
Diamagnetism and paramagnetism

- Langevin diamagnetism
- paramagnetism
 - Hund's rules
 - Lande g-factor
 - Brillouin function
- crystal field splitting
 - quench of orbital angular momentum
- nuclear demagnetization
- Pauli paramagnetism and Landau diamagnetism

free electron gas

atom

Magnetic Suscpetibility, χ

Basics

• System energy E(H) $(E \rightarrow F = E - TS \text{ if } T \neq 0)$ • magnetization density $M(H) = -\frac{1}{V} \frac{\partial E}{\partial H}$ • susceptibility $\chi \equiv \frac{\partial M}{\partial H} = -\frac{1}{V} \frac{\partial^2 E}{\partial H^2}$

Atomic susceptibility

$$H = \sum_{i} \left(\frac{p_i^2}{2m} + V_i \right) + \mu_B \left(\vec{L} + g\vec{S} \right) \cdot \vec{H} + \frac{e^2}{2mc} \sum_{i} A_i^2, \quad \mu_B = \frac{e\hbar}{2mc}$$
$$= H_0 + \Delta H$$

Order of magnitude

•
$$\mu_B \left(\vec{L} + g \vec{S} \right) \cdot \vec{H} \approx \mu_B H \approx \hbar \omega_c$$

 $\approx 10^{-4} eV$ when $H = 1 \text{ T}$
• $\vec{A}_i = \frac{H}{2} (-y_i, x_i, 0)$
 $\frac{e^2}{2mc} \sum_i A_i^2 \approx \left(\frac{eH}{mc}\right)^2 ma_0^2, \quad a_0 \equiv \frac{\hbar^2}{me^2}$
 $\approx \frac{\left(\hbar \omega_c\right)^2}{e^2 / a_0} \approx 10^{-5} \text{ of the linear term at } H = 1 \text{ T}$

• Perturbation energy (to 2nd order)

$$\Delta E_{n} = \langle n | \Delta H | n \rangle + \sum_{n' \neq n} \frac{\left| \langle n | \Delta H | n' \rangle \right|^{2}}{E_{n} - E_{n'}}$$
$$= \mu_{B} \langle n | \vec{L} + g\vec{S} | n \rangle \cdot \vec{H} + \frac{e^{2}}{2mc^{2}} \langle n | \sum_{i} A_{i}^{2} | n \rangle + \sum_{n'} \frac{\left| \langle n | \mu_{B} \left(\vec{L} + g\vec{S} \right) \cdot \vec{H} | n' \rangle \right|^{2}}{E_{n} - E_{n'}}$$

• Filled atomic shell

(applies to noble gas, NaCl-like ions...etc)

Ground state $|0\,\rangle$:

$$\vec{L}|0\rangle = \vec{S}|0\rangle = 0$$

$$\therefore \quad \Delta E = \frac{e^2}{8mc^2} H^2 \langle 0|\frac{2}{3}\sum_i r_i^2|0\rangle \quad \text{(for spherical charge dist)}$$

For a collection of *N* ions,

$$\chi = -\frac{N}{V} \frac{\partial^2 \Delta E}{\partial H^2} = -\frac{e^2}{6mc^2} \frac{N}{V} \langle 0 | \sum_i r_i^2 | 0 \rangle < 0$$

Larmor (or Langevin) diamagnetism

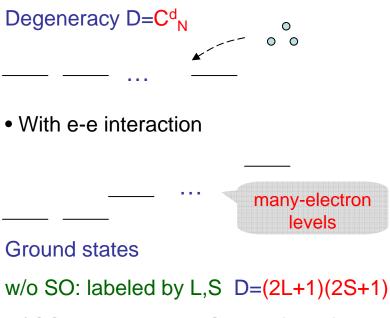
An atom with many electrons

• Without SO coupling

$$H = \sum_{i} \left(\frac{p_i^2}{2m} + V_i \right) + \frac{1}{2} \sum_{ij} V_{ij}$$

- Maximally mutually commuting set H, L^2, S^2, L_z, S_z
- Eigenstates (including ground states)
 - $\left| \alpha, L, S, m_{L}, m_{S} \right\rangle$
- With SO coupling (weak)

$$H = \sum_{i} \left(\frac{p_i^2}{2m} + V_i \right) + \frac{1}{2} \sum_{ij} V_{ij} + \sum_{i} \lambda_i \vec{S}_i \cdot \vec{L}_i$$


- Maximally mutually commuting set H, L^2, S^2, J^2, J_z
- Eigenstates (including ground states)

$$\left| \alpha, L, S, J, m_{J} \right\rangle$$

• single electron ground states

- N-electron ground states
- Without e-e interaction

w/SO: labeled by L,S,J D=(2J+1)

Ground state of an atom with <u>unfilled shell</u> (no *H* field yet!):

