Superconductivity

- Introduction
- Thermal properties
- Magnetic properties
- London theory of the Meissner effect
- Microscopic (BCS) theory
- Flux quantization
- Quantum tunneling

A brief history of low temperature (Ref: 絕對零度的探索)

- 1800 Charles and Gay-Lusac (from *P*-*T* relationship) proposed that the lowest temperature is -273 C (= 0 K)
- 1877 Cailletet and Pictet liquified Oxygen (-183 C or 90 K)
- soon after, Nitrogen (77 K) is liquified
- 1898 Dewar liquified Hydrogen (20 K)
- 1908 Onnes liquified Helium (4.2 K)

• 1911 Onnes measured the resistance of metal at such a low *T*. To remove residual resistance, he chose mercury. Near 4 *K*, the resistance drops to 0.

G. Amontons 1700

	IA																	٥
1	1 H	IIA	KN	JOV	VN E	SUI LEI	PEF ME	rcc NT)NT 'S	DUC	CTI	VE	IIIA	IYA	۷Α	٧IA	VIIA	2 He
2	3 Li	۹ Be 0.03k		BLUE	E = A'	- T AME		r pre	SSU	RE			5 B	5 C	7 N	8 0	۹ F	10 Ne
3	11 Na	12 Mg	ШВ	IVB	ΞΝ = ΥΒ			<u>епн</u>		'HE 5:	- IB	IIB	13 Al 1.14	14 Si	15 P	16 S	17 CI	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti 0.39k	23 ¥ 5.38	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn 0.88	31 Ga (1.09	32 K Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	³⁸ Sr	39 Ƴ	40 Zr 0.55k	41 Nb 9.50	42 Mo 0.921	43 T C 7.77	44 Ru K 0.51	45 Rh K 0.000	46 Pd 3K	47 Ag	48 Cd 0.56	49 K 3.40	50 K 3.72	51 K Sb	52 Te	53 	54 Xe
6	55 Cs	56 Ba	57 *La 4.88K	72 Hf 0.12M	73 Ta 4.48	74 • 0.011	75 Re 1.4	76 OS	77 K 0.14	78 K	79 Au	80 Hg 4.15	81 T K 2.39	82 Pb K 7.19	83 K Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra	89 +AC	104 Rf	105 Ha	¹⁰⁶ 106	107 107	108 108	109 109	110 1110	111 111	112 112			RCON	רסטמ	TORS	.ORG
	*! 0	ntha n	ida [58	50	60	61	62	63	64	65	66	67	68	69	70	71	
	Se	ries	lue	Ce	Pr	Nd	Pm	Sm	Ēu	Gd	ТЬ	Dy	Но	Er	Tm	Ϋ́Þ	Ľu	
	+ Ac Se	tinide ries	1	90 T h 1.37K	⊒1 Pa 1.4K	92 U 0.20K	93 Np	94 Pu	95 Åm 0.60K	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr	

Tc's given are for bulk, except for Palladium, which has been irradiated with He+ ions, Chromium as a thin film, and Platinum as a compacted powder

http://superconductors.org/Type1.htm

Superconductivity in alloys and oxides

Applications of superconductor

- powerful magnet
 - MRI, LHC...
- magnetic levitation
- SQUID (超導量子干涉儀)
 - detect tiny magnetic field
- quantum bits
- lossless powerline

- Introduction
- Thermal properties
- Magnetic properties
- London theory of the Meissner effect
- Microscopic (BCS) theory
- Flux quantization
- Quantum tunneling

Thermal properties of SC: specific heat

For different superconductors,

$$\frac{C_s - C_N}{C_N} \sim 1.43 \text{ at } T_C$$

The exponential dependence with *T* is called "activation" behavior and implies the existence of an energy gap *above Fermi surface*.

