Chap 17 Transport phenomena and Fermi liquid theory

- Boltzmann equation
- Onsager reciprocal relation
- Thermal electric phenomena
 - Seebeck, Peltier, Thomson...
- Classical Hall effect, anomalous Hall effect
- Theory of Fermi liquid
 - e-e interaction and Pauli exclusion principle
 - specific heat, effective mass
 - 1st sound and zero sound

Boltzmann equation

• Distribution function: f(**r**,**k**,t) ("g" in Marder's)

 $f(\vec{r}, \vec{k}, t)d^3r \cdot 2 \frac{d^3k}{(2\pi)^3} =$ Number of electrons within d³r and d³k around (**r**,**k**) at time t

For example,
$$\vec{j}(\vec{r},t) = -e \int 2 \frac{d^3k}{(2\pi)^3} \dot{\vec{r}} f(\vec{r},\vec{k},t)$$

• Evolution of the distribution function

$$t \to t + dt$$

$$f(\vec{r}, \vec{k}, t) \to f(\vec{r} + d\vec{r}, \vec{k} + d\vec{k}, t + dt)$$

$$= f(\vec{r}, \vec{k}, t) + \frac{\partial f}{\partial \vec{r}} \cdot d\vec{r} + \frac{\partial f}{\partial \vec{k}} \cdot \vec{k} + \frac{\partial f}{\partial t} dt$$

Larger $\triangle r \leftrightarrow$ smaller $\triangle k$

 \overrightarrow{r}

without collision

the phase-space density does not change in the comoving frame

$$\frac{df}{dt} = \frac{\partial f}{\partial t} + \dot{\vec{r}} \cdot \frac{\partial f}{\partial \vec{r}} + \dot{\vec{k}} \cdot \frac{\partial f}{\partial \vec{k}} = 0$$

Phase space is incompressible (Liouville's Theorem)

 $d\mathbf{r} = \mathbf{v}_{\mathbf{k}} dt = \frac{1}{h} \frac{\partial \mathbf{E}(\mathbf{k})}{\partial \mathbf{k}} dt$

 $d\mathbf{k} = \frac{1}{\kappa} \mathbf{F} dt$

• Transition rate for an electron at $k \rightarrow k'$:

 $W_{k, k'}$ (calculated by Fermi golden rule)

In a crowded space, one needs to consider occupancy and summation

$$W_{k,k'} \to \sum_{k'} f_k (1 - f_{k'}) W_{k,k'}$$

• On the other hand, the transition rate for an electron to be scattered into k

 $\left[\frac{\partial f}{\partial t}\right]_{coll}^{in} dt^2$

 $d\Omega$

f(r,k,

r+dr

Г

see Marder, Sec 18.2 for more

 $d\Omega'$

f(r+dr,k+dk,t+dt)

$$\begin{pmatrix} \frac{\partial f}{\partial t} \\ \frac{\partial f}{\partial t} \end{pmatrix}_{coll} = \sum_{k'} (f_{k'} - f_k) W_{k',k}$$
if $f_k = f_k^0 + \vec{C} \cdot \vec{k}$, then (valid for
 $\begin{pmatrix} \frac{\partial f}{\partial t} \\ \frac{\partial f}{\partial t} \end{pmatrix}_{coll} = -\vec{C} \cdot \sum_{k'} (\vec{k} - \vec{k}') W_{k',k}$ ($k = k'$)
 $= -\vec{C} \cdot \vec{k} \sum_{k'} (1 - \hat{k} \cdot \hat{k}') W_{k',k}$ Only the contribution (if W determined by the contribution of the contribu

or uniform *E*, *B*, *T* fields)

The component of $\mathbf{k}' // \mathbf{k}$ is the integral θ is pends only on θ .

ort relaxation time

Note: for inelastic scatterings, detailed balance requires

$$(1 - f_{k}^{0}) f_{k'}^{0} W_{k',k} = f_{k}^{0} (1 - f_{k'}^{0}) W_{k,k'}$$

$$f^{0}(\vec{k}) = \frac{1}{e^{\left[\varepsilon(\vec{k}) - \mu\right]/k_{B}T} + 1}$$

$$\rightarrow e^{\frac{\varepsilon(\vec{k}) - \mu}{k_{B}T}} W_{k',k} = e^{\frac{\varepsilon(\vec{k}') - \mu}{k_{B}T}} W_{k,k'}$$

Relaxation time approximation

Unperturbed

Relaxation (allows energy dependence)

Density and temperature gradients are allowed

• Boltzmann eq.

$$\frac{\partial f}{\partial t} + \dot{\vec{r}} \cdot \frac{\partial f}{\partial \vec{r}} + \dot{\vec{k}} \cdot \frac{\partial f}{\partial \vec{k}} = \frac{df}{dt} = -\frac{f - f^0}{\tau_{\varepsilon}}$$

$$\rightarrow f_{rk}(t) = \frac{1}{\tau} \int_{-\infty}^t dt' f_{rk}^0(t') e^{-(t-t')/\tau}$$
or
$$= f_{rk}^0 - \int_{-\infty}^t dt' e^{-(t-t')/\tau} \frac{df_{rk}^0(t')}{dt'}$$

$$\rightarrow f_{rk}(t) = f_{rk}^0 + \int_{-\infty}^t dt' e^{-(t-t')/\tau} \vec{v}_k \cdot \left[\frac{\partial \mu}{\partial \vec{r}} + \frac{(\varepsilon - \mu)}{T} \frac{\partial T}{\partial \vec{r}} - \hbar \vec{k}\right] \frac{\partial f_0}{\partial \varepsilon}$$

$$= f_0 + \delta f$$
Let's call this
"Chamber's formulation"

$$\begin{split} \frac{df_0}{dt} &= \dot{\vec{r}} \cdot \frac{\partial f_0}{\partial \vec{r}} + \dot{\vec{k}} \cdot \frac{\partial f_0}{\partial \vec{k}} \\ \frac{\partial f_0}{\partial \vec{r}} &= \frac{\partial f_0}{\partial \mu} \bigg|_T \frac{\partial \mu}{\partial \vec{r}} + \frac{\partial f_0}{\partial T} \bigg|_\mu \frac{\partial T}{\partial \vec{r}} \\ &= \bigg[-\frac{\partial \mu}{\partial \vec{r}} - \frac{(\varepsilon - \mu)}{T} \frac{\partial T}{\partial \vec{r}} \bigg] \frac{\partial f_0}{\partial \varepsilon} \\ \frac{\partial f_0}{\partial \vec{k}} &= \hbar \dot{\vec{r}} \frac{\partial f_0}{\partial \varepsilon} \end{split}$$

1st, consider a system with electric field and temperature gradient, but no magnetic field