- Atomic quantum numbers n, l, m_l, m_s
- Energy of an electron depends on $n, l \pmod{m_l, m_s}$
- Degeneracy of electron level $\mathcal{E}_{n,l}$: 2(2/+1)
- If an atom has N (non-interacting) valence electrons, then the degeneracy of the "atomic" ground state (with unfilled $\mathcal{E}_{n,l}$ shell) is $C_N^{2(2l+1)}$

e-e interaction will lift this degeneracy partially, and then

- the atom energy is labeled by the conserved quantities *L* and *S*, each is (2L+1)(2S+1)-fold degenerate
- SO coupling would split these states further, which are labeled by J (later).

```
What's the values of S, L, and J for the atomic ground state?
```

Use the Hund's rules (1925),

- 1. Choose the max value of S that is consistent with the exclusion principle
- 2. Choose the max value of L that is consistent with the exclusion principle and the 1st rule

To reduce Coulomb repulsion, electron spins like to be parallel, electron orbital motion likes to be in high m_i state. Both help disperse the charge distribution.

nteracting

Example: 2 e's in the *p*-shell ($I_1 = I_2 = 1$, $s_1 = s_2 = 1/2$)

(a) (1,1/2)(b) (0,1/2)(c) (-1,1/2)(a') (1,-1/2)(b') (0,-1/2)(c') (-1,-1/2)

C⁶₂ ways to put these 2 electrons in 6 slots

• Spectroscopic notation:

(2L+1)x(2S+1)=9-fold degenerate

Energy levels of Carbon atom									
Configuration	Term	J	Level(cm ⁻¹)						
$2s^22p^2$	^з р	0 1	0.00000 16.41671						
$2s^22p^2$	1 _D	2 2	43.41350 10192.66						
$2s^{2}2p^{2}$	1 _S	0	21648.02						

physics.nist.gov/PhysRefData/Handbook/Tables/carbontable5.htm

• There is also the 3rd Hund's rule related to SO coupling (details below)

V

Review of SO coupling

An electron moving in a static
 E field feels an effective B field

$$\vec{B}_{e\!f\!f} = \vec{E} imes rac{ec{v}}{c}$$

• This B field couples with the electron spin

$$H_{so} = -\vec{\mu} \cdot \vec{B}_{eff}$$

$$= -\left(\frac{q}{mc}\vec{S}\right) \cdot \left(\vec{E} \times \frac{\vec{v}}{c}\right), \quad \vec{E} = -\hat{r}\frac{d\phi}{dr} \text{ for central force, } \phi = +\frac{e}{r}$$

$$= \left(\frac{q}{m^2c^2}\frac{d\phi}{rdr}\right)\vec{S} \cdot \vec{L} \qquad (x \ 1/2 \text{ for Thomas precession, 1927})$$

$$\equiv \lambda \vec{S} \cdot \vec{L} \qquad \lambda > 0 \text{ for less than half-filled (electron-like)}$$

$$= \frac{\lambda}{2} \left(J^2 - L^2 - S^2\right) \qquad Quantum states are now labeled by L, S, J$$

(2L+1)x(2S+1) degeneracy is further lifted to become (2J+1)-fold degeneracy

Hund's 3rd rule:

- if less than half-filled, then J=|L-S| has the lowest energy
- if more than half-filled, then J=L+S has the lowest energy