 $\Delta \sim 0.1$ -1 meV (10⁻⁴⁻⁻⁵ E_F)

• Connection between energy gap and T_c

MEASURED VALUES^e OF	$F \ 2\Delta(0)/k_BT_c$
---------------------------------------	-------------------------

ELEMENT	$2\Delta(0)/k_BT_c$
Al	3.4
Cd	3.2
Hg (α)	4.6 -
In	² 3.6
Nb	3.8
Pb	4.3 -
Sn	3.5
Та	3.6
T1	3.6
V	3.4
Zn	3.2

^a $\Delta(0)$ is taken from tunneling experiments. Note that the BCS value for this ratio is 3.53. Most of the values listed have an uncertainty of ± 0.1 .

 Δ 's scale with different T_c 's $2\Delta(0) \sim 3.5 k_B T_c$ • Temperature dependence of Δ (obtained from Tunneling)

Universal behavior of $\Delta(T)$

$$\frac{\Delta(T)}{\Delta(0)} = 1.74 \left(1 - \frac{T}{T_c} \right)^{1/2} \text{ for } T \approx T_c$$

More evidences of energy gap

• Electron tunneling

• EM wave absorption

2∆ suggests excitations created in "e-h" pairs

$$v = \frac{2\Delta}{h} = 480 \text{ GHz} \text{ (microwave)}$$

Magnetic property of the superconductor

• Superconductivity is destroyed by a strong magnetic field. H_c for metal is of the order of 0.1 Tesla or less.

• Temperature dependence of $H_{c}(T)$

All curves can be collapsed onto a similar curve after re-scaling.

Critical currents (no applied field)

The critical current density of a long thin wire is therefore

 $j_c = \frac{cH_c}{2\pi a}$ (thinner wire has larger J_c)

 $j_{\rm c}{\sim}10^8\text{A/cm}^2$ for $H_{\rm c}{=}500$ Oe, a=500 A

• J_c has a similar temperature dependence as H_c , and T_c is similarly lowered as J increases.

Cross-section through a niobium–tin cable Phys World, Apr 2011 Meissner effect (Meissner and Ochsenfeld, 1933)

A SC is more than a perfect conductor

Superconducting alloy: type II SC

partial exclusion and remains superconducting at high *B* (1935) (also called intermediate/mixed/vortex/Shubnikov state)

• H_{C2} is of the order of 10~100 Tesla (called hard, or type II, superconductor)

B *B*=*H*+4 π *M* H_{c} Type I Type II Type I $-4\pi M$ πM Type II Superconducting Norma state state H_{c1} H_c He2 Applied magnetic field Ba-Applied magnetic field Ba-H_{C1} H_{c2} H H_{c2} y 600 Lead + (A) 0%, (B) 2.08%, (C) 8.23%, (D) 20.4% $-4\pi M$ in gauss Indium 400 Areas below the curves (=condensation energy) remain the same! 200 400 800 1200 1600 2800 2000 2400 3200 3600 Applied magnetic field B_a in gauss Condensation $dF = -\vec{M} \cdot d\vec{H}$ $F_N(H_c) = F_S(H_c)$ energy (for type I) For a SC, $dF_s = \frac{1}{4\pi} H dH$ $F_N(H_c) = F_N(0)$ for nonmagnetic material $\therefore \Delta F = F_N(0) - F_S(0) = \frac{H_c^2}{8\pi}$ $\left(\vec{H} \text{ is } \vec{B}_a \text{ in Kittel}\right)$ $\rightarrow F_{s}(H) - F_{s}(0) = \frac{H^{2}}{8\pi}$

Comparison between type I and type II superconductors

(Magnetic energy density)

- Introduction
- Thermal properties
- Magnetic properties
- London theory of the Meissner effect
- Microscopic (BCS) theory
- Flux quantization
- Quantum tunneling

London theory of the Meissner effect (Fritz London and Heinz London, 1934)

