Free electron Fermi gas (Sommerfeld, 1928)

- counting of states
 - Fermi energy, Fermi surface
- thermal property: heat capacity
- transport property
 - electrical conductivity
 - Hall effect
 - thermal conductivity

• In the free electron model, there is no lattice, and no electron-electron interaction, but it gives nice result on electron heat capacity, electric/ thermal conductivity... etc.

• Free electron model is most accurate for alkali metals.

Early history of solid state physics (Ref: Chap 4 of 半導體的故事, by 李雅明)

Atomic crystal

- 1878 Crookes, Cathode ray
- 1895 Rontgen, x-ray
- 1908 Einstein model of

specific heat

- 1910 Debye model, T³ law
- 1912 von Laue, x-ray

diffraction by crystal

Electron

- 1897 Thomson discovered electron
- 1899 Drude theory of classical electron gas,
- explained Wiedemann-Franz law
- 1924 Bose-Einstein statistics, de Broglie wave
- 1925 Pauli exclusion principle
- 1926 Fermi-Dirac statistics
- (1925,6 Heisenberg/Schrodinger theory)
- 1927 Electron diffraction by crystal (Davisson

and Germer; G.P. Thomson)

1927 – Sommerfeld's quantum theory of metal

Sommerfeld does not seem to have

asked why the ions did not influence the electrons between collisions, or why the effects arising from motion of the ions could be neglected. As Bethe recalls, "he didn't even care terribly much why the electrons were free, which I thought was a very important thing to know."⁸⁹ Neglect of the ions also disturbed other physicists, including Heisenberg and Frenkel;⁹⁰ Schottky wrote to Sommerfeld that "to assume a field free condition inside a metal appears to me to be too specialized for the problem."⁹¹ Sommerfeld was aware of these problems, but, as Peierls reflected recently, he was optimistic that in one way or another they would be resolved.⁹²

L. Hoddeson et al, Out of the crystal maze, p.104

Counting of states
 Heat capacity
 Electron transport
 Thermal transport

Counting of states: Quantization of *k* in a 1-dim box

- Free electron, plane wave: $\psi(x) = Ae^{ikx} + Be^{-ikx}$, $\varepsilon(k) = \hbar^2 k^2 / 2m$
 - (1) "Box" BC

(2) Periodic BC (PBC)

Counting of states

Heat capacity

Electron transport

У

Thermal transport

Free electron in a 3-dim box

$$\begin{pmatrix} -\frac{\hbar^2}{2m} \nabla^2 + 0 \end{pmatrix} \psi(\vec{r}) = \varepsilon \psi(\vec{r})$$
separable, assume

$$\psi(\vec{r}) = \phi_x(x)\phi_y(y)\phi_z(z)$$
then

$$\begin{pmatrix} \frac{d^2}{dx^2}\phi_x(x) + k_x^2\phi_x(x) = 0, \\ \frac{d^2}{dy^2}\phi_y(y) + k_y^2\phi_y(y) = 0, \\ \frac{d^2}{dz^2}\phi_z(z) + k_z^2\phi_z(z) = 0, \\ \frac{d^2}{dz}\phi_z(z) + k_z^2\phi_z(z) =$$

Quantization of *k* in a 3-dim box

• Each point can have 2 electrons (because of spin). After filling in *N* electrons, the result is a spherical sea of electrons called the Fermi sphere. Its radius is called the Fermi wave vector, and the energy of the outermost electron is called the Fermi energy.

• Different BCs give the same Fermi wave vector and Fermi energy

box BC
$$N = 2\frac{1}{8} \frac{(4\pi/3)k_F^3}{(\pi/L)^3}$$
 periodic BC $N = 2\frac{(4\pi/3)k_F^3}{(2\pi/L)^3}$

• For K, the electron density $n=1.4\times10^{28}$ m⁻³, therefore

 $k_F = 0.746 A^{-1}$ $\varepsilon_F = 3.40 \times 10^{-19} J = 2.12 \text{ eV}$

- k_F is of the order of a^{-1} .
- ε_F is of the order of the atomic energy levels.