 ${}^{3}P_{0}$ is the ground state in previous example

n	$l_z = 2,$ 1, 0, -1, -2	S	$L = \Sigma l_x $	· J	SYMBOL
1	· · · · · · · · · · · · · · · · ·	1/2	2	3/2	$^{2}D_{3/2}$
2	↓ ↓ ·	1	3	2	$^{3}F_{2}$
3		3/2	3	$\begin{vmatrix} 2 \\ 3/2 \end{vmatrix} J = L - S $	⁴ F _{3/2}
4		2	2	O J	³ D ₀
5		5/2	0	5/2	°S5/2
6		2	2 3	4	³ D₄
7	n in the state of the second the state of the state of the second the second the second the second the second t	3/2	3 - 13	9/2	*F _{9/2}
8	than the than the states	1	3 3	$\frac{J}{4} J = L + S$	³ <i>F</i> ₄
9		1/2	1	5/2	$^{2}D_{5/2}$
0	th th th th	0	0	.0	¹ S _o
	aball(l = 2)	. •			
]-	shell $(l = 3)$	Ì			
n	$l_{z} = 3, 2, 1, 0, -1, -2, -3$	S	$L = \Sigma l_x $	J	
1		1/2	2	5/2)	2 5
- 4 1	· · · · · · · · · · · · · · · · · · ·	1/2	3)) / /	- I' 5/2
1 2		1/2 1	5	5/2 4	$\begin{array}{c} {}^2F_{5/2} \\ {}^3H_{4} \end{array}$
3			5	4	$^{4}H_{4}$
3 4		1 3/2 2	5 6 6		$^{5}H_{4}$ $^{4}I_{9/2}$ $^{5}I_{4}$
3 4 5		1 3/2 2 5/2	5 6 6	$\begin{vmatrix} 4 \\ 9/2 \\ I - I - S \end{vmatrix}$	$^{-}H_{4}$ $^{4}I_{9/2}$ $^{5}I_{4}$ $^{6}H_{5/2}$
3 4 5 6		1 3/2 2 5/2 3	5 6 6	$ \begin{cases} 4 \\ 9/2 \\ 4 \\ 5/2 \\ 0 \end{cases} J = L - S $	${}^{5}H_{4}$ ${}^{4}I_{9/2}$ ${}^{5}I_{4}$ ${}^{6}H_{5/2}$ ${}^{7}F_{0}$
3 4 5 6 7		1 3/2 2 5/2 3 7/2	5 6 5 3 0	$ \begin{cases} 4 \\ 9/2 \\ 4 \\ 5/2 \\ 0 \\ 7/2 \end{cases} $	${}^{6}H_{4}$ ${}^{4}I_{9/2}$ ${}^{5}I_{4}$ ${}^{6}H_{5/2}$ ${}^{7}F_{0}$ ${}^{8}S_{7/2}$
3 4 5 6 7 8		1 3/2 2 5/2 3 7/2 3	5 6 5 3 0 3	$ \begin{cases} 4 \\ 9/2 \\ 4 \\ 5/2 \\ 0 \\ 7/2 \\ 6 \end{bmatrix} J = L - S $	${}^{5}H_{4}$ ${}^{4}I_{9/2}$ ${}^{5}I_{4}$ ${}^{6}H_{5/2}$ ${}^{7}F_{0}$ ${}^{8}S_{7/2}$ ${}^{7}F_{6}$
3 4 5 6 7 8 9		1 3/2 2 5/2 3 7/2 3 5/2	5 6 5 3 0 3	$ \begin{array}{c} 4 \\ 9/2 \\ 4 \\ 5/2 \\ 0 \\ 7/2 \\ 6 \\ 15/2 \end{array} $ $J = L - S $	$ \begin{array}{c} {}^{5}H_{4} \\ {}^{4}I_{9/2} \\ {}^{5}I_{4} \\ {}^{6}H_{5/2} \\ {}^{7}F_{0} \\ {}^{8}S_{7/2} \\ {}^{7}F_{6} \\ {}^{6}H_{15/2} \end{array} $
3 4 5 6 7 8 9		1 3/2 2 5/2 3 7/2 3 5/2 2	5 6 5 3 0 3 5 6	$ \begin{array}{c} 4 \\ 9/2 \\ 4 \\ 5/2 \\ 0 \\ 7/2 \\ 6 \\ 15/2 \\ 8 \\ L = L + S \end{array} $	$ \begin{array}{c} {}^{5}H_{4} \\ {}^{4}I_{9/2} \\ {}^{5}I_{4} \\ {}^{6}H_{5/2} \\ {}^{7}F_{0} \\ {}^{8}S_{7/2} \\ {}^{7}F_{6} \\ {}^{6}H_{15/2} \\ {}^{5}I_{8} \end{array} $
3 4 5 6 7 8 9 10		1 3/2 2 5/2 3 7/2 3 5/2 2 3/2	5 6 5 3 0 3 5 6 6	$ \begin{array}{c} 4 \\ 9/2 \\ 4 \\ 5/2 \\ 0 \\ 7/2 \\ 6 \\ 15/2 \\ 8 \\ 15/2 \\ 8 \\ 15/2 \\ \end{bmatrix} J = L + S $	$ \begin{bmatrix} {}^{7}H_{4} \\ {}^{4}I_{9/2} \\ {}^{5}I_{4} \\ {}^{6}H_{5/2} \\ {}^{7}F_{0} \\ {}^{8}S_{7/2} \\ {}^{7}F_{6} \\ {}^{6}H_{15/2} \\ {}^{5}I_{8} \\ {}^{4}I_{15/2} \end{bmatrix} $
3 4 5 6 7 8 9 10 11		1 3/2 2 5/2 3 7/2 3 5/2 2 3/2 1	5 6 5 3 0 3 5 6 6 5	$ \begin{array}{c} 4\\ 9/2\\ 4\\ 5/2\\ 0\\ 7/2\\ 6\\ 15/2\\ 8\\ 15/2\\ 6\\ \end{bmatrix} J = L + S $	$\begin{array}{c} {}^{5}H_{4} \\ {}^{4}I_{9/2} \\ {}^{5}I_{4} \\ {}^{6}H_{5/2} \\ {}^{7}F_{0} \\ {}^{8}S_{7/2} \\ {}^{7}F_{6} \\ {}^{6}H_{15/2} \\ {}^{5}I_{8} \\ {}^{4}I_{15/2} \\ {}^{3}H_{6} \end{array}$
3 4 5 6 7 8 9 10		1 3/2 2 5/2 3 7/2 3 5/2 2 3/2	5 6 5 3 0 3 5 6 6	$ \begin{array}{c} 4 \\ 9/2 \\ 4 \\ 5/2 \\ 0 \\ 7/2 \\ 6 \\ 15/2 \\ 8 \\ 15/2 \\ 8 \\ 15/2 \\ \end{bmatrix} J = L + S $	$\begin{array}{c} {}^{-}H_4 \\ {}^{4}I_{9/2} \\ {}^{5}I_4 \\ {}^{6}H_{5/2} \\ {}^{7}F_0 \\ {}^{8}S_{7/2} \\ {}^{7}F_6 \\ {}^{6}H_{15/2} \\ {}^{5}I_8 \\ {}^{4}I_{15/2} \end{array}$