• Penetration length λ_L

• Temperature dependence of λ_L

Outside the SC, B=B(x) z

$$\lambda_L^2 \frac{d^2 B}{dx^2} = B$$

$$\rightarrow B(x) = B_0 e^{-x/\lambda_L} \quad \text{(expulsion of magnetic field)}$$

$$\lambda_L = \sqrt{\frac{mc^2}{4\pi n_S e^2}} \approx 170 A \text{ if } n_S = 10^{23} / \text{cm}^3$$

$$\vec{\nabla} \times \vec{B} = \frac{4\pi}{c} \vec{J}_s$$

$$\therefore J_{sy} = -\frac{c}{4\pi} \frac{dB}{dx} = \frac{cB_0}{4\pi\lambda_L} e^{-x/\lambda_L} \quad \text{also decays}$$

• Higher *T*, smaller n_S

$$\lambda(T) = \frac{\lambda(0)}{\left[1 - \left(T / T_C\right)^4\right]^{1/2}}$$

Coherence length ξ_0 (Pippard, 1939)

- In fact, n_s cannot remain uniform near a surface. The length it takes for n_s to drop from full value to 0 is called ξ_0
- Microscopically it's related to the range of the Cooper pair.
- The pair wave function (with range ξ_0) is a superposition of one-electron states with energies within Δ of E_F (A+M, p.742).

Energy uncertainty \underline{p} of a Cooper pair

$$\frac{p\Delta p}{m} \approx \Delta$$

• Therefore, the spatial range of the variation of $n_{\rm S}$

$$\xi_0 \approx \frac{\hbar}{\Delta p} = \frac{\hbar v_F}{\Delta} \iff \frac{\hbar v_F}{\pi \Delta}$$
 from BCS theory

 $\xi_0 \sim 1 \ \mu \, m >> \lambda$ for type I SC

Penetration depth, correlation length, and surface energy

Type I superconductivity

• $\xi_0 > \lambda$, surface energy is positive

• smaller λ , cost more energy to expel the magnetic field.

• When $\xi_0 >> \lambda$ (type I), there is a net positive surface energy. Difficult to create an interface.

Type II superconductivity

• $\xi_0 < \lambda$, surface energy is negative

- From Cywinski's lecture note
- smaller ξ_0 , get more "negative" condensation energy.
- When $\xi_0 \ll \lambda$ (type II), the surface energy is negative. Interface may spontaneously appear.

Vortex state of type II superconductor (Abrikosov, 1957)

- the magnetic flux ϕ in a vortex is always quantized (discussed later).
- the vortices repel each other slightly.
- the vortices prefer to form a triangular lattice (Abrikosov lattice).

From Cywinski's lecture note

Estimation of Hc_1 and Hc_2 (type II)

• Near H_{c1} , there begins with a single vortex with flux quantum ϕ_0 , therefore

$$\pi \lambda^2 H_{c1} \approx \phi_0 \to H_{c1} \approx \frac{\phi_0}{\pi \lambda^2}$$

• Near H_{c2} , vortex are as closely packed as the coherence length allows, therefore

$$N\pi\xi_0^2 H_{c2} \approx N\phi_0 \rightarrow H_{c2} \approx \frac{\phi_0}{\pi\xi_0^2}$$

Therefore, $\frac{H_{c2}}{H_{c1}} \approx \left(\frac{\lambda}{\xi_0}\right)^2$

Typical values, for Nb₃Sn, $\xi_0 \sim 34$ A, $\lambda_L \sim 1600$ A Origin of superconductivity?

• Metal X can (cannot) superconduct because its atoms can (cannot) superconduct?

Neither Au nor Bi is superconductor, but alloy Au₂Bi is! White tin can, grey tin cannot! (the only difference is lattice structure)

- good normal conductors (Cu, Ag, Au) are bad superconductor; bad normal conductors are good superconductors, why?
- What leads to the superconducting gap?
- Failed attempts: polaron, CDW...
- Isotope effect (1950):

It is found that $T_c = \text{const} \times M^{-\alpha}$ $\alpha \sim 1/2$ for different materials

↔ lattice vibration?

Brief history of the theories of superconductors

• 1935 London: superconductivity is a quantum phenomenon on a macroscopic scale. There is a "rigid" (due to the energy gap) superconducting wave function Ψ .