Electron transport Thermal

Thermal transport

Fermi temperature and Fermi velocity

$$\varepsilon_F = k_B T_F = \frac{m}{2} v_F^2$$

also, $\hbar k_F = m v_F$

\bullet The Fermi temperature is of the order of $10^4~\text{K}$

ELEMENT	r_s/a_0	E _F	T_F	k _F	v _F
Li	3.25	4.74 eV	$5.51 \times 10^4 \text{ K}$	$1.12 \times 10^8 \text{ cm}^{-1}$	1.29×10^8 cm/sec
Na	3.93	3.24	3.77	0.92	1.07
K	4.86	2.12	2.46	0.75	0.86
Rb	5.20	1.85	2.15	0.70	0.81
Cs	5.62	1.59	1.84	0.65	0.75
∼ Cu	2.67	7.00	8.16	1.36	1.57
/ Ag	3.02	5.49	6.38	1.20	1.39
- Au	3.01	5.53	6.42	1.21	1.40
					2.25

Counting of states

Heat capacity

Density of states D(ε) (DOS, 態密度)

• $D(\varepsilon)d\varepsilon$ is the number of states within the energy surfaces of ε and $\varepsilon+d\varepsilon$

$$D(\varepsilon)d\varepsilon = \frac{2\int_{shell} d^3k}{\Delta^3 k}, \ \Delta^3 k = \left(\frac{2\pi}{L}\right)^3$$
$$2\int \frac{d^3k}{\Delta^3 k} h(\varepsilon_{\vec{k}}) = \int d\varepsilon D(\varepsilon)h(\varepsilon)$$

• For a 3D Fermi sphere,

$$D(\varepsilon)d\varepsilon = 2\int_{shell} \frac{d^3k}{(2\pi/L)^3}$$
$$= 2\frac{4\pi k^2 dk}{(2\pi/L)^3}$$

$$\varepsilon(\vec{k}) = \frac{\hbar^2 k^2}{2m}$$

$$\Rightarrow D(\varepsilon) = \frac{V}{2\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} \sqrt{\varepsilon}$$

Thermal transport

•	•	•	•	•	•	•	•	•	•			•	•		•	•	•	•	•	•		•	•		•
		Cou	nting	of st	ates			He	at c	ара	city			E	ectro	n tra	nspo	rt			Т	her	mal	tran	sport

• Free electron DOS (per unit volume) in 1D, 2D, and 3D

• Multiple bound states in a 2D box with finite thickness

Heat capacity

Thermal transport

Examples of low-dimensional electron system

Polyacetylene

Fe chains on Pb surface

Graphene

Quantum well

- counting of states
 - Fermi energy, Fermi surface
- thermal property: heat capacity
- transport property
 - electrical conductivity
 - Hall effect
 - thermal conductivity

To calculate internal energy, we need to know the following:

• Electron number

$$T=0 \qquad N=2\sum_{\text{filled }\vec{k}} 1 \qquad T \neq 0 \qquad N=2\sum_{\vec{k}} f(E_k)$$

• Electron energy

$$T=0 \qquad U(0) = 2\sum_{\text{fill} \vec{k}} E_k \quad T = 0 \qquad U(T) = 2\sum_{\vec{k}} f(E_k)E_k$$

• From summation to integral

$$\sum_{\vec{k}} f(\vec{k}) \cong \int \frac{d^3k}{\Delta^3 k} f(\vec{k}) \text{ in solid state}$$

$$\Delta^3 k = \left(\frac{2\pi}{L}\right)^3$$

• From *k*-integral to *E*-integral

$$2\int \frac{d^3k}{\Delta^3 k} f(\varepsilon_{\vec{k}}) = \int d\varepsilon D(\varepsilon) f(\varepsilon)$$

• Heat capacity

•

• • • • • • Thermal transport

important

į.

Therefore,
$$2\sum_{k} f(E_{\bar{k}}) = 2\int \frac{d^{3}k}{\Delta^{3}\bar{k}} f(E_{\bar{k}}) = \int dED(E)f(E)$$

where $f(E) = \frac{1}{e^{(E-\mu)/kT} + 1}$
 μ : chemical potential $(f(\mu) = 1/2)$
 $\begin{cases} \mu(T = 0K) = E_{F} \\ \mu(T > 0K) < E_{F} \text{ in 3-dim} \end{cases}$
 $N = 2\int \frac{d^{3}k}{(2\pi/L)^{3}} \xrightarrow{T \neq 0} \int dED(E)f(E,T)$
 $\beta \#$
 $U(T) = 2\int \frac{d^{3}k}{(2\pi/L)^{3}} E(\bar{k}) \xrightarrow{T \neq 0} \int dED(E)f(E,T)E$
(a)
 $D(e) f(e,T)$
 $Occupation$
 $D(f(e,T)) = f(e,T)$
 $f(e,T)$
 $f(e,$

Electronic heat capacity, a heuristic argument

Heat capacity

• Only the electrons near Fermi surface are excited by thermal energy k_BT . Number of excited electrons is roughly

 $\Delta N = N \left(k_B T / E_F \right)$

Counting of states

Electron transport

Thermal transport

A factor of T/T_F smaller than classical result 3R/2.

A better result, $C_e = \frac{\pi^2}{2} N k_B \frac{T}{T_F}$ (see Kittel p.142)

• $T/T_F \sim 0.01$: Electron heat capacity is negligible compared to phonon's.