Paramagnetism of an atom with unfilled shell

1) Ground state is <u>nondegenerate</u> (*J*=0)

$$\Delta E = \mu_B \langle 0 | \vec{L} + g\vec{S} | 0 \rangle \cdot \vec{H} + \frac{e^2}{2mc^2} \langle 0 | \sum_i A_i^2 | 0 \rangle + \sum_n \left| \frac{\langle 0 | \mu_B (\vec{L} + g\vec{S}) \cdot \vec{H} | n \rangle \right|^2}{E_0 - E_n}$$
(A+M, Prob 31.4)

2) Ground state is degenerate $(J \neq 0)$

Van Vleck PM

Then the 1st order term almost always >> the 2nd order terms.

$$\vec{m} = -\mu_B \left(\vec{L} + 2\vec{S}\right) = -\mu_B \left(\vec{J} + \vec{S}\right)$$

• Heuristic argument: J is fixed, L and S rotate around J, maintaining the triangle. So the magnetic moment is given by the component of L+2S parallel to J,

$$\vec{S}_{II} = \frac{\vec{J} \cdot \vec{S}}{J^2} \vec{J} = \frac{\vec{J}}{2J^2} \left(J^2 - L^2 + S^2 \right)$$
$$= \frac{\vec{J}}{2J(J+1)} \left[J(J+1) - L(L+1) + S(S+1) \right]$$

$$\therefore \vec{m}_{eff} = -g_J \mu_B \vec{J}$$
Lande g-factor $g_J = 1 + \frac{J(J+1) - L(L+1) + S(S+1)}{2J(J+1)}$
(1921)

(1921)

• $\Delta E(m_I) = g_I \mu_B m_I H$, so $\chi = 0$?

No! these 2*J*+1 levels are closely packed (< kT), so F(H) is nonlinear (next page).

Langevin paramagnetism

$$Z = \sum_{m_J=-J}^{J} e^{-E(m_J)/k_BT}, \quad \Delta E(m_J) = g_J \mu_B m_J H \left(\sim 1K \text{ at } H\right)$$

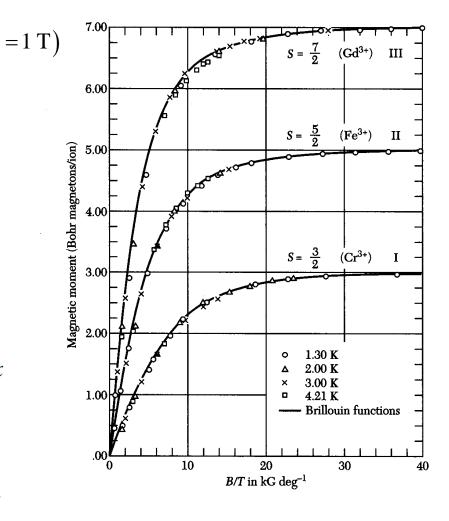
$$F = E - TS = -k_B T \ln Z$$

$$M = -\frac{N}{V} \frac{\partial F}{\partial H} = \frac{N}{V} g_J \mu_B J B_J \left(\frac{g_J \mu_B J H}{k_B T}\right)$$
where $B_J(x) = \frac{2J+1}{2J} \operatorname{coth} \left(\frac{2J+1}{2J}x\right) - \frac{1}{2J} \operatorname{coth} \left(\frac{x}{2J}\right)$
• $k_B T << g_J \mu_B J H \quad (x >> 1)$

$$M = \frac{N}{V} g_J \mu_B J, \quad \chi = 0$$
• $k_B T >> g_J \mu_B J H \quad (x << 1)$

