Introduction to Solid State Physics

Instructor: 張明哲 Textbook: Introduction to Solid State Physics, the 8th ed., by C. Kittel (1916-2019) Grading: homework (40%), midterm exam (30%), final exam (30%) TA: 朱彥儒

Required background: Fourier analysis, quantum physics **References:**

- The Oxford Solid State Basics, by S.H. Simon
- Solid State Physics, by H. Ibach and H. Lüth, the 4th ed.
- Solid State Physics, by N. Ashcroft and D. Mermin (graduate level, but very good!)

Chap 1 Crystal structure

Chap 2 Wave diffraction and the reciprocal lattice

Chap 3 Crystal binding and elastic constants

Chap 4 Phonons I. Crystal vibrations

Chap 5 Phonons II. Thermal properties

Chap 6 Free-electron Fermi gas

Chap 7 Energy bands

Chap 9 Fermi surface and metals

Chap 8 Semiconductor crystals

The scope of solid state physics

Solid state physics studies physical properties of materials

Material	<u>Structure</u>	Shape	Properties
metal semiconductor insulator <i>superconductor</i> <i>magnetic</i> etc	crystal amorphous 非晶 quasicrystal準晶 etc	bulk surface interface nanocluster etc	mechanical thermal electrical magnetic optical etc

Solid state physics = $\{A\} \times \{B\} \times \{C\} \times \{D\} \times \dots$

Always try to understand a physical phenomenon from the microscopic point of view (atoms plus electrons)!

Example of crystal structure

Chap 1 Crystal structure

• A primitive lattice (in 3D) = a set of points with positions at $r = n_1 a_1 + n_2 a_2 + n_3 a_3$ (n_1, n_2, n_3 cover all integers),

 a_1 , a_2 , and a_3 are called primitive (translation) vectors 原始向量

Alternative definition:

 A primitive lattice = a set of points in which every point has exactly the same environment.

Note: A primitive lattice is often called a Bravais lattice. From now on we'll use the latter term (*not* used by Kittel).

• Example of crystal structure

Miller index

Bravais lattice

For example,

Triangular (or hexagonal) lattice

non-Bravais lattice = Bravais lattice + basis 基元

Honeycomb lattice

Honeycomb lattice = triangular lattice + 2-point basis (i.e. overlap of 2 triangular lattices)

A simple way to determine the number of basis points:

Just look around from different atoms and see how many different kinds of environment there are.

Introduction Example of crystal structure Miller index

Unit cell (晶胞)

primitive cell (原始晶胞)

non-primitive cell

- A primitive cell contains only 1 lattice point (the choices are infinite).
- A non-primitive cell contains 2 or more lattice points.
 - For *Bravais* lattice, a unit cell can be primitive or non-primitive
 - For non-Bravais lattice, a unit cell is always non-primitive
- The sizes of a unit cell (a₁. a₂, a₃) are called lattice constants 晶格常數

Miller index

A special primitive cell: Wigner-Seitz (WS) cell

• Method of construction (works in 1D, 2D, 3D)

• The WS cell enclosing a lattice point is the region of space that is closer to that lattice point than to any others.

• Advantage of the WS cell:

It has the same symmetry as the lattice

(symmetry here means translation, inversion, and rotation)

• • • • • • • • • •

Crystal structures of elements

1 H Hydrogen other		2 											2 He Helium hcp				
3 Li Lithium bcc	4 Be Beryllium hcp							ccp (cubic close				5 B Boron other	6 C Carbon other	7 N Nitrogen other	8 O Oxygen other	9 F Fluorine other	10 Ne Neon cop
11 Na Sodium bcc	12 Mg Magnesium hcp	packi							backing) = fcc			13 Al Aluminum cop	14 Si Silicon other	15 P Phosphorus other	16 Sulfur other	17 Cl Chlorine other	18 Ar Argon cop
19 K Potassium bcc	20 Ca Calcium cop	21 Sc Scandium hcp	22 Ti Titanium hcp	23 V Vanadium boc	24 Cr Chromium bcc	25 Mn Marganese bcc	26 Fe Iran boc	27 Co Cobalt hcp	28 Ni Nickel cop	29 Cu Copper cop	30 Zn ^{Zinc} hcp	31 Gallium other	32 Ge Germanium other	33 As Arsenic other	34 Se Selenium other	35 Br Bromine other	36 Kr Krypton cop
37 Rb Rubidium bcc	38 Sr Strontium other	39 Y Yttrium hcp	40 Zr Zirconium hcp	41 Nb Niobium boc	42 Mo Molybdenum bcc	43 TC Technetium hcp	44 Ru Ruthenium hcp	45 Rh Rhodium ccp	46 Pd Palladium ccp	47 Ag Silver cop	48 Cd Cadmium hcp	49 In Indium other	50 Sn _{Tin} other	51 Sb Antimony other	52 Te Tellurium other	53 I lodine other	54 Xe Xenon cop
55 Cs Cesium bcc	56 Ba Barium bcc	57 La Lanthanum dhop	72 Hf Hatnium hcp	73 Ta Tantalum boc	74 W Tungsten bcc	75 Re Rhonium hcp	76 Os ^{Osmium} hcp	77 Ir Iridium ccp	78 Pt Platinum cop	79 Au Gold cop	80 Hg Mercury other	81 TI Thallium hcp	82 Pb Lead ccp	83 Bi Bismuth other	84 Po Polonium pc	85 At Astatine ocp	86 Rn Radon cop
87 Fr Francium bcc	88 Ra Badium bcc	89 Ac Actinium	104 Rf Rutherfordium other	105 Db Dubnium other	106 Sg Seaborgium other	107 Bh Bohrium other	108 Hs Hassium other	109 Mt Meitnerium other	110 Ds Darmstadtium other	111 Rg Roentgenium other	112 Cn Copernicium other	113 Uut Ununtrium other	114 Fl Florovium other	115 Uup Ununpontium other	116 Lv Livermorium other	117 Uus Ununseptium other	118 Uuo Ununoctium other

Note: It's rare to see simple cubic lattice.