• Electric current $\vec{j}(\vec{r},t) = -e \int [dk] \dot{\vec{r}}f(\vec{r},\vec{k},t), \quad [dk] \equiv 2 \frac{d^3k}{(2\pi)^3}$ $\dot{\vec{r}} = \frac{1}{\hbar} \frac{\partial \varepsilon}{\partial \vec{k}}$ density $\hbar \dot{\vec{k}} = -e\vec{E}$ $= -e \int [dk] \vec{y}_k f_0 - e \int [dk] \vec{v}_k \delta f$ For steady perturbations $\delta f = \left(\int_{-\infty}^{t} dt' e^{-(t-t')/\tau}\right) \vec{v} \cdot \left| e\vec{E} + \frac{\partial\mu}{\partial\vec{r}} + \frac{(\varepsilon - \mu)}{T} \frac{\partial T}{\partial\vec{r}} \right| \frac{\partial f_0}{\partial\varepsilon}$ $=\tau \vec{v} \cdot \left[e\vec{G} + \frac{(\varepsilon - \mu)}{T} \frac{\partial T}{\partial \vec{r}} \middle| \frac{\partial f_0}{\partial \varepsilon}, \quad \vec{G} \equiv \vec{E} + \frac{1}{e} \frac{\partial \mu}{\partial \vec{r}} \quad \text{Electrochemical} \right]$ $\Rightarrow \vec{j}(\vec{r},t) = e \int [dk] \tau \vec{v} \, \vec{v} \cdot \left| e \vec{G} + \frac{(\varepsilon - \mu)}{T} \frac{\partial T}{\partial \vec{r}} \right| \left(-\frac{\partial f_0}{\partial \varepsilon} \right)$ = $\mathbf{L}_{11}\vec{G} + \mathbf{L}_{12}\left(-\frac{\nabla T}{T}\right)$, \mathbf{L}_{11} is $\boldsymbol{\sigma}$ is conductivity tensor

• Thermal current $\vec{j}^{\varrho}(\vec{r},t) = \int [dk](\varepsilon - \mu)\vec{r}\,\delta f$ density $= -\int [dk]\tau(\varepsilon - \mu)\vec{v}\,\vec{v}\cdot \left[e\vec{G} + \frac{(\varepsilon - \mu)}{T}\frac{\partial T}{\partial \vec{r}}\right] \left(-\frac{\partial f_0}{\partial \varepsilon}\right)$

 $= \mathbf{L}_{21}\vec{G} + \mathbf{L}_{22}\left(-\frac{\nabla T}{T}\right), \qquad \mathbf{L}_{22} \text{ is } \mathbf{\kappa}T \quad \mathbf{\mathcal{K}} \text{ is thermal conductivity tensor}$

Coefficients of transport (matrices)

$$\mathbf{L}_{11} = e^{2} \int [dk] \tau \, \vec{v} \, \vec{v} \left(-\frac{\partial f_{0}}{\partial \varepsilon} \right) \qquad \mathbf{L}_{12} = -e \int [dk] \tau \, (\varepsilon_{k} - \mu) \vec{v} \, \vec{v} \left(-\frac{\partial f_{0}}{\partial \varepsilon} \right) \\ \mathbf{L}_{21} = -e \int [dk] \tau \, (\varepsilon_{k} - \mu) \vec{v} \, \vec{v} \left(-\frac{\partial f_{0}}{\partial \varepsilon} \right) \qquad \mathbf{L}_{22} = \int [dk] \tau \, (\varepsilon_{k} - \mu)^{2} \vec{v} \, \vec{v} \left(-\frac{\partial f_{0}}{\partial \varepsilon} \right)$$

They are of the form

$$\Lambda_{ij}^{(\nu)} = e^2 \int [dk] \tau \left(\varepsilon_k - \mu\right)^{\nu} v_i v_j \left(-\frac{\partial f_0}{\partial \varepsilon}\right)$$
$$\mathbf{L}_{11} = \mathbf{\Lambda}^{(0)}$$
$$\mathbf{L}_{12} = \mathbf{L}_{21} = \frac{1}{(-e)} \mathbf{\Lambda}^{(1)} \qquad \text{One example of Onsager relation}$$
$$\mathbf{L}_{22} = \frac{1}{(-e)^2} \mathbf{\Lambda}^{(2)}$$

Define energy-resolved conductivity

$$\sigma_{ij}(\varepsilon) = e^2 \int [dk] \tau_{\varepsilon} v_i v_j \delta(\varepsilon_k - \varepsilon)$$

then

$$\Lambda_{ij}^{(\nu)} = \int d\varepsilon \left(\varepsilon - \mu\right)^{\nu} \left(-\frac{\partial f_0}{\partial \varepsilon}\right) \sigma_{ij}(\varepsilon)$$

T=0, $\begin{bmatrix} \mathbf{\Lambda}^{(0)} = \mathbf{\sigma}(\varepsilon_F) \\ \mathbf{\Lambda}^{(1)} = \frac{\pi^2}{3} (k_B T)^2 \mathbf{\sigma}'(\varepsilon_F) \\ \mathbf{\Lambda}^{(2)} = \frac{\pi^2}{3} (k_B T)^2 \mathbf{\sigma}(\varepsilon_F) \end{bmatrix}$ H.W.

More on the conductivity

consider \bigtriangledown T=0.

Ohm's law: Fick's law for "diffusion current":

$$\vec{j} = \boldsymbol{\sigma} \vec{G} \qquad \vec{G} \equiv \vec{E} + \frac{1}{e} \frac{\partial \mu}{\partial \vec{r}} \vec{j} = -\mathbf{D} \nabla \rho$$

• For electron gas at low T,

$$\mu \cong \varepsilon_{F} = \frac{\hbar^{2}}{2m^{*}} (3\pi^{2}n)^{2/3} \qquad (\rho = -en)^{2/3}$$
$$\frac{\partial \varepsilon_{F}}{\partial \vec{r}} = \frac{2}{3} \frac{\varepsilon_{F}}{n} \frac{\partial n}{\partial \vec{r}} = \frac{2}{3} \frac{\varepsilon_{F}}{\rho} \frac{\partial \rho}{\partial \vec{r}}$$
$$\therefore \vec{j} = -\mathbf{D} \frac{3\rho}{2\varepsilon_{F}} \frac{\partial \varepsilon_{F}}{\partial \vec{r}}$$
$$\Leftrightarrow \quad \vec{j} = \frac{\sigma}{e} \frac{\partial \varepsilon_{F}}{\partial \vec{r}}$$
$$\Rightarrow \quad \mathbf{D} = \frac{1}{(-e)} \frac{2\varepsilon_{F}}{3\rho} \sigma = \frac{1}{e^{2}g(\varepsilon_{F})} \sigma$$

• At T=0,
$$\left(-\frac{\partial f_0}{\partial \varepsilon}\right) = \delta(\varepsilon - \varepsilon_F)$$

 $\sigma_{ij} = e^2 \int [dk] \tau_{\varepsilon} v_i v_j \delta(\varepsilon - \varepsilon_F)$
 $= e^2 \tau_{\varepsilon_F} g(\varepsilon_F) \langle v_i v_j \rangle_{FS}$

 $\left\langle v_{i} v_{j} \right\rangle_{FS}$ is an integral over the FS

$$D_{ij} = \tau_{\varepsilon_F} \left\langle v_i \, v_j \right\rangle_{FS}$$

For isotropic diffusion,

$$D_{xx} = \tau_{\varepsilon_F} \frac{1}{3} \left\langle v^2 \right\rangle_{FS} = \frac{1}{3} v_F^2 \tau_{\varepsilon_F}$$

Einstein relation (for degenerate electron gas)

• Alternative form of conductivity

$$\sigma_{ij} = e^2 \int [dk] \tau v_i v_j \left(-\frac{\partial f_0}{\partial \varepsilon} \right)$$

$$v_i v_j \left(-\frac{\partial f_0}{\partial \varepsilon} \right) = v_i \frac{\partial \varepsilon}{\hbar \partial k_j} \left(-\frac{\partial f_0}{\partial \varepsilon} \right) = v_i \left(-\frac{\partial f_0}{\hbar \partial k_j} \right)$$

$$\therefore \sigma_{ij} = e^2 \tau \int [dk] \left[-\frac{\partial (f_0 v_i)}{\hbar \partial k_j} + f_0 \frac{\partial v_i}{\hbar \partial k_j} \right]$$
If τ a const.
$$= e^2 \tau \int [dk] f_0 \cdot m_{ij}^{*-1}$$

$$\rightarrow \frac{ne^2 \tau}{m^{op}} \delta_{ij} \quad \sim \text{free electron gas}$$

Optical effective mass = m* if the carriers are in a parabolic band

Fourier's law on thermal conduction

$$\vec{j}^{\mathcal{Q}} = -\mathbf{\kappa}\nabla T = \mathbf{L}_{22} \left(-\frac{\nabla T}{T} \right)$$

Note: this would induce electric current. To remedy this, see Marder, p.496.