$$B_J(x) \sim \frac{J+1}{3J} x$$

$$M = \frac{N}{V} \left(g_J \mu_B\right)^2 \frac{J(J+1)}{3k_B T} H$$


$$\chi(T)$$

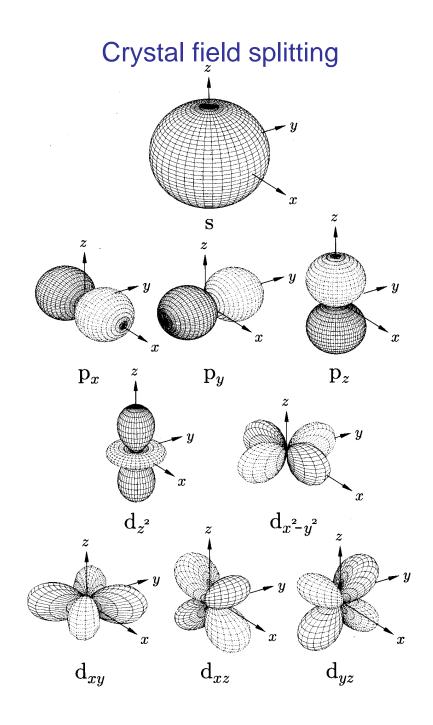
• at room T, χ (para) \sim 500 χ (dia) calculated earlier

• Curie's law $\chi = C/T$ (note: not good for J=0)

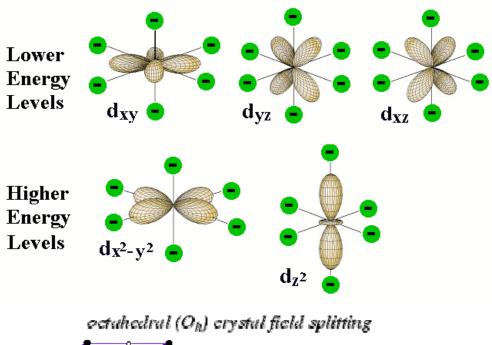
$$C = \frac{N}{V} \frac{\left(\mu_B p\right)^2}{3k}, \text{ where } p = g_J \sqrt{J(J+1)}$$

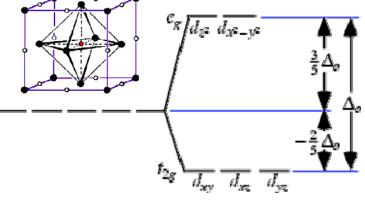
effective Bohr magneton number

f-shell (L	.anthanides) 鑭系元素	In general (but not always), energy from low to high: 1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d						
ELEMENT (TRIPLY IONIZED)	BASIC ELECTRON CONFIGURATION	GROUND-STATE TERM	CALCULATED ^b p	MEASURED ^c p				
La	4f ⁰	¹ S	0.00	diamagnetic				
Ce	\cdot 4 f^1	${}^{2}F_{5/2}$	2.54	2.4				
Pr	$4f^2$	${}^{3}H_{4}$	3.58	3.5				
Nd	$4f^3$	⁴ I _{9/2}	3.62	3.5				
Pm	4f ⁴	5I4	2.68					
~ Sm	$4f^{5}$	⁶ H _{5/2}	0.84	1.5				
- Eu	4f ⁶	⁷ <i>F</i> ₀	0.00	3.4 J:				
Gđ	$4f^{7}$	*S _{7/2}		ow-lying 8.0				
Тb	$4f^{8}$	⁷ <i>F</i> ₆	9.72 (see A+	M, p.657) 9.5				
Dy	4f9	⁶ <i>H</i> _{15/2}	10.63	10.6				
Ho	$4f^{10}$	51 ₈	10.60	10.4				
Er	$4f^{11}$	⁴ <i>I</i> _{15/2}	9.59	9.5				
Tm	$4f^{12}$	${}^{3}H_{6}$	7.57	7.3				
Yb	$4f^{13}$	${}^{2}F_{7/2}$	4.54	4.5				
Lu	$4f^{14}$	¹ S	0.00	diamagnetic				


