.,



• ferromagnetism (FM)

• antiferromagnetism (AFM)

• ferromagnetic domains

• nanomagnetic particles



Magnetic domains (proposed by Weiss 1906)
Why not all spins be parallel to reduce the exchange energy?

→ it would cost “stray field” energy 

2

6 3

magnetic energy B /8
                      10 erg/cm

π

≈
Little leaking field

• Magnetization 
and domains



• Bloch wall

• Neel wall

Transition between domain walls
Why not just 

→ Would cost too much exchange energy 
(not so in ferroelectric materials)

Domain wall dynamics
• domain wall motion induced by current

• …

Race-track 
memory   
(Parkin, IBM)



From hyperphysics

Hysteresis

Easy/hard axis



From W. Wernsdorfer’s pdf

The first single 
molecule 
magnet (1980): 
Mn12-acetate
(s=10)

Can be described by 
Stoner–Wohlfarth model (T=0) 



http://www.calpoly.edu/~rfrankel/mtbphoto.html

Single domain particle: ferrofluid, magnetic data storage …

• Magnetotaxsis bacteria

• superparamagnetism
(T≠0, small enough single domain particle) 

趨磁性

ferrofluid

磁流體

超順磁性

Magnetospirillum magnetotacticum

(Phototaxis - 趨光性)



The zoo of magnetoresistance (first discovered by Lord Kelvin, 1857) 

• GMR (giant MR, Fert and Grünberg 1988)

• CMR (colossal MR, Jonker and can Santen 1950’s)

• EMR (extraordinary MR, Solin, 2000)

• TMR (tunneling MR, Julliere, 1975)

• …

Getzlaff and Mathias - Fundamentals of Magnetism, p.259

Soh and Aeppli, Nature (2002)

supplementary

巨磁阻

龐磁阻

異常磁阻

穿隧磁阻



Giant MR （of multi-layer magnetic materials)
(Gruenberg JAP; Fert PRL, 1988)

• In 1988, GMR was discovered
• In 1996, GMR reading heads were 
commercialized 
• Since 2000: Virtually all writing heads 
are GMR heads

S
olin, S

cientific A
m

erican, 2004 

supplementary

A. Fert and 
P. Grünberg

2007



IBM’s demo

GMR read head

Fig from http://www.stoner.leeds.ac.uk/research/

supplementary


