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Shape

bulk
surface          
interface          
nanocluster  
… etc

The scope of solid state physics
Solid state physics studies physical properties of materials

Structure

crystal        
amorphous  
quasicrystal   
… etc

Solid state physics = {A} × {B} × {C} × {D} ×…

Always try to understand a physical phenomenon from 
the microscopic point of view (atoms plus electrons)!

Material

metal
semiconductor   
insulator          
superconductor  
magnetic
… etc

Properties

mechanical 
thermal 
electrical 
magnetic 
optical          
… etc

非晶質

準晶
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• A primitive lattice = a set of points in which every point has 

exactly the same environment.

• A primitive lattice (in 3D) = a set of points with positions at

r = n1a1+n2a2+n3a3 (n1, n2, n3 cover all integers),

a1, a2, and a3 are called primitive (translation) vectors

Note: A primitive lattice is often called a Bravais lattice.     

From now on we’ll use the latter term (not used by Kittel).

Alternative definition:
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a1

a2

原始向量



Honeycomb lattice =             

triangular lattice + 2-point basis        

(i.e. overlap of 2 triangular lattices)

Triangular (or hexagonal) lattice Honeycomb lattice

a1

a2

basis

Primitive vectors

Bravais lattice non-Bravais lattice
= Bravais lattice + basis

A simple way to determine the number of basis points:
Just look around from different atoms and see how many 
different kinds of environment there are.
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Crystal structure       = Bravais lattice      +   basis of atoms

one atom, or a 
group of atoms

(How to repeat) (What to repeat)

• Every crystal has a corresponding Bravais lattice and a basis.

Note: Lattice is a math term, while crystal is a physics term.

晶格 晶體
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non-primitive cell

Unit cell (晶胞)

• A primitive cell contains only 1 lattice point (the choices are infinite).                          

• A non-primitive cell contains 2 or more lattice points. 

– For Bravais lattice, a unit cell can be primitive or non-primitive

– For non-Bravais lattice, a unit cell is always non-primitive

primitive cell (原始晶胞)

Primitive vectors
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• The sizes of a unit cell ( ଵ ଶ ଷ) are called lattice constants 

晶格常數



A special primitive cell: Wigner-Seitz (WS) cell

• Method of construction (works in 1D, 2D, 3D)

• Advantage of the WS cell:

It has the same symmetry as the lattice

(symmetry here means translation, inversion, and rotation)

• The WS cell enclosing a lattice point is the region of space 

that is closer to that lattice point than to any others.
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Crystal structures of elements

chemicalstructure.net/portfolio/magnesium-and-aluminum/
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ccp (cubic close 
packing) = fcc

Note: It’s rare to see simple cubic lattice.



1). bcc lattice (Li, Na, K, Rb, Cs… etc)

• A bcc lattice is a Bravais lattice. 

• For convenience of description, we can also treat it as 

a simple cubic lattice with 2-point basis.

conventional unit cell   
(慣用晶胞, non-primitive)

a
lattice 
constant

One possible choice 
of   primitive vectors
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2). fcc lattice (Ne, Ar, Kr, Xe, Al, Cu, Ag, Au… etc)

• A fcc lattice is also a Bravais lattice.

• It can also be seen as a simple cubic lattice with 4-point basis.

A conventional 
unit cell (non-
primitive)

A primitive 
unit cell

a

One possible choice 
of primitive vectors
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Solid Ar at -189.3 C 
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3). hcp structure (Be, Mg… etc)

2 overlapping 
“simple 
hexagonal 
lattices”

2-point basis

• hcp structure = simple hexagonal lattice + 2-point basis

• Primitive vectors: a1, a2, c [ c=2a√ (2/3) for hcp, see Prob.5]

• The 2 atoms of the basis are located at                             

d1=0, d2 = (2/3) a1+ (1/3) a2+(1/2)c
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The tightest way to pack spheres in 3D:

– ABCABC …= fcc

– ABAB …= hcp

– Other close packed structures: ABABCAB… etc.
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• Coordination number (配位數) = 12, packing fraction～ 74%

(Cf: bcc, coordination number = 8, packing fraction～ 68%)

Viewing from different angles

Wiki: close packing of equal spheres
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see Prob.6
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Kepler’s conjecture (1611): The packing fraction of spheres in 3-dim ≦ π/√18

(the value of fcc and hcp)

(By the way, nobody can show that the crystalline form has the lowest energy.)
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4). Diamond structure (C, Si, Ge… etc)

= 2 overlapping fcc lattices (one is displaced along 
the main diagonal by 1/4)

• Very low packing fraction (～36%!)

• If the two atoms on the basis are different, then it is called 

Zincblend (閃鋅) structure (eg. GaAs, ZnS… etc), which is a 

familiar structure with an unfamiliar name.

= fcc lattice + 2-point basis, d1=0, d2=(a/4)(x+y+z) 
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see Prob.6



Indexing crystal planes: Miller index (h,k,l)

The rules:
1. 取截距 (以a1, a2, a3為單位)

得 (x, y, z)

(but not always the simplest one, e.g, 
the simple cubic lattice of fcc lattice)

3. 通分成互質整數 (h,k,l)

2. 取倒數 (1/x,1/y,1/z)

An Indexed PbSO4 Crystal 

a1

a2

a3

(h,k,l)=(3,2,6)
x=2

y=3

z=1
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primitive vectors of Bravais lattice 



For example, cubic crystals (including bcc, fcc… etc)

• Square bracket [h,k,l] refers to the “direction” ha1+ka2+la3, 

instead of crystal planes!

[1,1,1]

• For cubic crystals, [h,k,l] direction ⊥ (h,k,l) planes
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Diamond structure (eg. C, Si or Ge)

Termination of 3 low-index surfaces:

• {h,k,l} =  (h,k,l)-plane + those equivalent to it by crystal symmetry

• <h,k,l>=  [h,k,l]-direction + those equivalent to it by crystal symmetry
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