• Before ionization, La: $5p^6 6s^2 5d^1$; Ce: $5p^6 6s^2 4f^2 \dots$

	GROUP GROUP																	
	GROUP	GROUP II		Transition elements								GROUP	GROUP IV	GROUP V	GROUP VI	GROUP VII	GROUP VIII	
1								2 He 4.00										
	151		1								1s ²							
	3 Li												5 B			-	9 F	10 Ne
2	6.94 2s ¹	9.01 2s ²										20.18						
		12 Mg									18 Ar							
3	22.99	24.31											26.98	28.09	30.97	32.07	35.45	39.95
S	3s ¹	3s ²	21.0	22 77	0.0	AL 0		26. 10	27 0	20 37	20.0	20. 7	3p1	3p ²	3p ³	3p4	3p ⁵	3p ⁶
PERIODS	19 K 39.10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.88	23 V 50.94	24 Cr 52.00	25 Mn 54,94	26 Fe 55.85	27 Co 58,93	28 Ni 58,69	29 Cu 63.55	30 Zn 65.39	31 Ga 69.72	32 Ge 72.61	33 As 74.92	34 Se 78.96	35 Br 79.90	36 Kr 83.80
H	$4s^{1}$	4s ²	$3d^{1}4s^{2}$	$3d^{2}4s^{2}$	$3d^{3}4s^{2}$	$3d^{5}4s^{1}$	$3d^{5}4s^{2}$	$3d^{6}4s^{2}$	$3d^{7}4s^{2}$	$3d^{8}4s^{2}$	$3d^{10}4s^{1}$	$3d^{10}4s^2$	$4p^{1}$	4p ²	4p ³	$4p^{4}$	4p ⁵	4p ⁶
5	37 Rb 85.47	38 Sr 87.62	39 Y 88.96	40 Zr 91,22	41 Nb 92.91	42 Mo 95.94	43 Tc (98)	44 Ru 101.07	45 Rh 102,91	46 Pd 106.42	47 Ag 107.87	48 Cd 112.41	49 In 114.82	50 Sn 118.71	51 Sb 121.76	52 Te 127.60	53 I 126.90	54 Xe 131.29
	$5s^{1}$	5 <i>s</i> 2	$4d^{1}5s^{2}$	$4d^{2}5s^{2}$	$4d^{4}5s^{1}$	4d ⁵ 5s1	$4d^{5}5s^{2}$	4d ⁷ 5s ¹	$4d^{9}5s^{1}$	$4d^{10}5s^{6}$	$4d^{10}5s^{1}$	$4d^{10}5s^2$	$5p^{1}$	$5p^{2}$	$5p^{3}$	$5p^{4}$	5p ⁵	5p ⁶
6	55 Cs 132.91	56 Ba 137.33	57 La 138.91	72 Hf 178.49	73 Ta 180.95	74 W 183.85	75 Re 186.21	76 Os 190.2	77 Ir 192.22	78 Pt 195.08	79 Au 196.97	80 Hg 200.59	81 TI 204.36	82 Pb 207.2	83 Bi 208.98	84 Po (209)	85 At (210)	86 Rn (222)
	6s ¹	6s ²	$5d^{1}6s^{2}$	$5d^{2}6s^{2}$	5d ³ 6s ²	5d46s2	$5d^{5}6s^{2}$	5d ⁶ 6s ²	5d76s2	$5d^96s^1$	5d ¹⁰ 6s ¹	$5d^{10}6s^2$	$6p^{1}$	6p ²	$6p^{3}$	$6p^{4}$	6p ⁵	6p ⁶
7	87 Fr (223)	88 Ra 226.03	89 Ac 227.03 -	104 Rf + (261)	105 Db (262)	106 Sg (263)	107 Bh (264)	108 Hs (265)	109 Mt (268)	110 (269)	111 (272)	112 (277)						
,	7s ¹	752	6d17s2	6d ² 7s ²	6d ³ 7s ²	6d47s2	6d ⁵ 7s ²	6d ⁶ 7s ²	6d ⁷ 7s ²	(20))	· (2/2)	1.44		Atomic _	26 F	e-Sym	lod	
			/									•			58.85		mic mass	5
	Outer electron <u>3d⁶4s²</u>																	
		1						J										
	*	58 Ce 140.12	59 Pr 140.91	60 Nd 144,24	61 Pm (145)	62 Sm 150.36	63 Eu 151.96	64 Gd 157.25	65 Tb 158.93	66 Dy 162,50	67 Ho 164,93	68 Er 167.26	69 Tm 168.93	70 Yb 173.04	71 Lu 174.97	(Lantha		
	100	$5d^{1}4f^{1}6s^{2}$		$4f^{4}6s^{2}$	4f ⁵ 6s ²	4f ⁶ 6s ²	1 (A)		5d ¹ 4f ⁸ 6s	$4f^{10}6s^2$	$4f^{11}6s^2$	$4f^{12}6s^2$	4f ¹³ 6s ²		5d ¹ 4f ¹⁴ 6s ²	1 Lantila	nues	
	+	90 Th 232.04	91 Pa 231.04	92 U 238.03	93 Np 237.05	94 Pu (244)	95 Am (243)	-	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (260)	(Actinid	les)	
		6d ²⁷ 5 ²	$5f^{2}6d^{1}7s^{2}$	5f ³ 6d ¹ 7s ²	5f 46d 17s ²	5f ⁶ 6d ⁰ 7s ²	5f76d07s2	5f76d17s2	5f ⁸ 6d ¹ 7s ²	5f ¹⁰ 6d ⁰⁷ s ²	5s ¹¹ 6d ⁰⁷ s ²	5f ¹² 6d ⁰⁷ s ²	5f ¹³ 6d ⁰⁷ s ²	5f ¹⁴ 6d ¹⁰ 7s ²	5f ¹⁴ 6d ¹⁷ s ²			


