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Free electron Fermi gas (Sommerfeld, 1928) ‘a

M.C. Chang

« counting of states

* Fermi energy, Fermi surface
* thermal property: heat capacity
e transport property

» electrical conductivity

« Hall effect

 thermal conductivity

* In the free electron model, there is no lattice, and no electron-electron
interaction, but it gives nice result on electron heat capacity, electric/
thermal conductivity... etc.

* Free electron model is most accurate for alkali metals.



Early history of solid state physics
(Ref: Chap 4 of (2Bl =, by Z2Ft])

Atomic crystal Electron

1878 — Crookes, Cathode ray 1897 — Thomson discovered electron

1895 — Rontgen, x-ray 1899 — Drude theory of classical electron gas,
1908 — Einstein model of explained Wiedemann-Franz law

specific heat 1924 — Bose-Einstein statistics, de Broglie wave
1910 — Debye model, T3 law 1925 — Pauli exclusion principle

1912 — von Laue, x-ray 1926 — Fermi-Dirac statistics

diffraction by crystal (1925,6 — Heisenberg/Schrodinger theory)

1927 — Electron diffraction by crystal (Davisson
and Germer; G.P. Thomson)

1927 — Sommerfeld’'s quantum theory of metal



Sommerfeld does not seem to have

asked why the 1ons did not influence the electrons between collisions, or why the
effects arising from motion of the ions could be neglected. As Bethe recalls, ““he
didn’t even care terribly much why the electrons were free, which [ thought was a
very important thing to know.” Neglect of the ions also disturbed other physicists,
including Heisenberg and Frenkel;” Schottky wrote to Sommerfeld that “to
assume a field free condition inside a metal appears to me to be too specialized for
the problem.””' Sommerfeld was aware of these problems, but, as Peierls reflected
recently, he was optimistic that in one way or another they would be resolved.*

L. Hoddeson et al, Out of the crystal maze, p.104



Counting of states

Counting of states: Quantization of k in a 1-dim box

- Free electron, plane wave: w(x)= Ae"™ + Be™, (k) =h’k* / 2m

(1) “Box” BC (2) Periodic BC (PBC)
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Counting of states

Free electron in a 3-dim box R
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Quantization of k in a 3-dim box

box BC periodic BC

T TR
N

---------

a ky b

» Each point can have 2 electrons (because of spin). After filling in
N electrons, the result is a spherical sea of electrons called the
Fermi sphere. Its radius is called the Fermi wave vector, and the
energy of the outermost electron is called the Fermi energy.

* Different BCs give the same Fermi wave vector and Fermi energy

1 (47r/3)k% L (47 /3) k3.
—_ er|0d|C BC N=2> = ¢ =
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Connection between electron density and Fermi energy

Fermi Surface

* For K, the electron density n=1.4x10%22 m-3, therefore
k,=0.746 A" &, =3.40x10""J =2.12eV

* k- is of the order of a'.

* £ is of the order of the atomic energy levels.

Fig from Baggioli’s paper



Counting of states

Heat capacity

[ J ([ ] ([ ] [ J ([ ]
Electron transport

Fermi temperature and Fermi velocity

m

. . 2
Ep = kBTF =V

2

Thermal transport

ELEMENT r /aq

L:
Na
K
Rb
Cs
Cu
' Ag
- Au

Ep T kg Vg
325  4.74¢V 551 x 10*K  1.12 x 108cm™!  1.29 x 10® cm/sec
393 3.24 377 0.92 1.07
486  2.12 2.46 0.75 0.86
5.20 1.85 2.15 0.70 0.81
5.62 1.59 1.84 0.65 0.75
2.67 7.00 8.16 [.36 1.57
3.02 5.49 6.38 1.20 1.39
3.01 5.53 6.42 1.40

121
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Density of states D(g) (DOS, fEZ5 %)

* D(¢)de is the number of states within the

energy surfaces of € and e+dg k, |
3 g n ] ] I.(. [ ] K.+ 8K
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* For a 3D Fermi sphere,