 $\gamma =$

$\frac{C_e}{T}$	Li 1.63 0.749 2.18 Na 1.38 1.094 1.26	Be 0.17 0.500 0.34 Mg 1.3 0.992 1.3	Ta (Fron therm	ble 2	Experim lations k tive mas Calcu m _{th}	ental a capacit indly fu ss is def Obser ulated fr /m = (or the second	nd free ty constant rmished ined by wed γ in ee electr bserved	electro ant γ of by N. I Eq. (38 mJ mo on γ in γ)/(free	n values f metals Phillips 8). I ⁻¹ K ⁻² . mJ mol electroi	and N. 1 $^{-1} K^{-2}$ n γ).	e tronic f	neat	B AI 1.35 0.912 1.48	C Si	N P
	K 2.08 1.668 1.25	Ca 2.9 1.511 1.9	Sc 10.7	Ti 3.35	V 9.26	Cr 1.40	Mn (γ) 9.20	Fe 4.98	Co 4.73	Ni 7.02	Cu 0.695 0.505 1.38	Zn 0.64 0.753 0.85	Ga 0.596 1.025 0.58	Ge	As 0.19
	Rb 2.41 1.911 1.26	Sr 3.6 1.790 2.0	Y 10.2	Zr 2.80	Nb 7.79	Mo 2.0	Tc —	Ru 3.3	Rh 4.9	Pd 9.42	Ag 0.646 0.645 1.00	Cd [°] 0.688 0.948 0.73	In 1.69 1.233 1.37	Sn (w) 1.78 1.410 1.26	Sb 0.11
	Cs 3.20 2.238 1.43	Ba 2.7 1.937 1.4	La 10.	Hf 2.16	Ta 5.9	W 1.3	Re 2.3	Os 2.4	lr 3.1	Pt 6.8	Au 0.729 0.642 1.14	Hg (α) 1.79 0.952 1.88	TI 1.47 1.29 1.14	Pb 2.98 1.509 1.97	Bi 0.008

Counting of states
 Heat capacity
 Electron t

Electron transport Thermal transport

- counting of states
 - Fermi energy, Fermi surface
- thermal property: heat capacity
- transport property
 - electrical conductivity
 - Hall effect
 - thermal conductivity

- Electric resistance comes from electron scattering with defects and phonons.
- If these two types of scatterings are not related, then scattering rates can be added up:

$$\frac{1}{\tau} = \frac{1}{\tau_i} + \frac{1}{\tau_{ph}(T)} \quad \text{(Matthiessenns rule)}$$

• Current density (*n* is electron density)

$$\vec{j} = (-e)n\langle \vec{v} \rangle = \frac{ne^2\tau}{m}\vec{E} = \sigma\vec{E}$$
 (Ohmn's law)

Electric 導電率 conductivity $\sigma = \frac{ne^2\tau}{m}$

Heat capacity

Semi-classical view

$$\hbar \frac{d\vec{k}}{dt} = -e\vec{E}$$

$$\Rightarrow \Delta \vec{k} = \vec{k}(\tau) - \vec{k}(0) = -\frac{e}{\hbar} \vec{E}\tau$$

• Center of Fermi sphere is shifted by Δk

Drift velocity $m\vec{v}_d = \hbar\Delta\vec{k}$

- One can show that when $\Delta k << k_F$, $V_{2\pm}/V_{\pm} \sim 3/2(\Delta k/k_F)$.
- Therefore, the number of electrons away from equilibrium is about

 $(\Delta k/k_F)N_e$, or $(v_d/v_F)N_e$

$$j = (-e) \left(\frac{v_d}{v_F} n \right) v_F = -env_d \qquad \vec{v}_d = \hbar \Delta \vec{k} / m \\ = -(e\tau / m) \vec{E} \qquad \therefore \vec{j} = \frac{ne^2 \tau}{m} \vec{E}$$

• Semiclassical view vs classical view:

The results are the same, but the microscopic pictures are very different:

• $v_F vs v_d$ (differ by 10⁹!) Note: $v_d \simeq 10^{-4} \frac{m}{s}$ • $(v_d/v_F) N_e vs N_e$

Calculate the scattering time τ from measured resistivity ρ

• Cu at room temp $\rho = 1.7 \times 10^{-8} \Omega m$ Electron density $n = 8.5 \times 10^{28} m^{-3} \rightarrow \tau = m/\rho ne^2 = 2.5 \times 10^{-14} s$

- Fermi velocity of copper: $1.6 \times 10^6 ms^{-1}$
- \therefore mean free path $\ell = v_F \tau = 40$ nm.