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Cerium dhcp	Praseodymium dhop	Nd Neodymium dhcp	Promethium dhcp	Samarium other	Eu Europium bcc	Gd Gadolinium hcp	Tb Terbium hcp	Dy Dysprosium hcp	Ho Holmium hop	Erbium hop	Tm Thulium hcp	Yb Ytterbium ccp	Lu Lutetium hcp
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th Thorium ccp	Protactinium other	U Uranium other	Np Neptunium other	Pu Plutonium other	Americium dhcp	Curium dhcp	Bk Berkelium dhcp	Cf Californium dhcp	Es Einsteinium ccp	Fm Fermium other	Md Mendelevium other	No Nobelium other	Lr Lawrencium other

chemicalstructure.net/portfolio/magnesium-and-aluminum/

- A bcc lattice is a Bravais lattice.
- For convenience of description, we can also treat it as
- a simple cubic lattice with 2-point basis.

Example of crystal structure

2). fcc lattice (Ne, Ar, Kr, Xe, Al, Cu, Ag, Au... etc)

One possible choice of *primitive* vectors

$$\vec{a}_1 = \frac{a}{2} (\hat{x} + \hat{y}),$$

$$\vec{a}_2 = \frac{a}{2}(\hat{y} + \hat{z}),$$
$$\vec{a}_3 = \frac{a}{2}(\hat{z} + \hat{x}).$$

Solid Ar at -189.3 C

- A fcc lattice is also a Bravais lattice.
- It can also be seen as a simple cubic lattice with 4-point basis.

Example of crystal structure

3). hcp structure (Be, Mg... etc)

Figure 22 The hexagonal close-packed structure. The atom positions in this structure do not constitute a space lattice. The space lattice is simple hexagonal with a basis of two identical atoms associated with each lattice point. The lattice parameters a and c are indicated, where a is in the basal plane and c is the magnitude of the axis a_3 of Fig. 14.

Figure 23 The primitive cell has $a_1 = a_2$, with an included angle of 120°. The *c* axis (or a_3) is normal to the plane of a_1 and a_2 . The ideal hcp structure has $c = 1.633 \ a$. The two atoms of one basis are shown as solid circles. One atom of the basis is at the origin; the other atom is at $\frac{211}{332}$, which means at the position $r = \frac{2}{3}a_1 + \frac{1}{3}a_2 + \frac{1}{2}a_3$.

- hcp structure = simple hexagonal lattice + 2-point basis
- Primitive vectors: \mathbf{a}_1 , \mathbf{a}_2 , \mathbf{c} [$\mathbf{c}=2\mathbf{a}\sqrt{(2/3)}$ for hcp, see Prob.5]
- The 2 atoms of the basis are located at

 $\mathbf{d}_1 = 0, \, \mathbf{d}_2 = (2/3) \, \mathbf{a}_1 + (1/3) \, \mathbf{a}_2 + (1/2) \mathbf{c}$

The tightest way to pack spheres in 3D:

- ABCABC ...= fcc
- ABAB ...= hcp
- Other close packed structures: ABABCAB... etc.

Example of crystal structure

Miller index

Viewing from different angles

• Coordination number (配位數) = 12, packing fraction \sim 74% see Prob.6 (Cf: bcc, coordination number = 8, packing fraction \sim 68%)

Example of crystal structure

Kepler's conjecture (1611): The packing fraction of spheres in 3-dim $\leq \pi/\sqrt{18}$ **Does the proof stack up?** (the value of fcc and hcp)

Think peer review takes too long? One mathematician has waited four years to have his paper refereed, only to hear that the exhausted reviewers can't be certain whether his proof is correct. George Szpiro investigates.

Grocers the world over know the most efficient way to stack spheres — but a mathematical proof for the method has brought reviewers to their knees.

(By the way, nobody can show that the crystalline form has the lowest energy.)

Example of crystal structure

4). Diamond structure (C, Si, Ge... etc)

= 2 overlapping fcc lattices (one is displaced along the *main diagonal* by 1/4)

= fcc lattice + 2-point basis, $\mathbf{d}_1 = \mathbf{0}$, $\mathbf{d}_2 = (a/4)(\mathbf{x}+\mathbf{y}+\mathbf{z})$

Very low packing fraction (~36%!) see Prob.6
If the two atoms on the basis are different, then it is called Zincblend (閃鋅) structure (eg. GaAs, ZnS... etc), which is a familiar structure with an unfamiliar name.

Indexing crystal planes: Miller index (*h*,*k*,*l*)

For example, cubic crystals (including bcc, fcc... etc)

- Square bracket [h,k,l] refers to the "direction" $ha_1+ka_2+la_3$, instead of crystal planes!
- For cubic crystals, [h, k, I] direction $\perp (h, k, I)$ planes

- $\{h,k,l\} = (h,k,l)$ -plane + those equivalent to it by crystal symmetry
- <h,k,l>= [h,k,l]-direction + those equivalent to it by crystal symmetry