3 2712
D(g)ds =2 d k 3 ey =Tk
shell (277 / L) 2m
Ark>dk v (2mY"”
=2 = D(¢) = \/;
(2x /L) (£) 27:2(;22)
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* Free electron DOS (per unit volume) in 1D, 2D, and 3D

% (b) 2D (¢c) 3D

n(k)

nolE) =TT

E




Counting of states Heat capacity

Poly-
acetylene

Fe chains on
Pb surface

Graphene
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Electron transport

Examples of low-dimensional electron system

Quantum well

d=10nm

TENERGY

E‘o el subbands

" (b)

Interfacial
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Thermal transport
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« counting of states

* Fermi energy, Fermi surface
* thermal property: heat capacity
e transport property

« electrical conductivity

« Hall effect

* thermal conductivity



To calculate internal energy, we need to know the following:

 Electron number

=0 N=2 Z 1 T=0 N=22f(Ek)
K

filled k

* Electron energy

T=0 U(0) =2 Z E, TS0 U(T)—ZZ f(EE

fill &

 From summation to integral

Zf(k) j f(k) in solid state A%:(%”T

* From k-integral to E-integral

j CF(e0) = [deD@) /(@)
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Therefore, 22 f(E)=2 d3l_€_
k Ak

1

where /(8) = wnf
' T=0
L : chemical potential ( f(u)=1/ 2) T:»ﬂ\--
,U(T:OK):EF L \
u(T >0K)< E, in 3-dim
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Electronic heat capacity, a heuristic argument

* Only the electrons near Fermi surface are excited by thermal energy kgT.
Number of excited electrons is roughly

AN =N (k;T/ Ep)

» Energy absorbed by the electrons,
U(T)-U(0) ~ AN (kgzT) 3

Jative sc

=N (k,T)/E- =
 Heat capacity C,=dU/dT ; {
(per mole) ~ 2R kgT /E. I\
= 2RTIT; SO N =gl

A factor of T/T. smaller than classical result 3R/2.

2

A better C = r Nk l (see Kittel p.142)
result, © 2 T
F

« T/T- ~ 0.01: Electron heat capacity is negligible compared to phonon'’s.
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3.0
_ % i CIT=208425TT oo™
* In general C=C.,+C ¥ [ , o>
€ P E | Potassium . L
= yT+ aT 3 T 251 ..,..--""‘
£ - " il
] B o
. . (&) -
C.isimportantonly atvery low T. ° L—"" |
"0 0.1 0.2 0.3
T2, in K?
' Table 2 Experimental and free electron values of electronic heat
Ce Li Be capacity constant y of metals B c N
— 1.63 | 0.17 :
V= 0.749 f0:500°| (From compilations kindly furnished by N. Phillips and N. Pearlman. The
T 218 | 034 | thermal effective mass is defined by Eq. (38).

Na | Mg Al |si |e
1.38 1.3 Observed y in mJ mol' K =, 1.35
1.094 | 0.992 Calculated free electron y in mJ mol-' K- 0.912 |
1.26 1.3 m,,/m = (observed y)/(free electron y). 1.48
K Ca Sc Ti v Cr Mn(y)] Fe Co Ni Cu Zn Ga Ge As
2.08 29 10.7 3.35 9.26 140 | 9.20 | 4.98 4.73 7.02 | 0.695 | 0.64 0.596 0.19
1.668 | 1.511 0.505 § 0.753 | 1.025
1.25 1.9 1.38 ] 0.85 0.58
Rb Sr 4 Zr Nb Mo Tc Ru Rh Pd Ag Cd™ |In Sn w | Sb
241 3.6 10.2 2.80 7.79 2.0 — 33 4.9 9.42 0.646 | 0.688 | 1.69 1.78 0.11
1.911 | 1.790 : 0.645 | 0.948 | 1.233 | 1.410
1.26 2.0 1.00 §0.73 1.37 1.26
Cs Ba La Hf Ta w Re Os Ir Pt Au Hg(a)] TI Pb Bi
3.20 2T 10. 2.16 5.9 1.3 2.3 2.4 Sl 6.8 0.729 | 1.79 1.47 2.98 0.008
2.238 | 1.937 0.642 § 0.952 | 1.29 1.509
1.43 1.4 1.14 1.88 1.14 1.97
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e transport property
« electrical conductivity
« Hall effect

 thermal conductivity
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Electrical transport (q=—e<0)