 $\mathbf{\kappa} = \frac{\mathbf{L}_{22}}{T} = \frac{\pi^2}{3} \frac{k_B^2 T}{e^2} \mathbf{\sigma}$ (Wiedemann-Franz law for metals)

More on the Onsager reciprocal relation (1931) 互易關係

• Transport processes near equilibrium (linear transport regime)

$$\begin{aligned} j_i &= \sigma_{ij} \left(-\frac{\partial \phi}{\partial x_j} \right) \qquad \text{(Ohm's Law)} \\ j_i &= D_{ij} \left(-\frac{\partial \rho}{\partial x_j} \right) \qquad \text{(Fick's Law)} \\ j_i^Q &= \kappa_{ij} \left(-\frac{\partial T}{\partial x_j} \right) \qquad \text{(Fourier's Law)} \end{aligned}$$

• They are of the form

. . .

$J_i = L_{ij} X_j$

Thermodynamic ∞ Thermodynamic "flow" "force" Thermodynamic conjugate variables • "kinetic coefficient" **L** is symmetric: For example, if E_x drives a current J_y , then E_y will drive a current J_x .

• The Onsager relation is a result of fluctuation-dissipation theorem, plus time reversal symmetry.

• A specific example: the conductivity tensor of a crystal is symmetric, whatever the crystal symmetry is.

Simultaneous irreversible processes For example,

$$\begin{pmatrix} \vec{j} \\ \vec{j}^{\mathcal{Q}} \end{pmatrix} = \begin{pmatrix} \mathbf{L}_{11} & \mathbf{L}_{12} \\ \mathbf{L}_{21} & \mathbf{L}_{22} \end{pmatrix} \begin{pmatrix} \vec{G} \\ -\nabla T / T \end{pmatrix}$$

also of the form:

$$\boldsymbol{J}_i = \boldsymbol{L}_{ij} \left(-\frac{\partial \boldsymbol{Y}}{\partial \boldsymbol{x}_j} \right)$$

Same symmetry relation applies to this larger α matrix

 $\rightarrow \mathbf{L}^{\mathsf{T}}_{12} = \mathbf{L}_{21}$

• ...

• if force 1 (e.g., a temperature gradient) drives a flow 2 (diffusion current), then force 2 (density gradient) will drive a flow 1 (heat current) !

Precursors of the symmetry relation (D.G. Miller, J Stat Phys 1995)

- Stokes (1851), anisotropic heat conduction
- Kelvin (1854), thermoelectric effect

Note:

For many transport processes near equilibrium, the entropy production is a product of flow and force

$$T\dot{S}_{irr} = J_i X_i$$
$$\dot{S}_{irr} = \frac{L_{ij}}{T} X_i X_j > 0$$

 \therefore Entropy production \sim a thermodynamic potential

Nature likes to stay at the lowest potential \rightarrow minimum entropy production

(only in the linear regime)

http://www.ntnu.no/ub/spesialsamlingene/tekhist/tek5/eindex.htm

Thermoelectric coupling

(1) Seebeck effect (1821)

Seebeck found that a compass needle would be deflected by a closed loop formed by two metals joined in two places, with a temperature difference between the junctions.

In the absence of electric current
 Longitudinal *T* gradient →
 electrochemical potential
 (in metals or semiconductors)

$$\begin{pmatrix} \mathbf{0} \\ \vec{j}^{\varrho} \end{pmatrix} = \begin{pmatrix} \mathbf{L}_{11} & \mathbf{L}_{12} \\ \mathbf{L}_{21} & \mathbf{L}_{22} \end{pmatrix} \begin{pmatrix} \vec{G} \\ -\nabla T / T \end{pmatrix}$$

$$\rightarrow \vec{G} = \alpha \nabla T \qquad \text{in the last of } \vec{G} =$$

• Seebeck coefficient (aka thermoelectric power) 熱電功率

$$\alpha = (\mathbf{L}_{11})^{-1} \frac{\mathbf{L}_{12}}{T} = -\frac{\pi^2}{3} \frac{k_B^2 T}{e} \frac{\sigma'}{\sigma}$$

or

typical values observed: a few μ V / K (Bi: ~ 100 μ V / K)

(2) Peltier effect (1834)

Peltier found that the junctions of dissimilar metals were heated or cooled, depending upon the direction of electrical current.

• In a bi-metallic circuit without *T* gradient, a current flow would induce a heat flow (in metals or semiconductors)

$$\begin{pmatrix} \vec{j} \\ \vec{j}^{\mathcal{Q}} \end{pmatrix} = \begin{pmatrix} \mathbf{L}_{11} & \mathbf{L}_{12} \\ \mathbf{L}_{21} & \mathbf{L}_{22} \end{pmatrix} \begin{pmatrix} \vec{G} \\ \mathbf{0} \end{pmatrix}$$
$$\rightarrow \vec{j}^{\mathcal{Q}} = \Pi \ \vec{j}$$
$$\Pi = \mathbf{L}_{21} (\mathbf{L}_{11})^{-1} = \alpha T$$
(If \mathbf{L}_{11} and \mathbf{L}_{21} commute)

• In practical applications of Seebeck/Peltier, the figure of merit (dimensionless) is (Prob 7)

$$ZT = \frac{\alpha^2 \sigma}{\kappa} T$$
High electric conductivity and low
thermal conductivity is good.
(>< Wiedemann-Franz law)

• $Bi_2Te_3 ZT \sim 0.6$ at room temperature If ZT~4, then thermoelectric refrigerators will be competitive with traditional refrigerators.

Thermoelectric cooling

Peltier element: Bismuth Telluride (p/n type connected in series)

advantages

- Solid state heating and cooling no liquids. CFC free.
- Compact instrument
- Fast response time for good temperature control

Seebeck vs Peltier

Figure 4. Thermal energy absorption and emission as electrons and holes cross the junctions between thermoelectric material and metal.

Hall effect: semiclassical approach $\hbar \frac{d\vec{k}}{dt} = -e\vec{E} - \frac{e}{c}\vec{v}_k \times \vec{B}$

Recall "Chamber's formulation" (without density and T gradients)

$$\begin{split} \delta f &= \int_{-\infty}^{t} dt' e^{-(t-t')/\tau} \vec{v}_{k} \cdot \left[-\hbar \dot{\vec{k}} \right] \frac{\partial f_{0}}{\partial \varepsilon} \\ &= -e \int_{-\infty}^{t} dt' e^{-(t-t')/\tau} \vec{v}_{k} \cdot \left(\vec{E} + \frac{1}{c} \vec{v}_{k} \times \vec{B} \right) \left(-\frac{\partial f_{0}}{\partial \varepsilon} \right) \end{split}$$

We can now only count on v_k for magnetic effect

$$\hbar \dot{\vec{k}} = -e\vec{E} - \frac{e}{c}\vec{v} \times \vec{B}$$

$$\rightarrow \quad \frac{\vec{v}_{\perp}}{c} = -\frac{\hbar}{e}\frac{\vec{B} \times \dot{\vec{k}}}{B^2} + \frac{\vec{E} \times \vec{B}}{B^2} \quad \text{ExB drift}$$

