Chap 21 Optical properties of
semiconductors

e cyclotron resonance

» direct and indirect optical transitions
* LEDs

* lasers

e solar cells
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Band structures and Fermi surfaces

Common features
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Useful parameters

_ my My MMy A
Si 0.91/0.19 0.46/0.16 0.044 eV
GaAs 0.063 050 0/6 03ey



Direct band gap (GaAs, GaN...) Indirect band gap (Si, Ge...)
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Direct band gap semiconductor can emit light efficiently 1 m=1.24 eV



Kubo-Greenwood formula
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Connection between absorption and interband transition
Transition rate per unit volume

e Fermi golden rule
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.". energy loss is a result of optical transitions
Yu and Cardona, p.260



Direct interband transition

» Selection rule

if Al #+1

then p (k)= <an‘ D, ‘mlz> ~

« Joint density of states (2-band approximation)
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Van Hove singularity

supplementary
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Indirect interband transition (by emitting/absorbing phonons)
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Summary: Intraband and interband transitions

fi \D

intraband (Drude)
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From Dr. A.B. Kuzmenko’s slides
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M. S. Dresselhaus, SOLID STATE PHYSICS, PART II, p.17., 37



Light emitting diode
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Conventional lighting

Incandescent

EU,Australia,

cA. Fluorescent

=

High Intensity Discharge

Pros: Very cheap, great color

Pros: Ch fficient Cons: Very short lifetime, Pros: Cheap, energy efficient
Cros.. £ eap,el,- icien poor energy efficiency Cons: Can not run in cold temp;
ons: Ioc:\ogr {rzgs[tl:rt difficult/costly to dim,

’ control, H
short lifetime g
Compact Fluorescent Halogen
8-
Pros: Energy efficient Pros: Great color, focused light
Cons: Poor color quality, Cons: Very short Iifeti_m_e,
Can not run in cold, poor energy efficiency

High cost vs. Incand, Hg

From S. Nakamura’'s slide



Solid state lighting

The Advantage of LED Lighting

Long life — lifetimes can exceed 100,000 hours as compared to 1,000
hours for tungsten bulbs

Robustness — no moving parts, no glass, no filaments
Size — typical package is only 5 mm in diameter

Energy efficiency — up to 90% less energy used
translates into smaller power supply

Non-toxicity — no mercury

Versatility — available in a variety of colors; can be pulsed

Cool — less heat radiation than HID or incandescent

From S. Nakamura’'s slide



Computers
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If a 150 Im/W Solid State White source were
developed, then in the US alone:

» We would realize $115 Billion Savings in 2025
 Eliminate 258 million metric tons of Carbon

From S. Nakamura’'s slide




The invention of blue-light LED
 Before blue LED

RCA, HP, Sony, Toshiba and more.

Analysts estimate that those companies, along with
a couple dozen universities, spent roughly $1 billion
in pursuit of blue-light devices since the 1960s.

» After blue LED

THE MILLENNIUM

TECHNOLOGY
PRIZE 2006







Shuji Nakamura and the blue laser diode

» 1977 BA, 1979 MA (EE), University of Tokushima

« 1979, joined Nichia, a company at Tokushima that was making a 'L
phosphor for CRT tubes and fluorescent lamps (R&D: 3 people)

Took him three years to grow commercial GaP crystals (red, yellow)

» 1982, switch to GaAs crystal growth. Took him 3 years to have a
commercial product (infrared, red)

1985, switch to GaAlAs epitaxial wafer (infrared, red LEDS)

b {28
A=

“For ten years | had worked very hard to make these
products. | worked twelve hours a day, seven days a week,
except holidays. | had a very, very small budget and had to
make everything | needed myself. ... My bosses always
complained that my results were terrible, because | spent a
lot of money, as far as they were concerned, and nothing Pl - s 1
sold.” L Nakamy gi'amff‘fg;ma at' 1905

e

» 1988, boss (Ogawa) invested 3.3 million USDs on him to make blue LEDs.
» 1988~89, went to U. Florida for 1 year. Learned MOCVD.

B T 5 A

http://archive.sciencewatch.com/jan-feb2000/sw_jan-feb2000_page3.htm



"l actually thought it looked very easy to make blue LEDs, |
thought, blue means I just have to change the color—I just

have to change the material."