Classical view

— — Relaxation
. M — _eF — m, @ (scattering)
dt T time GUNESSAES]

. er -
— <v> =——F atsteady state  Drift velocity smg s

* Electric resistance comes from electron scattering with
defects and phonons.

* If these two types of scatterings are not related, then
scattering rates can be added up:

1 1
—=—+ (Matthiessenns rule)
T T, T, (T)
» Current density (n is electron density)
2
j=(~e)n <\7> = E=6E (Ohmn's law )
m
Electric ne’r

2 conductivity
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Semi-classical view V(‘f)yn V'(K)y

h% = —¢F
dt

= Ak = k(1) - k(0) = —%Er

» Center of Fermi sphere is shifted by Ak
Drift velocity mv, = Ak
* One can show that when Ak<<kg, V., g/ Vam~ 3/2(AKIKE).
» Therefore, the number of electrons away from equilibrium is about
(Ak/ke)N,, or (Vg/ve)N,
J= (—8)(V—dnij =—env, V¥, =hAk/m

Vr = - ne’r =
=—(etr/ m)E S =

E

m
 Semiclassical view vs classical view:

The results are the same, but the microscopic pictures are very different:

* v vs v, (differ by 1091) Note: vy = 10~*

* (vy/vVe) Ny vs N, >
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Calculate the scattering time t from measured resistivity p

« Cu atroomtemp p=1.7x10"Qm
Electron density n=8.5x10"m> — t=mlpne? =2.5x104s

« Fermi velocity of copper: 1.6x10%ms™

.. mean free path ¢ = vt =40 nm.

* For very pure Cu crystal at 4K, the resistivity reduces by a factor of 10°,

which means that ¢/ increases by the same amount (¢ = 0.4 cm!).

This cannot be explained using classical theory.

* For a crystal without any defect, the only resistance comes

from phonon. Therefore, at very low T, the electron mean | p dirt
|
free path should approach infinity. <
Why the ions do not m 1 m | _
block electrons? = e :Jr e 7 T) a0l
See next chapter i\ ph : clea
Residual resistance — L.

at T=0 %U@%g@%gﬁ % 5 10 i5 20



Counting of states Heat capacity Electron transport
o\
Hall effect (1879) Magnetic B \WVh)
+ E, 1
+ —
i —

<+ Fl'n =N

L ———
4  Magnetic Force
on the Electrons

- - dv O vV
Classical view: m,—=—eE —evx B—m, —

dt T
B=BZ%; dv/dt=0 at steady state

(in 2-dimension)

ml/t eB v, E,
} —eB m/t)\v, E,
Jj =—env . B
E 2 J -
» x| ner ne .x _ .,
Ey _£ m Jy £
ne ner
( B . o m G s BT S22
E =p,j.p =—> EREERES |04
ne’r

. B
B, =Py Py == MR

sites.google.com/site/joshshalleffectcache

v
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Electron transport

Comparison of observed Hall coefficients with free electron theory

Experimental Assumed Calculated
Ry, carriers - 1/nec,
Metal Method in 107* CGS units per atom in 107* CGS units
O O T X 2 S P 1 S T 0 D B S B e T O RO S RS AL SNSRI B 20U TG 8
Li conv. —1.89 1 electron —1.48
Na helicon -2.619 1 electron —2.603
conv. -2.3
K helicon 4 946 1 electron —4.944
conv. 4.7
Rb conv. -56 1 electron —-6.04
Cu conv. -0.6 1 electron -0.82
Ag conv. -1.0 1 electron —-1.19
Au conv. -0.8 1 clectron -1.18
Be conv. +2.7 — —
Mg conv. —0.92 — —
Al helicon +1.136 1 hole +1.135
In helicon +1.774 1 hole +1.780

Hall coefficient
E 1

A

ne

Positive Hall coefficient?
Can’t be explained by free electron theory.
Band theory (next chap) is required.