3d-shell (transition metal ions)


ELEMENT (AND IONIZATION)	BASIC ELECTRON CONFIGURATION	GROUND- STATE TERM ($(J = S) (J = L \pm S)$	MEASURED ^c p
 Ti ³⁺	3d ¹ 45 ²	² D _{3/2}	1.55	
V ⁴⁺	$3d^1$	${}^{2}D_{3/2}$	1.55	1.8
V ³⁺	$3d^2$	${}^{3}F_{2}$	1.63	2.8
V ²⁺	$3d^3$	4F3/2	0.77	3.8
Cr ³⁺	$3d^3$	${}^{4}F_{3/2}$	0.77	? <u>3</u> .7
Mn ⁴⁺	$3d^3$	${}^{4}F_{3/2}$	0.77	4.0
Cr ²⁺	3d ⁴	⁵ D ₀	0	4.8
Mn ³⁺	3d ⁴	⁵ D ₀	0	5.0
Mn ²⁺	3d ⁵	⁶ S _{5/2}	5.92	5.9
Fe ³⁺	3d ⁵	⁶ S _{5/2}	5.92	5.9
Fe ²⁺	3d ⁶	⁵ D ₄	6.70	5.4
Co ²⁺	$3d^{\gamma}$	⁴ F _{9/2}	6.54	4.8
Ni ²⁺	3d ⁸	³ F ₄	5.59	3.2
Cu ²⁺	3d ⁹	${}^{2}D_{5/2}$	3.55	1.9

- Curie's law is still good, but *p* is mostly wrong
- Much better improvement if we let J=S

In a crystal, crystal field may be more important than the LS coupling

• Different symmetries would have different splitting patterns.

淬滅 Quench of orbital angular momentum

• Due to crystal field, energy levels are now labeled by *L* (not *J*)

Orbital degeneracy not lifted by crystal field may be lifted by
 Spore
 Spo

Spontaneous lattice distortion

• The stationary state ϕ of a non-degenerate level can be chosen as real when $t \rightarrow -t$,

 $\psi \rightarrow \psi^* (= \psi \text{ if nondegenerate})$

- $\langle \psi | \vec{L} | \psi \rangle = \langle \psi | \vec{r} \times \frac{\hbar}{i} \nabla | \psi \rangle$ is purely imaginary but $\langle \psi | \vec{L} | \psi \rangle$ has to be real also $\therefore \langle \psi | \vec{L} | \psi \rangle = 0$ $(\langle \psi | L^2 | \psi \rangle$ can still be non-zero)
- for 3d ions, crystal field > SO interaction
- for 4f ions, SO interaction > crystal field (because 4f is hidden inside 5p and 6s shells)

• for 4d and 5d ions that have stronger SO interaction, the 2 energies maybe comparable and it's more complicated.

- Langevin diamagnetism
- paramagnetism
 - Hund's rules
 - Lande g-factor
 - Brillouin function
- crystal field splitting
 - quench of orbital angular momentum
- nuclear demagnetization
- Pauli paramagnetism and Landau diamagnetism

Adiabatic demagnetization (proposed by Debye, 1926)

- The first method to reach below 1K
- $Z = \sum_{m_J=-J}^{J} e^{-E(m_J)/kT}, \text{ assume } E(m_J) \propto H$ $F = -kT \ln Z \left(\frac{H}{kT}\right)$ $S = -\frac{\partial F}{\partial T} = S \left(\frac{H}{kT}\right)$
- If S=constant, then $kT \sim H$ $T_f = T_i \frac{H_f}{H_i}$