“In 1989, there were two materials for making blue LEDs: ZnSe and
GaN (3.4 eV)... The dislocation density for the former was less than 103
/cm3. GaN was more than 10° /cm3. And when people wanted to make

reliable LEDs and laser diodes, they knew that the dislocation density

has to be lower than 103 or even 102. This is just physics.”

» 1989, switch to GaN. Spent two years modifying
his reactor and succeeded in making the two-flow
MOCVD reactor at 1990.

* 1991~2, made n-type, then p-type GaN

» 1993, the first commercial blue LEDs

» 1995, switch to laser diode.

» 1997, the first commercial blue laser diode.

2000

1500

RE (mcd)

1000

500

* 1999~2000, quit Nichia, move to UCSB

“Within a month, as word got out of his decision
to leave Nichia, Nakamura was offered
professorships at 10 U.S. universities and two
European ones, and at five U.S. companies.”
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See a nice “Interview with Nakamura”: Scientific American, July, 2000



LED-backlit LCD TV

'T,I_'he future |s how :

e

Kerosene lighting and firewood
are used by 1/3 of the world; :
they cause countless fires and
are very inefficient (0.03 Im/w).
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VoLUME 9, NUMBER 9 PHYSICAL REVIEW LETTERS NOVEMBER 1, 1962

COHERENT LIGHT EMISSION FROM GaAs JUNCTIONS

R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, and R. O. Carlson
General Electric Research Laboratory, Schenectady, New York
{Received September 24, 1962)

(a) Homojunction under zero bias
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(b) Homojunction under forward bias
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» Population Inversion:

More electrons in the CB at energies
near Ec than electrons in VB near Ev

» The region where the population
inversion occurs develops a layer along
the junction called an active layer

From Khanh Kieu’s slide



Emission Intensity {(a.u)
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» Threshold current density is high,
1000 A/lcm? at 77 K, 10° at RT)

» Solution — Double heterostructure laser
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active layer

» Higher band gap materials have
a lower refractive index

» AlGaAs layers provide lateral
optical confinement

From Khanh Kieu’s slide



From Khanh Kieu’s slide

Diode laser: Applications

» Telecommunication (Optical fiber...)

» Data storage (DVD player...)

» Material processing (welding, heat treating...)
 Laser pumping

» Medicine (diagnostics, LASIK, cosmetic...)
 Laser printers, bar-code readers

Highly Divergent
Astigmatic Cutput
Becm




e Haitz's law
of LED

* Moore’s law of
microprocessor
transistors

100,000,000 —

Transistor count

And more...

2,600,000,000
1,000,000,000 —

barrier, Feb 2010.
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Finally, I'd like to talk some more about exponential growth

The Most IMPORTANT Video You'll Ever See (part 1 of 8)

wonderingmind42 0 s1H 108 BER ~

We can calculale the
doubling time,

T = 70
2 % growth per unit time

Thus a growth rate of 5% per year

has a doubling time of

= 7 = 14 years

5

b=z B mwEr sz p 4279119

swonderingmind42 5% 2007-06-16 {8

4 million views for an old codger giving a lecture about arithrmetic?? YWhat's AR LS TR

going on? You'l just have to watch to see what's so0 damn amazing about © FohriR - .
what he (Albert Bartlett) has to say. s st

http://www.youtube.com/watch?v=F-QA2rkpBSY &feature=related



“The growth in any doubling time is greater than
the total of all the preceding growth !”

 Grains of wheat on a chessboard * Oil consumption, 7% per year

Square Grains on Total < ho5q195

number square grains 1970
1960

1 1 1 1990

2 2 3 1980

3 4 7

4 8 15

5 16 / 31

6 32 63 2000

7 64 127

64 263 264-1

Carter on energy (1977)

“... and in each of those decades (the 1950’s and 1960'’s)
more oil was consumed than in all of mankind’s previous history.”



Hubbert peak (predicted by M.K. Hubbert in 1956)

BILLIONS OF BBLS/YR

Annuzl Oil Production, Gb
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From D. Rutledge’s slides



US Qil Production and Imports

What does this "
really mean?
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What does this really mean?

3[".] ] T [] I 1 T T 1 ]
Fossile fuels (oil, coal, natural gas...)
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Time (thousands of year from the present)

Historians will look back at our generation as
the generation of “oil peak”.
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UN Bruntland Commission:

“Sustainable development is development that meets
the needs of the present without compromising the
ability of future generations to meet their own needs.”