One can determine electron density
n by measuring the Hall coefficient.
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A surprising discovery: Quantum Hall effect (1980)

, 50 2 4 6 8 10 12 14
[ 1.0
Pox 501 _ Pry
k(¥sq 2] 108 hfe?
I quantum '
2.0 ol
151 4 '
- classical 04
1.0
- H02
UD | J | \ | | DD

Magnetic Field (T)
* This result is independent of the shape/size of sample.

» h/e?=25812.80745 Q < exact (1990)
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An accurate and stable resistance standard (1990)

:;’" L l L 8 4 L J ] L LJ Ij.' \d 'M'w' L) L l I '
.ﬁ
s ek
+ 10+ oMM | ]
" LCIE
o Net
+05¢+ a NRC | 7

3
o

R,/R,

-

64 1970 1976 1982 1988
YEAR TIME (h)

FIG. 26. Time dependence of the 1-{) standard resistors main-

tained at the different national laboratories FIG. 27. Ratio Ry /Ry between the quantized Hall resistance
ined a ]

Ry and a wire resistor Ry as a function of time. The result is
time dependent but independent of the Hall device used in the
experiment.

Offers one of the most accurate way to determine the Planck constant h.

Update (2019): the values of c,h,e are now defined (therefore exact).
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Thermal conduction in metal

» Both electron and phonon can carry thermal energy
(Electrons dominate in metal).

 Similar to electrical conduction, only the electrons near
the Fermi energy can contribute to the thermal current.

2
ok kzT  Heat capacity

c, = .
A &r per unit volume

Thermal conductivity

K= lcvvf
3

\( 7°nk.T
:5 —ﬂ-zng; VF (VFT)

7’ nkéT
=7

3 m

(a) electrical conduction (b) thermal conduction
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Lorenz number L

* Wiedemann-Franz law (1853) 2 nkéT
K/O has approximately the same value for K ? m ¢ 7’ k, ?
different metals at the same temperature o = ne’r = 3| e r

(a good electrical conductor is also a good —
thermal conductor.) m = 2.45x108 W-ohm/K?2

The thermal conductivities of
some materials at room

element Kk (W/m-K) L (1078 V2/K?)

temperature
o 3 2.3
Material - |k, w/m°C - ﬁi‘" f,l}g 1;13
Diamond 2300 Au 5.]3 5:39
Silver 430 Ca 186 2.13
Copper 400 gs 4?}1 —3?;7
u 2.2
L 2 Fe 80 2,57
Aluminium 240 K 98 224
Iron 80 Li 65 2.05
Glass 0.8 Mg 151 2.29
Brick 0.7 Ef‘ ]32 2%3
i ; 2.
Yiater 061 Pb 36 2.50
Wood 0.17 Pd 72 2.57
Helium 0.15 Pt 72 2.59
Air 0.026 ’ Rb 56 2.30
Ru 131 2.52
K/o~T is di db K Sn 62 2.5
o7 IS AISCOVEreaby 2 _ 1 Zn 127 260 273K
L. Lorenz (1872) o




([ ] [ J [ ([ ]
Counting of states

Heat capacity Electron transport

Free-electron model can explain

Electron heat capacity
Electrical conductivity
Thermal conductivity
Magnetic susceptibility
Hall effect

However, it fails to explain

Why there is insulator

Positive Hall coefficient

Next step, take lattice into account.

Note: Is electron-electron interaction important?

Not really for many materials (see Chap 14). But when

it's important, the physics behind is interesting .

([ ] ([ ] [ J ([ ]
Thermal transport