Assume $E\,{\perp}\,B$

$$e^{-(t-t')/\tau} \dot{\vec{k}}(t') = \frac{d}{dt'} \left(e^{-(t-t')/\tau} \vec{k}(t') \right) - \frac{1}{\tau} e^{-(t-t')/\tau} \vec{k}(t')$$

$$\rightarrow \delta f = c \frac{\vec{E} \times \vec{B}}{B^2} \cdot \hbar \left(\vec{k}(t) - \left\langle \vec{k}(t) \right\rangle \right) \left(-\frac{\partial f_0}{\partial \varepsilon} \right), \text{ where } \left\langle \vec{k}(t) \right\rangle \equiv \frac{1}{\tau} \int_{-\infty}^t dt' e^{-(t-t')/\tau} \vec{k}(t)$$

$$\vec{j} = -e \int [dk] \vec{v}_k \left(f_0 + \delta f \right)$$
$$= ce \frac{\vec{E} \times \vec{B}}{B^2} \int [dk] \left(\vec{k} - \left\langle \vec{k} \right\rangle \right) \frac{\partial f_0}{\partial \vec{k}}$$
$$= ce \frac{\vec{E} \times \vec{B}}{B^2} \int [dk] \left\{ \frac{\partial}{\partial \vec{k}} \left[\left(\vec{k} - \left\langle \vec{k} \right\rangle \right) f_0 \right] - f_0 \right\}$$

• For $\omega_c \tau >> 1$, the first term is zero

$$\therefore \vec{j} = -ec \frac{\vec{E} \times \vec{B}}{B^2} \int [dk] f_0 = -nec \frac{\vec{E} \times \vec{B}}{B^2}$$
$$\rightarrow \boldsymbol{\sigma} = \begin{pmatrix} 0 & -\frac{nec}{B} & 0\\ \frac{nec}{B} & 0 & 0\\ 0 & 0 & 1 \end{pmatrix} = \sigma_0 \begin{pmatrix} 0 & -\frac{1}{\omega_c \tau} & 0\\ \frac{1}{\omega_c \tau} & 0 & 0\\ 0 & 0 & 1 \end{pmatrix}$$

Q1:How do we get the next order terms?

$$\boldsymbol{\sigma} = \boldsymbol{\sigma}_0 \begin{pmatrix} \frac{1}{\left(\boldsymbol{\omega}_c \boldsymbol{\tau}\right)^2} & -\frac{1}{\boldsymbol{\omega}_c \boldsymbol{\tau}} & 0\\ \frac{1}{\boldsymbol{\omega}_c \boldsymbol{\tau}} & \frac{1}{\left(\boldsymbol{\omega}_c \boldsymbol{\tau}\right)^2} & 0\\ 0 & 0 & 1 \end{pmatrix}$$

Q2: What if the orbit is not closed?

If the open orbit is along the x-direction (in real space), then

$$\boldsymbol{\sigma} = \boldsymbol{\sigma}_0 \begin{pmatrix} \boldsymbol{\gamma} & -\frac{1}{\omega_c \tau} & \boldsymbol{0} \\ \frac{1}{\omega_c \tau} & \frac{1}{(\omega_c \tau)^2} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{1} \end{pmatrix}$$

See Kitel, QTS, p.244

Q3: What about $\omega_{c} \tau <<1?$

Anomalous Hall effect (Edwin Hall, 1881):

Hall effect in ferromagnetic (FM) materials

Ingredients required for a successful theory:

- magnetization (majority spin)
- spin-orbit coupling (to couple the *majority-spin* direction to transverse orbital direction)

Zeng et al PRL 2006

"Intrinsic" AHE due to the Berry curvature

$$\begin{cases} \hbar \frac{d\vec{k}}{dt} = -e\vec{E} \\ \frac{d\vec{r}}{dt} = \frac{1}{\hbar} \frac{\partial \varepsilon}{\partial \vec{k}} - \vec{k} \times \vec{\Omega}(\vec{k}) \\ = \frac{1}{\hbar} \frac{\partial \varepsilon}{\partial \vec{k}} + \frac{e}{\hbar} \vec{E} \times \vec{\Omega}(\vec{k}) \end{cases}$$

A transverse current

To leading order,

$$\vec{j} = -e \int [dk] \vec{v}_k f_0$$

$$= -\frac{e}{\hbar} \int [dk] \frac{\partial \varepsilon}{\partial \vec{k}} f_0 + \frac{e^2}{\hbar} \int [dk] \vec{\Omega}(\vec{k}) f_0 \times \vec{E}$$

$$\rightarrow \sigma_{AH} = \frac{e^2}{\hbar} \int_{filled} [dk] \Omega_z(\vec{k})$$

 Mn_5Ge_3 1000 Exp. before subtracting S.S. Exp. after subtracting S.S. σ_{AH} (Ω⁻¹cm⁻¹) 007 00 008 008 800 Calculated 200 0 2.5 2.0 1.5 1.0 0.5 0.0 $M_{z} (\mu_{B}/Mn)$

> After averaging over long-wavelength spin fluctuations, the calculated anomalous Hall conductivity is roughly linear in M. The S.S. refers to skew scattering.

• classical Hall effect

✓ Lorentz force

• anomalous Hall effect

- ✓ Berry curvature (int)
- ✓ Skew scattering (ext)

• spin Hall effect

No magnetic field required !

- ✓ Berry curvature (int)
- ✓ Skew scattering (ext)

Thermo-galvano-magnetic phenomena

$$\vec{j}^{e} = \boldsymbol{\sigma}(\vec{B})\vec{E} + \boldsymbol{\alpha}(\vec{B})(-\nabla T)$$
$$\vec{j}^{Q} = \boldsymbol{\beta}(\vec{B})\vec{E} + \boldsymbol{\kappa}(\vec{B})(-\nabla T)$$
Onsager
$$\boldsymbol{\sigma}^{T}(-\vec{B}) = \boldsymbol{\sigma}(\vec{B})$$
relations
$$\boldsymbol{\beta}^{T}(-\vec{B}) = \boldsymbol{\alpha}(\vec{B})$$
$$\boldsymbol{\kappa}^{T}(-\vec{B}) = \boldsymbol{\kappa}(\vec{B})$$

• Expand to first order in B,

Beyond thermo-galvano-magnetic phenomena

- E-T: Thomson effect, Peltier/Seebeck effect
- E-B: Hall effect, magneto-electric material
- E-B-T: Nernst/Ettingshausen effect, Leduc-Righi effect
- E-O, B-O: Kerr effect, Faraday effect, photovoltaic effect, photoelectric effect
- E-M, B-M: piezoelectric effect/electrostriction, piezomagnetic effect/magnetostriction
- M-O: photoelasticity
- ...