- 1950 Frohlich: electron-phonon interaction maybe crucial.
 - Reynolds et al, Maxwell: isotope effect

• Ginzburg-Landau theory: $\rho_{\rm S}$ can be varied in space. Suggested the connection $\rho_{\rm S}(\vec{r}) = |\psi(\vec{r})|^2$

and wrote down the eq. for order parameter Ψ (r) (App. I)

- 1956 Cooper pair: attractive interaction between electrons (with the help of crystal vibrations) near the FS forms a bound state.
- 1957 Bardeen, Cooper, Schrieffer: BCS theory

Microscopic wave function for the condensation of Cooper pairs.

Ref: 1972 Nobel lectures by Bardeen, Cooper, and Schrieffer

Dynamic electron-lattice interaction -> Cooper pair

Cooper pair, and BCS prediction

• 2 electrons with opposite momenta ($p \uparrow , -p \downarrow$) can form a bound state with binding energy (the spin is opposite by Pauli principle)

$$\Delta(0) = 2\hbar\omega_D e^{-\frac{1}{D(E_F)V_{\text{int}}}}, \text{ see App. H}$$

• Fraction of electrons involved $\sim kT_c/E_F \sim 10^{-4}$

 \bullet Average spacing between condensate electrons \sim 10 nm

 $2\Delta(0) \sim 3.5 k_B T_c$ • Therefore, within the volume occupied by the Cooper pair, there are approximately $(1 \ \mu \ m/10 \ nm)^3 \sim 10^6$ other pairs.

• These pairs (similar to bosons) are highly correlated and form a macroscopic condensate state with (BCS result)

$$k_B T_C = 1.13\hbar\omega_D e^{-\frac{1}{D(E_F)V_{\text{int}}}}$$

$$\hbar \omega_D \le 500 \ K, \ D(E_F) V_{\text{int}} \le 1/3$$

$$\therefore \ T_c \le 500 e^{-3} = 25 \ K \quad (\sim \text{upper limit of } T_c)$$

Energy gap and Density of states

• Electrons within $kT_{\rm C}$ of the FS have their energy lowered by the order of $kT_{\rm C}$ during the condensation.

• On the average, energy difference (due to SC transition) per electron is

$$k_B T_C \frac{T_C}{T_F} \simeq 0.1 \, meV \times \frac{1}{10^4} \simeq 10^{-8} \, eV$$

Families of superconductors

- Introduction
- Thermal properties
- Magnetic properties
- London theory of the Meissner effect
- Microscopic (BCS) theory
- Flux quantization
- Quantum tunneling (Josephson effect, SQUID)

Flux quantization in a superconducting ring

(F. London 1948 with a factor of 2 error, Byers and Yang, also Brenig, 1961)

• Current density operator
$$\vec{j} = \frac{q}{2m} \left(\psi^* \frac{\hbar}{i} \nabla \psi - \psi \frac{\hbar}{i} \nabla \psi^* \right), q = -e$$

• SC, in the presence of B $\vec{j} = \frac{q^*}{2m^*} \left[\psi^* \left(\frac{\hbar}{i} \nabla - \frac{q^*}{c} \vec{A} \right) \psi + \psi \left(\frac{\hbar}{i} \nabla - \frac{q^*}{c} \vec{A} \right)^* \psi^* \right] \qquad q^* = -2e$
 $m^* = 2m$

let $\psi = |\psi|e^{i\phi}$ and assume $|\psi|$ vary slowly with \vec{r} then $j = -\left(\frac{e\hbar}{m}\nabla\phi + \frac{2e^2}{mc}\vec{A}\right)|\psi|^2$ \rightarrow London eq. with $n_s = 2|\psi|^2$ • Inside a ring $\oint \vec{j} \cdot d\vec{\ell} = 0$ $\Rightarrow \quad \oint \vec{A} \cdot d\vec{\ell} = -\frac{\hbar c}{2e} \oint \nabla \phi \cdot d\vec{\ell} = -\frac{\hbar c}{2e} \Delta \phi$ $\therefore \quad \text{flux} \quad |\Phi| = n\frac{\hbar c}{2e} = n\phi_0, \qquad \phi_0 \equiv \frac{\hbar c}{2e} = 2 \times 10^{-7} \text{ gauss-cm}^2$ Path deep in material

