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Chap 16 Dynamics of Bloch electrons
* Classical electron dynamics: Drude model
» Semiclassical electron dynamics
 Effective mass, Bloch oscillation, Zener tunneling
» Quantizing semiclassical dynamics

 Wannier-Stark ladders, de Haas-van Alphen effect
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Drude theory of electrical transport (1900)

Classical theory . _
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» The source of resistance comes from electron scattering with
defects and phonons.

* If these two types of scatterings are not related, then
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Determine the scattering time from measured resistivity p

e Atroomtemp p.,=17x10°Qm the electron density n=85x10"m™>
—7=m/pne? =25x1014s

» Fermi velocity of copper 1.6x10°ms™ mean free path ¢ =vgt =40 nm

» For a very pure Cu crystal at 4K, the resistivity reduces by a factor of
100000, which means ¢ increases by the same amount (¢ = 0.4 cm).

This cannot be explained using the classical theory.
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 For a crystal without any defect, the only
resistance comes from phonon. Therefore, at
very low T, the electron mean free path
theoretically can be infinite
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Thermal conduction in metal

Both electron and phonon can carry thermal energy In
a metal, electrons are dominant

 heat current density (classical theory)
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Lorentz number

L=2.45x10-8 watt-ohm/deg?

Table 5 Experimental Lorenz numbers

L % 10° watt-ohm/deg® L x 10® watt-ohm/deg”

Metal 0°C 100°C Metal 0°C 100°C
Ag 2.31 2.37 Pb 2.47 2.56
Au 2.35 2.40 Pt 2.51 2.60
Cd 2.42 2.43 Sn 2.52 2.49
Cu 2.23 2.33 \%% 3.04 3.20

Mo 2.61 2.79 Zn 2.31 2.33




Semiclassical electron dynamics

Consider a wave packet with average location r and wave vector K,
then

F(E) :Eaé‘ngk)
h ok
9 . —
mZ = q(ﬁ + rk) X gj Derivation
C neglected here

* Notice that E is the external field, which does not include the lattice field.
The effect of lattice is hidden in ¢ ,(k)!

Range of validity
 This looks like the usual Lorentz force eq. But It is valid only when
Interband transitions can be neglected. (One band approximation)

E &y May not be valid in small gap or heavily
eEa << ¢, g_ doped semiconductors, but
F “never close to being violated in a metal”

y 4
ho, <<é&,,|—, heo,=1.16-10 [B/T] eV
€F
* E and B can be non-uniform in space, but they have to be much

smoother than the lattice potential.
* E and B can be oscillating in time, but with the condition 7z @ << &,



Effective mass of a Bloch electron

The electron near band bottom is like a free electron

(k)= £+ 2 Zazg(k)kk +00) <2 +5 3 L) i,

effective mass ( 1 ] 1 9% (k)
m* ),

matrix (symmetric) C )T n? ok, ok

« For a spherical FS, m=m" ¢ ;, only one m* is enough.
* In general, electron in a flatter band has a larger m*

d d dg ' *_1
Tt T dt ndk, Zhdkdk j Z( )i
or ma=hk

If ¢(k)is /\ (e.g. at the top of a valence band) then m*<0



For an ellipsoidal FS, there can be at most three different m's
Eg. the FS of Si is made of six identical ellipsoidal pockets
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ForSi, e,=1.1eV,m =0.9m, my=0.2m



Bloch electron in an uniform electric field

h% = —eE — 7k (t) = —eEt

Energy dispersion (periodic zone scheme, 1D)
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* In a DC electric field, the electrons decelerate and reverse
its motion at the BZ boundary.
» A DC bias produces an AC current ! (called Bloch oscillation)



* Why the oscillation is not observed in ordinary crystals?
To complete a cycle (a is the lattice constant),
eET/h = 2 /a— T=h/eEa
For E=104 V/cm, and a=1 A, T=101%sec
But electron collisions take only about 1014 sec.
.". a Bloch electron cannot get to the zone boundary without de-phasing.