. . .

solid state refrigerator solid state sensor

solid state motor, artificial muscle

Landau and Lifshitz, Electrodynamics of continuous media

Scheibner, 4 review articles in IRE Transations on component parts, 1961, 1962

 TABLE 1-3 Physical and Chemical Transduction Principles. (from "Expanding the vision of sensor materials" 1995)

Input (Primary) Signal	Output (Secondary) Signals					
	Mechanical	Thermal	Electrical	Magnetic	Radiant	Chemical
Mechanical	(Fluid) Mechanical effects; e.g., diaphragm, gravity balance. Acoustic effects; e.g., echo sounder.	Friction effects; e.g., friction calorimeter. Cooling effects; e.g., thermal flow meter.	Piezoelectricity. Piezoresistivity. Resistive. Capacitive. Induced effect.	Magneto- mechanical effects; e.g., piezomagnetic effect.	Photoelastic systems (stress- induced birefringence). Interferometer. Sagnac effect. Doppler effect.	
Thermal	Thermal expansion; e.g., bimetallic strip, liquid-in-glass and gas thermometers. Resonant frequency. Radiometer effect; e.g., light mill.		Seebeck effect. Thermo- resistance. Pyroelectricity. Thermal (Johnson) noise.		Thermo-optical effects; e.g., liquid crystals. Radiant emission.	Reaction activation; e.g., thermal dissociation.
Electrical	Electrokinetic and electro- mechanical effects; e.g., piezoelectricity, electrometer, and Ampere's Law.	Joule (resistive) heating. Peltier effect.	Charge collectors. Langmuir probe.	Biot-Savart's Law.	Electro-optical effects; e.g., Kerr effect, Pockels effect. Electro- luminescence.	Electrolysis. Electro-migration.
Magnetic	Magneto- mechanical effects; e.g., magnetostriction, and magnetometer.	Thermo-magnetic effects; e.g., Righi-Leduc effect. Galvano-magnetic effects; e.g., Ettingshausen effect.	Thermo-magnetic effects; e.g., Ettingshausen- Nernst effect. Galvano-magnetic effects; e.g., Hall effect, and magneto- resistance.	Magneto-optical effects; e.g., Faraday effect, and Cotton- Mouton effect.		

Landau's theory of Fermi liquid

Why e-e interaction can usually be ignored in metals?

•
$$K \sim \frac{\hbar^2}{m} \frac{1}{r^2}, \quad U \sim \frac{e^2}{r}$$

 $\frac{U}{K} \sim \frac{me^2}{\hbar^2} r = \frac{r}{a_B}$ Typically, 2 < U/K < 5

Average e-e separation in a metal is about 2 A
Experiments find e mean free path about 10000 A (at 300K)
At 1 K, it can move 10 cm without being scattered! Why?

• Calculate the e-e scattering rate using Fermi's golden rule:

$$\frac{1}{\tau} = \frac{2\pi}{\hbar} \sum_{i,f} \left| \left\langle f \mid V_{ee} \mid i \right\rangle \right|^2 \delta(E_i - E_f)$$

Scattering amplitude $\left|\left\langle f \mid V_{ee} \mid i\right\rangle\right|^2 = \left|\left\langle k_3, k_4 \mid V_{ee} \mid k_1, k_2\right\rangle\right|^2$ $E_i = E_1 + E_2; \quad E_f = E_3 + E_4$ The summation is over all possible initial and final states that obey energy and momentum conservation

Pauli principle reduces available states for the following reasons:

If the scattering amplitude $|V_{ee}|^2$ is roughly of the same order for all k's, then

$$\tau^{-1} \sim |V_{ee}|^{-1} \sum_{k_1, k_2} \sum_{k_3, k_4} 1 \qquad E_1 + E_2 = E_3 + E_4; \\ \mathbf{k}_1 + \mathbf{k}_2 = \mathbf{k}_3 + \mathbf{k}_4;$$

• 2 e's inside the FS cannot scatter with each other (energy conservation + Pauli principle), at least one of them must be outside of the FS.

Let electron 1 be outside the FS:

• One e is "shallow" outside, the other is "deep" inside also cannot scatter with each other, since the "deep" e has nowhere to go.

• If $|E_2| < E_1$, then $E_3 + E_4 > 0$ (let $E_F = 0$) But since $E_1 + E_2 = E_3 + E_4$, 3 and 4 cannot be very far from the FS if 1 is close to the FS. Let's fix E_1 , and study possible initial and final states.

(let the state of electron 1 be fixed)

number of initial states = (volume of E₂ shell)/∆³k
 number of final states = (volume of E₃ shell)/∆³k
 (E₄ is uniquely determined)

• $\tau^{-1} \sim V(E_2)/\Delta^3 k \times V(E_3)/\Delta^3 k \quad \leftarrow \text{ number of states for scatterings}$ $V(E_2) \cong 4\pi k_F^2 | k_2 - k_F |$ $V(E_3) \cong 4\pi k_F^2 | k_3 - k_F |$

:. $\tau^{-1} \sim (4 \pi / \Delta^{3} k)^{2} k_{\text{F}}^{2} |k_{2} - k_{\text{F}}| \times k_{\text{F}}^{2} |k_{3} - k_{\text{F}}|$

Total number of states for particle 2 and 3 = $[(4/3) \pi k_F^3 / \Delta^3 k]^2$

• The fraction of states that "can" participate in the scatterings = $(9/k_F^2) |k_2 - k_F| \times |k_3 - k_F|$ $\sim (E_1/E_F)^2$ (1951, V. Wessikopf) In generative: Finite temperature: $\tau^{-1} \sim \tau^{-1}$

 $\sim (kT/E_F)^2 \sim 10^{-4}$ at room temperature

 \rightarrow e-e scattering rate $\propto T^2$

In general $\tau^{-1} \sim \varepsilon^2 + \pi^2 \left(k_{\rm B} T \right)^2$

• need very low T (a few K) and very pure sample to eliminate thermal and impurity scatterings before the effect of e-e scattering can be observed.

Landau's theory of the Fermi liquid (1956)

- Strongly interacting fermion system
- \rightarrow weakly interacting quasi-particle (QP) system
- 1-1 correspondence between fermions and QPs (fermion, spin-1/2, charge -e).
- adiabatic continuity: As we turn off the interaction, the QPs smoothly change back to noninteracting fermions.
- The following analysis applies to a *neutral*, *isotropic* FL, such as He-3.

Another application:

 \sim a particle plus its surrounding,

Q: Is this trivial?

finite life-time

Similarity and difference with free electron gas

For a justification, • QP distribution (at eq.) $f_{k\sigma} = \frac{1}{e^{(\varepsilon_{k\sigma} - \mu)/k_BT} + 1}$ For a justificing see Marder at T = 0, $f_{k\sigma} \to f_{k\sigma}^0 = \theta(\varepsilon_F - \varepsilon_{k\sigma})$ ($\mu = \varepsilon_F$ at T = 0) $\rightarrow \theta(\varepsilon_F - \varepsilon_{k_{\sigma}}^0) \quad \leftarrow$ if no other ext perturbations

$k_{\rm E}$ is not changed by interaction!

- Due to external perturbations the distribution will deviate from the manybody ground state (no perturbation) at T=0
- Thermal

$$\delta f_{k\sigma} = f_{k\sigma}(\varepsilon_{k\sigma}) - \theta(\varepsilon_F - \varepsilon_{k\sigma}^0)$$

 Non-thermal (T=0) (density perturbation, magnetic field... etc)

$$\delta f_{k\sigma} = \theta(\mu - \varepsilon_{k\sigma}) - \theta(\varepsilon_F - \varepsilon_{k\sigma}^0)$$

- In general
- Q

• In general
• QP energy
$$\delta f_{k\sigma} = f_{k\sigma}(\varepsilon_{k\sigma}) - \theta(\varepsilon_F - \varepsilon_{k\sigma}^0) + \varepsilon_{k\sigma} = \varepsilon_k^0 + \sum_{k'\sigma'} u_{kk'}^{\sigma\sigma'} \delta f_{k'\sigma'}$$
In absence of other QPs
• Total number
$$N = \sum_{k\sigma} f_{k\sigma} - \frac{1-1}{V} + \frac{N}{V} = \frac{k_F^3}{3\pi^2}$$

 $u_{kk'}^{\sigma\sigma'}$ is an effective interaction between QPs near FS $\left(u_{kk'}^{\sigma\sigma'} = u_{k'k}^{\sigma'\sigma}\right)$

• Total energy
$$E[\delta f] = E[0] + \sum_{k\sigma} \varepsilon_{k\sigma} \delta f_{k\sigma}$$
$$= E[0] + \sum_{k\sigma} \varepsilon_{k\sigma}^{0} \delta f_{k\sigma} + \frac{1}{2} \sum_{\substack{k\sigma \\ k'\sigma'}} u_{kk'}^{\sigma\sigma'} \delta f_{k\sigma} \delta f_{k'\sigma'} + O(\delta f^{3})$$
This form is not good for charged FL (with long-range interaction)

• If there is no magnetic field, nor magnetic order, then $\mathcal{E}_{k\sigma}$ is independent of σ , and $u_{kk'}^{\sigma\sigma'}$ depends only on the relative spin directions.