• $\phi_0 \sim$ the flux of the Earth's magnetic field through a human red blood cell (~ 7 microns)

Josephson effect (Cooper pair tunneling) Josephson, 1962 1) DC effect:

There is a DC current through SIS in the <u>absence</u> of voltage.

 $2\Delta/e$

2) AC Josephson effect

 $\mu_1 - \mu_2 = -2eV$

Apply a DC voltage, then there is a rf current oscillation.

$$\psi = \langle N - 1 | \hat{\psi} | N \rangle \propto e^{-i(E_N - E_{N-1})t/\hbar} = e^{-i\mu t/\hbar}$$

$$\rightarrow \theta_i(t) = -\mu_i t / \hbar + \theta_i \quad (i = 1, 2)$$

 $\therefore \delta = \frac{2eV}{\hbar}t + \delta_0 \qquad \Rightarrow \quad j = j_0 \sin\left(\frac{2eV}{\hbar}t + \delta_0\right) \qquad \text{(see Kittel, p.290 for an alternative derivation)}$

• An AC supercurrent of Cooper pairs with freq. $\nu = 2eV/h$, a weak microwave is generated.

• ν can be measured very accurately, so tiny Δ V as small as 10⁻¹⁵ V can be detected.

• Also, since V can be measured with accuracy about 1 part in 10¹⁰, so 2e/h can be measured accurately.

• JJ-based voltage standard (1990):

1 V \equiv the voltage that produces ν =483,597.9 GHz (exact)

• advantage: independent of material, lab, time (similar to the quantum Hall standard).

3) DC+AC: Apply a DC+ rf voltage, then there is a DC current

 $V = V_0 + \upsilon \cos \omega t$ $j = j_0 \sin \left[\frac{2e}{\hbar} \left(V_0 t + \frac{\upsilon}{\omega} \sin \omega t \right) + \delta_0 \right]$ $= j_0 \sum_n (-1)^n J_n \left(\frac{2e\upsilon}{\hbar\omega} \right) \sin \left(\frac{2eV_0}{\hbar} t - n\omega t + \delta_0 \right)$ $\Rightarrow \text{ there is DC current at } V_0 = n \frac{\hbar\omega}{2e}$

° 2*e*

Another way of providing a voltage standard

SQUID (Superconducting QUantum Interference Device)

$$j = j_0 \sin \delta_a + j_0 \sin \delta_b$$

= $2j_0 \cos \left(\frac{\delta_a - \delta_b}{2}\right) \sin \left(\frac{\delta_a + \delta_b}{2}\right)$
Similar to $\oint \vec{A} \cdot d\vec{\ell} = -\frac{\hbar c}{2e} \oint \nabla \theta \cdot d\vec{\ell}$
We now have $\frac{2e}{\hbar c} \int_{C_1} \vec{A} \cdot d\vec{\ell} = \theta_{b1} - \theta_{a1}$
 $\frac{2e}{\hbar c} \int_{C_2} \vec{A} \cdot d\vec{\ell} = \theta_{a2} - \theta_{b2}$
 $\Rightarrow \delta_a - \delta_b = \frac{2e}{\hbar c} \oint_C \vec{A} \cdot d\vec{\ell} = 2\pi \frac{\phi}{\phi_0}$
 $\therefore j_{max} = 2j_0 \left| \cos \left(\frac{2\pi}{2} \frac{\phi}{\phi_0}\right) \right|$ The current with area 1 change from

The current of a SQUID with area 1 cm² could change from max to min by a tiny Δ H=10⁻⁷ gauss!

Super-sentitive photon detector

Transition edge sensor

鈽 240

科學人,2006年12月