• For very pure Cu crystal at 4K, the resistivity reduces by a factor of 10^5 , which means that ℓ increases by the same amount ($\ell = 0.4$ cm!).

This cannot be explained using classical theory.

• For a crystal without any defect, the only resistance comes from phonon. Therefore, at very low *T*, the electron mean free path should approach infinity.

6.0r

5.0

dirt

20

15

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•				•
		Cou	nting	of st	ates			He	eat c	ара	city			E	lectro	on tra	nspc	ort		The	ern	nali	ran	sport

Comparison of observed Hall coefficients with free electron theory

Metal	Method	Experimental R_{H} , in 10^{-24} CGS units	Assumed carriers per atom	Calculated -1/nec, in 10 ⁻²⁴ CGS units
T:				
ы	CONV.	-1.89	1 electron	-1.46
Na	helicon	-2.619	1 electron	-2.603
	conv.	-2.3		
K	helicon	-4.946	1 electron	-4.944
	conv.	-4.7		
Rb	conv.	-5.6	1 electron	-6.04
Cu	conv.	-0.6	1 electron	-0.82
Ag	conv.	-1.0	1 electron	-1.19
Au	conv.	-0.8	1 electron	-1.18
Be	conv.	+2.7		_
Mg	conv.	-0.92	_	_
AI	helicon	+1.136	1 hole	+1.135
In	helicon	+1.774	1 hole	+1.780
				\searrow

Hall coefficient
$$R_{H} \equiv \frac{E_{y}}{j_{x}B} = -\frac{1}{ne}$$

Positive Hall coefficient?

Can't be explained by free electron theory. Band theory (next chap) is required.

One can determine electron density *n* by measuring the Hall coefficient.

- This result is independent of the shape/size of sample.
- h/e²=25812.80745 Ω ← exact (1990)

optional

An accurate and stable resistance standard (1990)

FIG. 26. Time dependence of the 1- Ω standard resistors maintained at the different national laboratories.

FIG. 27. Ratio R_H/R_R between the quantized Hall resistance R_H and a wire resistor R_R as a function of time. The result is time dependent but independent of the Hall device used in the experiment.

Offers one of the most accurate way to determine the Planck constant *h*. Update (2019): the values of c,h,e are now defined (therefore exact). Counting of states

Heat capacity

Thermal transport

Thermal conduction in metal

Both electron and phonon can carry thermal energy

(Electrons dominate in metal).

• Similar to electrical conduction, only the electrons near the Fermi energy can contribute to the thermal current.

 $c_V = \frac{\pi^2}{2} n k_B \frac{k_B T}{\varepsilon_F}$ Heat capacity per unit volume

Counting of states

Heat capacity

Electron transport

• Wiedemann-Franz law (1853)

 κ/σ has approximately the same value for different metals at the same temperature (a good electrical conductor is also a good thermal conductor.)

The thermal conductivities of some materials at room temperature										
Material 🔹 k, w/m°C 📑										
Diamond		2300								
Silver		430								
Copper		400								
Gold		320								
Aluminium		240								
Iron		80								
Glass		0.8								
Brick		0.7								
Water		0.61								
Wood		0.17								
Helium		0.15								
Air		0.026	2.90							

K/
$$\sigma$$
~T is discovered by L. Lorenz (1872) $\frac{K}{\sigma} = LT$

$$\frac{K}{\sigma} = \frac{\frac{\pi^2}{3} \frac{nk_B^2 T}{m} \tau}{\frac{ne^2 \tau}{m}} = \frac{\frac{\pi^2}{3} \left(\frac{k_B}{e}\right)^2}{3\left(\frac{k_B}{e}\right)^2} T$$

$$= 2.45 \times 10^{-8} \text{ W-ohr}$$

 $= 2.45 \times 10^{-8}$ W-ohm/K²

element	$\kappa \left(W/m \cdot K \right)$	$L (10^{-8} \text{ V}^2/\text{K}^2)$
Ag	436	2.34
Al	236	2.10
Au	318	2.39
Ca	186	2.13
Cs	37	2.5
Cu	404	2.27
Fe	80	2.57
K	98	2.24
Li	65	2.05
Mg	151	2.29
Na	142	2.23
Ni	93	2.19
Pb	36	2.50
Pd	72	2.57
Pt	72	2.59
Rb	56	2.30
Ru	131	2.52
Sn	62	2.5
Zn	127	2.60 273k

Free-electron model can explain

- Electron heat capacity
- Electrical conductivity
- Thermal conductivity
- Magnetic susceptibility
- Hall effect

However, it fails to explain

- Why there is insulator
- Positive Hall coefficient
- ...

Next step, take lattice into account.

Note: Is electron-electron interaction important? Not really for many materials (see Chap 14). But when it's important, the physics behind is interesting .