 $u_{k_1k_2}^{\sigma\sigma'} = \langle k_1, k_2 | V_{ee} | k_1, k_2 \rangle$ (forward scattering amplitude)

For example,

$$u_{kk'}^{\sigma\sigma'} = \begin{cases} \frac{1}{V} \frac{4\pi e^2}{\varepsilon(\vec{k} - \vec{k}', 0) |\vec{k} - \vec{k}'|^2} & \text{if } \sigma = \sigma' \\ \varepsilon(\vec{k} - \vec{k}', 0) |\vec{k} - \vec{k}'|^2 & \text{Quinn, p.384} \\ (\text{recall the Fock} \\ \text{interaction in ch 9}) \end{cases}$$

• Fermi velocity
$$\vec{v}_F \equiv \frac{\partial \mathcal{E}_{k\sigma}^0}{\hbar \partial \vec{k}}\Big|_{k=k_F}$$

• Effective mass
$$m^* \equiv \frac{\hbar k_F}{v_F}$$

• DOS $D^*(\varepsilon_F) \equiv \frac{1}{V} \sum_{k\sigma} \delta(\varepsilon_{k\sigma}^0 - \varepsilon_F)$ See ch 7 $= \frac{1}{4\pi^3} \oint \frac{dS_{\varepsilon}}{|\nabla_k \varepsilon_k^0|} = \frac{m^* k_F}{\pi^2 \hbar^2}$ Note: The use of $\mathcal{E}_{k\sigma}^{0}$ follows Coleman's note, Baym and Pethick etc, but not Marder's

• Specific heat

$$dE = \sum_{k\sigma} \varepsilon_{k\sigma} \delta f_{k\sigma} \cong \sum_{k\sigma} \varepsilon_{k\sigma}^{0} \delta f_{k\sigma}, \quad \delta f_{k\sigma} \cong \frac{\partial f(\varepsilon_{k\sigma}^{0})}{\partial T} \delta T \quad \text{(to lowest order)}$$

$$\rightarrow C_{V} = \frac{\partial E}{\partial T} \bigg|_{V} = \sum_{k\sigma} \varepsilon_{k\sigma}^{0} \frac{\partial f(\varepsilon_{k\sigma}^{0})}{\partial T}$$

$$= \sum_{k\sigma} \int d\varepsilon \delta(\varepsilon_{k\sigma}^{0} - \varepsilon) \varepsilon \frac{\partial f(\varepsilon)}{\partial T}$$

$$= V \int d\varepsilon D^{*}(\varepsilon) \varepsilon \frac{\partial f(\varepsilon_{k\sigma}^{0})}{\partial T} \xrightarrow{V} \text{See ch 6}$$

$$\cong V D^{*}(\varepsilon_{F}) \int d\varepsilon \varepsilon \frac{\partial f(\varepsilon_{k\sigma}^{0})}{\partial T} \xrightarrow{V} \frac{1}{3} k_{B}^{2} T V D^{*}(\varepsilon_{F}) \text{ same as non-interacting result except for the effective mass.}$$

Heavy fermion material (CeAl₃)

Specific is linear in T below 20 mK

Giamarchi's note, p.88

Effective mass of a QP (I)

(total) "Particle" current
$$\vec{J}_N = \sum_{k\sigma} \frac{\hbar \vec{k}}{m} f_{k\sigma} = \sum_{k\sigma} \frac{\hbar \vec{k}}{m} \delta f_{k\sigma}$$
 (1)

$$\vec{j}(\vec{r},t) = \sum_{\vec{p}\sigma} \frac{\vec{p}}{m_b} n_\sigma(\vec{r},\vec{p},t).$$

Z.Qian et al, PRL 93, 106601 (2004)

Effective mass of a QP (II)

(Only for QPs near the Fermi surface)

see Fradkin's note, Pathria p.296

$$\mathbf{J} = \left\langle \varphi \, \middle| \, \sum_{i} \frac{\mathbf{p}_{i}}{m} \, \middle| \, \varphi \right\rangle.$$

We now consider the effect of a translation of the entire system, Fermi surface as well as excited quasiparticles, by a constant amount q; such a (a passive translation is equivalent to looking at the system from a moving frame "boost") of reference which has a constant velocity (-q/m). In this moving frame, the interaction energy remains unchanged, while the kinetic energy operator increases by an amount

$$\sum_{i} \left\{ \frac{\mathbf{q} \cdot \mathbf{p}_{i}}{m} + \frac{q^{2}}{2m} \right\}.$$

We next assume that q is small, and use elementary perturbation theory to obtain the first-order correction to the energy E:

$$\delta E = \left\langle \varphi \left| \sum_{i} \frac{\mathbf{q} \cdot \mathbf{p}_{i}}{m} \right| \varphi \right\rangle + O(q^{2})$$
$$= \mathbf{q} \cdot \mathbf{J} + O(q^{2}).$$

J thus appears as the first derivative of the energy with respect to q, an arbitrary component J_{α} being given by

$$J_{\alpha} = dE/dq_{\alpha}. \tag{1.96a}$$

Nozieres and Pines, p.37

Introducing Fermi liquid parameters

• Moments of $u_{kk'}^{\sigma\sigma'}$ over the FS provide the most important information about interactions (e.g., see the previous m* formula)

• Dimensionless parameters

$$F_{\ell}^{s} \equiv VD^{*}(\varepsilon_{F})u_{\ell}^{s}, \quad F_{\ell}^{a} \equiv VD^{*}(\varepsilon_{F})u_{\ell}^{a}$$
 A small set of parameters for various phenomena

For example

e,
$$\frac{m^*}{m} = 1 + V \int \frac{k'^2 dk'}{(2\pi)^3} d\Omega' \left(u_{kk'}^{\uparrow\uparrow} + u_{kk'}^{\uparrow\downarrow} \right) \cos\theta' \delta(\varepsilon_{k'}^0 - \varepsilon_F)$$
$$\dots = 1 + \frac{1}{3} F_1^s \qquad \text{determined from specific heat.}$$
$$m^*/m \sim 3 \text{ for He-3}$$

More on the effective mass

recall

$$\frac{\overline{m}^{*}}{\overline{m}} = 1 + \frac{1}{3} F_{1}^{s}$$

$$\rightarrow \frac{\overline{p}_{F}}{\overline{m}^{*}} = \frac{\overline{p}_{F}}{\overline{m}} - \left(\frac{F_{1}^{s}}{3 + F_{1}^{s}}\right) \frac{\overline{p}_{F}}{\overline{m}}$$

Backflow correction (to ensure current conservation)