Lattice

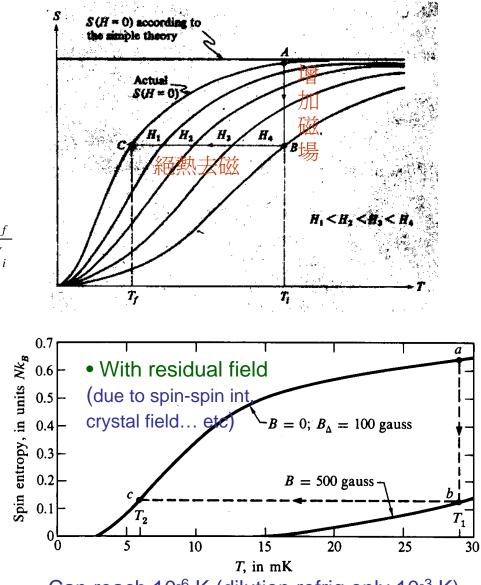
Spin

Time --->

New equilibrium

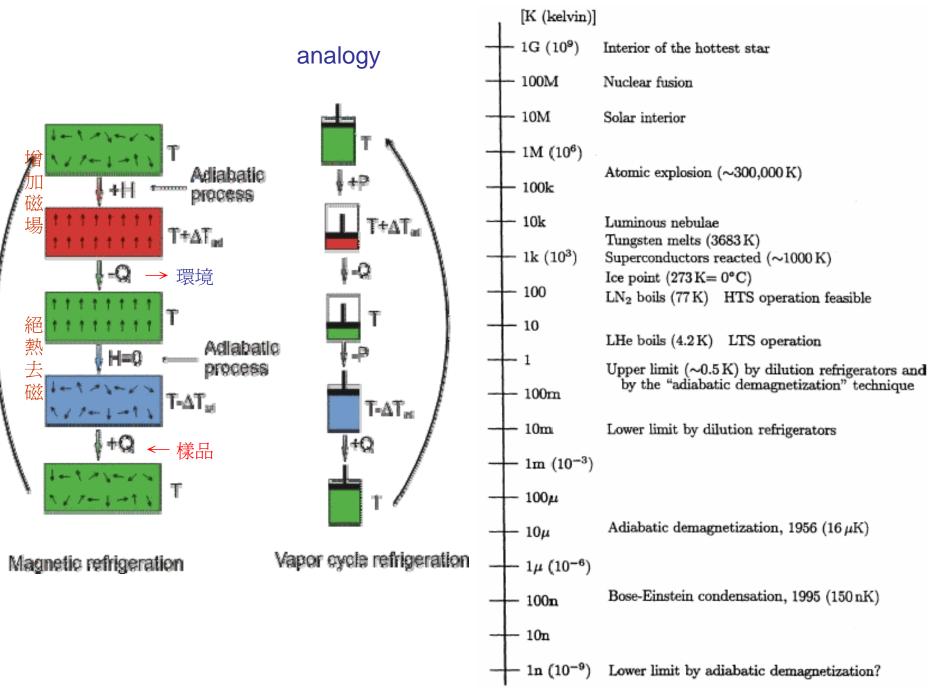
 \therefore We can reduce *H* to reduce *T*

Freezing is effective only if spin specific heat is dominant (usually need T<<T_D)


Temperature

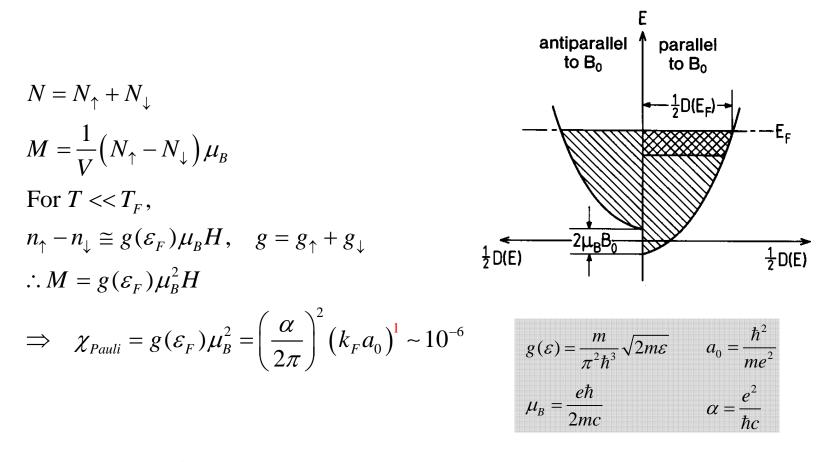
Before

Time at which


magnetic field

is removed

Can reach 10⁻⁶ K (dilution refrig only 10⁻³ K)


• Without residual field

wikipedia

Pauli paramagnetism for free electron gas (1925)

- Orbital response to H neglected, consider only spin response
- One of the earliest application of the exclusion principle

• unlike the PM of magnetic ions, here the magnitude \sim DM's (supressed by Pauli exclusion principle)

Landau diamagnetism for free electron gas (1930)

Landau began his paper with the remark, "It has until now been more or less quietly assumed that the magnetic properties of electrons, other than spin, originate exclusively from the binding of electrons in atoms."

- The orbital response neglected earlier gives slight DM
- The calculation is not trivial. For free electron gas,

$$\chi_{Landau} = -\frac{e^2 k_F}{12\pi^2 mc^2}$$
$$= -\frac{1}{3} \chi_{Pauli}$$

• So far we have learned PM and DM for a free electron gas. How do we separate these contributions in experiment?

X-ray magnetic circular dichroism (XMCD)