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• counting of states

• Fermi energy, Fermi surface

• thermal property: heat capacity

• transport property 

• electrical conductivity

• Hall effect

• thermal conductivity

• In the free electron model, there is no lattice, and no electron-electron 

interaction, but it gives nice result on electron heat capacity, electric/ 

thermal conductivity… etc.

• Free electron model is most accurate for alkali metals.



Early history of solid state physics 
(Ref: Chap 4 of 半導體的故事, by 李雅明)

Electron

1897 – Thomson discovered electron

1899 – Drude theory of classical electron gas, 

explained Wiedemann-Franz law

1924 – Bose-Einstein statistics, de Broglie wave

1925 – Pauli exclusion principle 

1926 – Fermi-Dirac statistics

(1925,6 – Heisenberg/Schrodinger theory)

1927 – Electron diffraction by crystal (Davisson 

and Germer; G.P. Thomson) 

1927 – Sommerfeld’s quantum theory of metal

Atomic crystal

1878 – Crookes, Cathode ray

1895 – Rontgen, x-ray

1908 – Einstein model of 

specific heat

1910 – Debye model, T3 law 

1912 – von Laue, x-ray 

diffraction by crystal



…

L. Hoddeson et al, Out of the crystal maze, p.104



• Free electron, plane wave:

(1) “Box” BC

k = π/L, 2π/L, 3π/L…

2 2( ) , ( ) / 2ikx ikxx Ae Be k k m    

(2) Periodic BC (PBC)

k = ±2π/L, ±4π/L, ±6π/L…

Counting of states: Quantization of k in a 1-dim box

Advantage: 
allows travelling 

waves
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Free electron in a 3-dim box
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Quantization of k in a 3-dim box

box BC periodic BC

• Different BCs give the same Fermi wave vector and Fermi energy

box BC periodic BC

• Each point can have 2 electrons (because of spin). After filling in 

N electrons, the result is a spherical sea of electrons called the 

Fermi sphere. Its radius is called the Fermi wave vector, and the 

energy of the outermost electron is called the Fermi energy.
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Connection between electron density and Fermi energy
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• For K, the electron density n=1.4×1028 m-3, therefore
193.40 10 2.12 eVF J   10.746Fk A

• kF is of the order of a-1. 

• εF is of the order of the atomic energy levels.

Fig from Baggioli’s paper
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• The Fermi temperature is of the order of 104 K
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Fermi temperature and Fermi velocity
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• For a 3D Fermi sphere,
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Density of states D(ε) (DOS,態密度)
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• D(ε)dε is the number of states within the 
energy surfaces of ε and ε+dε
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• Free electron DOS (per unit volume) in 1D, 2D, and 3D

• Multiple bound states in a 2D box with finite thickness

z

⊥
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Examples of low-dimensional electron system

Poly-
acetylene

Graphene

Fe chains on 
Pb surface

Quantum well
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• counting of states

• Fermi energy, Fermi surface

• thermal property: heat capacity

• transport property 

• electrical conductivity

• Hall effect

• thermal conductivity
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• Electron number

T=0 T=0

• Electron energy

T=0 T=0
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• From summation to integral
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• From k-integral to E-integral

To calculate internal energy, we need to know the following:
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Hotel rooms

money
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Electronic heat capacity, a heuristic argument

• Energy absorbed by the electrons,

U(T)U(0) ～ N (kBT )

=N (kBT)2/EF

• Heat capacity Ce = dU /dT

(per mole) ～ 2R kBT /EF

= 2R T /TF

A factor of T/TF smaller than classical result 3R/2.

• T /TF ～ 0.01: Electron heat capacity is negligible compared to phonon’s.

• Only the electrons near Fermi surface are excited by thermal energy kBT.

Number of excited electrons is roughly 

N = N (kBT / EF)
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A better 

result,
(see Kittel p.142)



eC

T
 

• In general C = Ce + Cp

= T + aT 3

Ce is important only at very low T.
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• counting of states

• Fermi energy, Fermi surface

• thermal property: heat capacity

• transport property 

• electrical conductivity

• Hall effect

• thermal conductivity
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Electrical transport (q=e<0)

Classical view

• If these two types of scatterings are not related, then

scattering rates can be added up:

 Matthiessenns rule
1 1 1

+     
( )i ph T  



   at steady state

e e

e

d v v
m eE m

dt
e

v E
m




  

  

 



• Current density (n is electron density)
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Electric 
conductivity

• Electric resistance comes from electron scattering with 
defects and phonons.

Relaxation 
(scattering) 

time
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Drift velocity

弛豫時間

漂移速度

導電率



Semi-classical view

• Center of Fermi sphere is shifted by Δk

• One can show that when Δk<<kF, V沒重疊/V重疊～3/2(Δk/kF).

• Therefore, the number of electrons away from equilibrium is about

(Δk/kF)Ne, or (vd/vF)Ne 

• Semiclassical view vs classical view:
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• vF vs vd (differ by 109 !)

• (vd /vF) Ne vs Ne

The results are the same, but the microscopic pictures are very different:
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• Cu at room temp . 

Electron density →  = m/ρne2 = 2.5×10-14 s

81.7 10 m   
328105.8  mn

Calculate the scattering time  from measured resistivity ρ

• Fermi velocity of copper:

∴ mean free path  = vF = 40 nm.

16106.1  ms

• For very pure Cu crystal at 4K, the resistivity reduces by a factor of 105, 

which means that  increases by the same amount ( = 0.4 cm!).                           

This cannot be explained using classical theory.

Residual resistance 
at T=0

dirty

clean

K

• For a crystal without any defect, the only resistance comes 

from phonon. Therefore, at very low T, the electron mean 

free path should approach infinity.
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剩餘電阻

Why the ions do not 
block electrons?
See next chapter
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Hall effect (1879)

Classical view:

(in 2-dimension)
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One can determine electron density 
n by measuring the Hall coefficient.

Positive Hall coefficient?
Can’t be explained by free electron theory. 

Band theory (next chap) is required.

Hall coefficient
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classical

quantum

A surprising discovery: Quantum Hall effect (1980)

• h/e2=25812.80745 Ω  exact (1990)

• This result is independent of the shape/size of sample.

optional

1985
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An accurate and stable resistance standard (1990)

optional
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Offers one of the most accurate way to determine the Planck constant h.

Update (2019): the values of c,h,e are now defined (therefore exact).



Thermal conduction in metal
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• Both electron and phonon can carry thermal energy 

(Electrons dominate in metal).

• Similar to electrical conduction, only the electrons near 

the Fermi energy can contribute to the thermal current.
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 Heat capacity 
per unit volume
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Thermal conductivity



• Wiedemann-Franz law (1853)

273K
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K
LT


K/σ~T is discovered by 

L. Lorenz (1872)
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= 2.45×10-8 W-ohm/K2

Lorenz number L

κ/σ has approximately the same value for 
different metals at the same temperature
(a good electrical conductor is also a good 
thermal conductor.)



Free-electron model can explain

• Electron heat capacity

• Electrical conductivity

• Thermal conductivity 

• Magnetic susceptibility

• Hall effect

However, it fails to explain

• Why there is insulator

• Positive Hall coefficient

• …

Next step, take lattice into account.

Note: Is electron-electron interaction important?

Not really for many materials (see Chap 14). But when 

it’s important, the physics behind is interesting .
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