•
$$\frac{m^*}{m} = 1 + \frac{1}{3}VD^*(\varepsilon_F)u_1^s, \quad D^*(\varepsilon_F) = \frac{m^*k_F}{\pi^2\hbar^2}$$
$$\rightarrow m^* = \frac{m}{1 - \frac{V}{3}D(\varepsilon_F)u_1^s}$$

diverges when $\frac{V}{3}D(\varepsilon_F)u_1^s = 1$ (~ Mott transition)

Compressibility of Fermi liquid

$$\kappa = -\frac{1}{V} \frac{\partial V}{\partial P} \quad \text{At fixed S or T} \\ (\text{little difference near T=0)} \\ \rightarrow \kappa_{T} = \frac{1}{n^{2}} \frac{\partial n}{\partial \mu}\Big|_{T} \quad \text{(little difference near T=0)} \\ \rightarrow \kappa_{T} = \frac{1}{n^{2}} \frac{\partial n}{\partial \mu}\Big|_{T} \quad \text{Before compression} \quad \frac{\partial p \leftrightarrow \delta \mu}{\partial \mu} \\ \text{At T=0, } \delta f_{k\sigma} = \theta(\mu - \varepsilon_{k\sigma}) - \theta(\varepsilon_{F} - \varepsilon_{k\sigma}^{0}) \quad \text{Before compression} \quad \frac{\partial \partial f_{k\sigma}}{\partial \mu} = \delta(\varepsilon_{F} - \varepsilon_{k\sigma}^{0}) \quad \text{Before compression} \quad \frac{\partial \partial f_{k\sigma}}{\partial \mu} = \delta(\varepsilon_{F} - \varepsilon_{k\sigma}^{0}) \left(1 - \sum_{k'\sigma'} u_{kk'}^{\sigma\sigma'} \frac{\partial \delta f_{k'\sigma'}}{\partial \mu}\right) \\ \text{Note: Slightly different from Marder's (see Baym and Pethick, p.11)} \quad \Rightarrow A = \sum_{k'\sigma'} u_{kk'}^{\sigma\sigma'} \frac{\partial \delta f_{k'\sigma'}}{\partial \mu} = \sum_{k'\sigma'} u_{kk'}^{\sigma\sigma'} \delta(\varepsilon_{F} - \varepsilon_{k'}^{0}) (1 - A) \\ \rightarrow A = \frac{F_{0}^{*}}{1 + F_{0}^{*}} \quad = F_{0}^{*}$$

Dependence of various quantities on $\delta \mu$

$$\delta f_{k\sigma} = \delta \left(\varepsilon_F - \varepsilon_{k\sigma}^0 \right) (1 - A) \delta \mu$$
$$= \delta \left(\varepsilon_F - \varepsilon_{k\sigma}^0 \right) \frac{1}{1 + F_0^s} \delta \mu$$
$$\delta \varepsilon_{k\sigma} = \sum_{k'\sigma'} u_{kk'}^{\sigma\sigma'} \delta f_{k'\sigma'}$$
$$= \frac{F_0^s}{1 + F_0^s} \delta \mu$$

also,
$$\frac{\delta N}{V} = \frac{1}{V} \sum_{k\sigma} \delta f_{k\sigma} = D^*(\varepsilon_F) \frac{1}{1 + F_0^s} \frac{\delta \mu}{\delta \mu}$$

$$\frac{\partial n}{\partial \mu} \bigg|_{V} = D^{*}(\varepsilon_{F}) \frac{1}{1 + F_{0}^{s}}$$

$$\rightarrow \kappa_{T} = \frac{1}{n^{2}} \frac{\partial n}{\partial \mu} \bigg|_{V,T} = \frac{D^{*}(\varepsilon_{F})}{n^{2}} \frac{1}{1 + F_{0}^{s}}$$

$$\therefore \frac{\kappa_{T}}{\kappa_{T}^{0}} = \frac{m^{*} / m}{1 + F_{0}^{s}}$$

Note:

• For attractive interaction, $F_{\ell}^{s} < 0$

If $F_0^s = -1$, then κ_T diverges,

and FS will become unstable to deformation (spontaneous breaking of rotational symmetry).

• This is called Pomeranchuk instability (1958). For example, nematic FL.

向列型

0910.4166

Deformation of Fermi sphere and the FL parameters

From Coleman's note

PROPERTY	NON-INTERACTING	LANDAU FERMI LIQUID	
Fermi momentum	p_F	unchanged	
Density of particles	$2\frac{V_{FS}}{(2\pi)^3}$	unchanged	
Density of states	$\mathcal{N}(0) = \frac{mp_F}{\pi^2 \hbar^3}$	$\mathcal{N}^*(0) = \frac{m^* p_F}{\pi^2 \hbar^3}$	For He-3.
Effective mass	т	$\frac{m^*}{m} = 1 + \frac{F_1^s}{3}$	$F_1^s \cong 6$
Specific heat Coefficient $C_V = \gamma T$	$\gamma = \frac{\pi^2}{3} k_B^2 \mathcal{N}(0)$	$c_{\nu} = \frac{m^*}{m} c_{\nu}^0$	effective mass)
Spin susceptibility	$\chi_s = \mu_F^2 \mathcal{N}(0)$	$\chi_s = \frac{m^*/m}{1 + F_0^a} \chi_s^0$	$F_0^a\cong -0.5$ (more spin polarizable)
compressibility	$\mathcal{K} = \mathcal{N}(0)$	$\kappa = \frac{m^*/m}{1 + F_0^s} \kappa^0$	$F_0^s \cong 10$ (less compressible)

summary

From Coleman's note

Travelling wave: firstly, 1st sound (i.e., the usual pressure wave)

Velocity of the 1st sound

$$c_{1} = \sqrt{\frac{\partial P}{\partial \rho}} \bigg|_{s}, \quad \rho = mn$$

so $\frac{\partial P}{\partial \rho} \bigg|_{s,N} = -\frac{V}{n} \frac{\partial P}{\partial V} \bigg|_{s} = \frac{1}{\rho \kappa_{s}}$
 $= \bigg[\frac{n}{mD^{*}(\varepsilon_{F})} (1 + F_{0}^{s}) \bigg]^{1/2}$
 $D^{*}(\varepsilon_{F}) = \frac{m^{*}k_{F}}{\pi^{2}\hbar^{2}}, \quad n = \frac{k_{F}^{3}}{3\pi^{2}}$
 $\Rightarrow c_{1} = v_{F} \bigg[\frac{m^{*}}{3m} (1 + F_{0}^{s}) \bigg]^{1/2} \rightarrow \frac{v_{F}}{\sqrt{3}} \quad (\text{w/o interaction})$

 F_0^{S} =10.8 for He-3, determined by measuring C₁ Zero sound (predicted by Landau, verified by Wheatley et al 1966)

- usual sound requires $\omega \tau \ll 1$ (mean free path $\ell \ll \lambda$)
- when $\omega \tau \rightarrow 1$, sound is strongly absorbed
- when $\omega \tau >>1$, sound propagation is again possible
- zero sound is a collisionless sound \sim plasma wave in charged FL no thermal equilibrium in each volume element
- to get the zero sound, one can increase ω or decrease T (to increase τ)

Oscillation of Fermi sphere

Can exist

at 0 K

Boltzmann-like approach (requires $\hbar \omega \ll \varepsilon_F, q \ll k_F$)

$$\frac{\partial f}{\partial t} + \dot{\vec{r}} \cdot \frac{\partial f}{\partial \vec{r}} + \dot{\vec{k}} \cdot \frac{\partial f}{\partial \vec{k}} = 0 \quad \text{(collisionless)}$$

No r-dependence

Instead of the semiclassical equations, one uses

$$\dot{\vec{r}_k} = \frac{\partial \varepsilon_k}{\hbar \partial \vec{k}}; \quad \hbar \dot{\vec{k}} = -\frac{\partial \varepsilon_k}{\partial \vec{r}}$$

consider

hidden in
$$\varepsilon$$
.
 $f_{k\sigma} = f_k^0 + \delta f_{k\sigma}(\vec{r}, t), \quad f_k^0 = \theta \left(\varepsilon_k^0 - \varepsilon_F \right)$
 $\delta f_{k\sigma} = \alpha_k e^{i(\vec{q} \cdot \vec{r} - \omega t)}$ (indep of spin)

$$\rightarrow \frac{\partial f_{k\sigma}}{\partial t} + \dot{\vec{r}} \cdot \frac{\partial f_{k\sigma}}{\partial \vec{r}} = -i(\omega - \vec{v}_k \cdot \vec{q})\delta f_{k\sigma}$$
 To order δ f

$$\dot{\vec{k}} \cdot \frac{\partial f_{k\sigma}}{\partial \vec{k}} \cong -\frac{\partial \varepsilon_k}{\partial \vec{r}} \cdot \vec{v}_F \frac{\partial f_k^0}{\partial \varepsilon_k} = \frac{\partial \varepsilon_k}{\partial \vec{r}} \cdot \vec{v}_F \delta \left(\varepsilon_k^0 - \varepsilon_F \right)$$

$$\frac{\partial \varepsilon_k}{\partial \vec{r}} = \sum_{k'\sigma'} u_{kk'}^{\sigma\sigma'} \frac{\partial \delta f_{k'\sigma'}}{\partial \vec{r}} = i\vec{q} \sum_{k'\sigma'} u_{kk'}^{\sigma\sigma'} \delta f_{k'\sigma'}$$

$$\rightarrow (\omega - \vec{v} \cdot \vec{q})\alpha_k - \vec{v}_k \cdot \vec{q} \delta \left(\varepsilon_k^0 - \varepsilon_F \right) \sum_{k'\sigma'} u_{kk'}^{\sigma\sigma'} \alpha_{k'} = 0$$

$$\rightarrow \alpha_k = \delta \left(\varepsilon_k^0 - \varepsilon_F \right) \frac{\vec{v}_k \cdot \vec{q}}{\omega - \vec{v}_k \cdot \vec{q}} \sum_{k'\sigma'} u_{kk'}^{\sigma\sigma'} \alpha_{k'}$$

$$\begin{aligned} \det & \alpha_{k} = \delta\left(\varepsilon_{k}^{0} - \varepsilon_{F}\right)\phi_{k} \\ & \text{then } \phi_{k} = \frac{\vec{v}_{k} \cdot \vec{q}}{\omega - \vec{v}_{k} \cdot \vec{q}} \sum_{k'\sigma'} u_{kk'}^{\sigma\sigma'} \alpha_{k'} \quad (1) \\ & \sum_{k'\sigma'} u_{kk'}^{\sigma\sigma'} \alpha_{k'} = \sum_{k'\sigma'} u_{kk'}^{\sigma\sigma'} \delta\left(\varepsilon_{k'}^{0} - \varepsilon_{F}\right)\phi_{k'} \\ & = \int \frac{d\Omega'}{4\pi} a(\theta')\phi_{k'} \\ & a(\theta) \equiv \frac{V}{2} D^{*} \left(u_{kk'}^{\uparrow\uparrow} + u_{kk'}^{\uparrow\downarrow}\right) \\ \text{Assume } a(\theta) \\ &\sim \text{const.} \qquad \cong \int \frac{d\Omega}{4\pi} a(\theta) = F_{0}^{s} \\ & \text{decompose} \\ & \phi_{k}(\theta) = \sum_{\ell=0}^{\infty} P_{\ell}(\cos\theta)\phi_{\ell} \\ & \rightarrow \quad \int \frac{d\Omega'}{4\pi}\phi_{k}(\theta') = \phi_{0} \\ & (1) \rightarrow \phi_{0} = \left(F_{0}^{s}\int \frac{d\Omega}{4\pi}\frac{\vec{v}_{k} \cdot \vec{q}}{\omega - \vec{v}_{k} \cdot \vec{q}}\right)\phi_{0} \end{aligned}$$

let
$$\gamma = \angle(\vec{q}, \vec{k})$$

 $\rightarrow 1 = \frac{F_0^s}{2} \int d\cos\gamma \frac{\cos\gamma}{s - \cos\gamma}, \quad s = \frac{\omega}{vq}$
 $= \frac{F_0^s}{2} \left(-1 - \frac{s}{2} \ln \frac{s - 1}{s + 1} \right)$
or $\frac{s}{2} \ln \frac{s + 1}{s - 1} - 1 = \frac{1}{F_0^s}$

• only $F_0^s > 0$ (repulsion) can have a solution

• for
$$F_0^s \to 0$$
, $S \to 1^+$
 $\omega = sv_F q$ $\therefore c_0 = sv_F \cong \sqrt{3}c_1$

• when QP velocity > C_0 (s<1), the integral has a pole at $\cos \gamma_0 = s$, a QP would emit "supersonic" zero sound

Analogies:

Supersonic shock wave

• Cherenkov EM radiation from "superluminal" charged particles

Dispersion of zero sound in He-3 (from neutron scattering exp't)

FIG. 2. Comparison between theory and experiment for the zero sound energy, and $\overline{\Omega}_p$, the mean excitation energy of a single quasiparticle-quasipole pair. The dashed line is a linear extrapolation of the line is a linear extrapolation of the long wavelength zero sound spectrum, using the experimentally determined velocity of 194 msec⁻¹.

Q: what is the particle-hole band for 1-dim electron liquid?

H. Godfrin et al, Nature 2012

Beyond the Fermi liquid

Quasiparticle decay rate at T = 0 in a Fermi Liquid:

$$\frac{\hbar}{\tau_{e-e}(\varepsilon)} \propto \begin{cases} \varepsilon^2 / \varepsilon_F & d=3\\ (\varepsilon^2 / \varepsilon_F) \log(\varepsilon_F / \varepsilon) & d=2\\ \varepsilon & d=1 \end{cases}$$

- For d = 3,2, from $\mathcal{E} << \mathcal{E}_F$ it follows that $\tau_{ee} >> \hbar / \mathcal{E}$, i.e., the QPs are well determined and the Fermi-liquid approach is applicable.
- For d = 1, τ_{ee} is of the order of \hbar/ϵ , i.e., the QP is not well defined and the Fermi-liquid approach is not valid.

(a) In high dimensions, nearly free quasiparticle excitations, that look nearly as individual particles are possible. (b) In a one-dimensional interacting system, an individual electron cannot move without pushing all the electrons. Thus, only *collective* excitations can exist.

 \rightarrow Tomonaga-Luttinger liquid in 1D (1950,1963)

For more, see Marder, Sec 18.6

Features of a Luttinger liquid (cited from wiki)

- Even at T=0, the particles' momentum distribution function has no sharp jump (Z=0). (in contrast to QP dist)
- Charge and spin waves are the elementary excitations of the Luttinger liquid, unlike the QPs of the FL (which carry both spin and charge).
- spin density waves propagate independently from the charge density waves (spin-charge separation).

Luttinger liquids reported in literatures

- electrons moving along edge states in the fractional
 Quantum Hall Effect (Th: Kane and Fisher 1994; Ep: 1996)
- electrons in carbon nanotubes (McEuen group, 1998)
- 'quantum wires' defined by applying gate voltages to a two-dimensional electron gas. (Auslaender et al, 2000)

Non-Fermi-liquid in 2D?