To observe it, one needs

« a stronger E field — but only up to about 10°% VV/cm (for semicond)
 a larger a — use superlattice (eg. a = 100 A)

* reduce collision time — use crystals with high quality
(Mendez et al, PRL, 1988)

 Bloch oscillators generate THz microwave:
frequency ~ 1012713,

wave length A ~ 0.01 mm - 0.1mm
(Waschke et al, PRL, 1993)



Quantization of Bloch oscillations: Wannier-stark ladders
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Zener tunneling \ 2 \_ /" ,
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Stationary phase approximation:
d tdtl 0 (aka, the method of steepest descent)
dt Jo - If f(x) is varying rapidly, then
2 2 : :
SR ;@ _0 [ dxexplif (x)] = exp[if (x;)]
H _ . where f '(x,) =0
a=A, exp ert' &, +h k{t)
h 90 21
q=k(z) . 312 For metal The tunneling is
21 2 &, 3 N
= A, eXp ———¢&,( = A, exp| ————-"—— [~ exp(-10°) more likely in
3eE 3 eE semiconductors

.. one-band approx. is never close to being violated in metals

due to larger E
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Bloch electron in an uniform magnetic field

T g g 1o

dt C h ok

SK-B=0, K.v, =195 _j4
nodt

Therefore, 1. Change of k is perpendicular to the B field,
k, does not change
and 2. ¢ (k) is a constant of motion

This determines uniquely the electron orbit on the FS

» For a spherical FS, it just gives
the usual cyclotron orbit

e For a connected FS, there
might be open orbits




Cyclotron orbit in real space

The above analysis gives us the orbit in k-space.
What about the orbit in r-space?

5 1,0)-.(0) =~ Bx[K() -K(O)]

r-orbit k-orbit @

©

o r-orbit is rotated by 90 degrees from the k-orbit and
scaled by 7c/eB = ) g2

» magnetic length A 5 =256 AatB =1 Tesla



De Haas-van Alphen effect (1930)

Silver |

In a high magnetic field, the magnetization
of a crystal oscillates as the magnetic field

Increases

Similar oscillations are observed in other

physical quantities, such as Resistance
. in Ga
* magnetoresistivity
(Shubnikov-de Haas effect, 1930)

« specific heat it
e sound attenuation
. | | | | | ]

. etc = T - Lt L L :
8 10 12

0 2 4 6
H(kG)

Basically, they are all due to the quantization of electron
energy levels in a magnetic field (Landau levels, 1930)



Quantization of the cyclotron orbits

* In the discussion earlier, the radius of the cyclotron orbit can be varied
continuously, but due to their wave nature, the orbits are in fact quantized.

* Bohr-Sommerfeld quantization rule (Onsager, 1952)
for a closed cyclotron orbit,

(j}df P = (n + 1) h Why (g/c)A is momentum
2 of field? See Kittel App. G.

C
o e . = e Gauge dependence prob?
Cﬁd hk = ——Cﬁ dr - rxB=2—-0 Not worse than the gauge
C C dependencein qV.
e _ €
—chdr -A=—OD
C C
1\hc
>0 =\ N+—=|—
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e the r-orbit is quantized in units of
flux quantum: hc/e= ©,=4.14-107 gauss - cm?



* Since a k-orbit (circling an area S) is closely related
to a r-orbit (circling an area A), the orbits in k-space
are also quantized

1)\2re
S, = 54 = (n + —ji B (Onsager, 1952)
Ag 2) he

» Energy of the orbit (for a spherical FS)

(nk, )" 1
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» Degeneracy of the Landau level
(assuming spin degeneracy)
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* Notice that the k, direction is not quantized
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In the presence of B, the Fermi sphere
becomes a stack of cylinders.



Note:

e Fermi energy ~ 1 eV, cyclotron energy ~ 0.1 meV (forB=1T)
.". the number of cylinders usually ~ 10000
need low T and high B to observe the fine structure

 Radius of cylinders « /B, SO they expand as we increase B.
The orbits are pushed out of the FS one by one.

-

— larger level separation,
S and larger degeneracy
(both = B)

. = — — .

» Successive B'’s that produce orbits with the same area:
S,=(n+1/2) 2 relhic B N S(l 1)_27[6
S '= (n-1/2) 2 r elic B' (B' > B) he

B B')
equal increment of 1/B
reproduces similar orbits



Oscillation of the DOS at the Fermi energy

Two extremal
orbits

* Number of states are
proportional to areas of
cylinders in energy shell

» The number of states at E; are
highly enhanced when there are
extremal orbits on the FS
 There are extremal orbits at
regular interval of 1/B

 This oscillation in 1/B can be
detected in any physical quantity

that depends on the DOS

Hmkz

Orbit of
energy B



Determination of FS * In the dHVA experiment of silver, the
two different periods of oscillation are
due two different extremal orbits

1 1) 2re

Recall that S,| —— =
B B') #c

» Therefore, from the two periods we can
determine the ratio between the sizes of
the "neck" and the "belly"

A;11(belly)/A;;,(neck)=51

X K

N
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Bloch electron in crossed E and H fields (both uniform)

dk

7~ eE —elxB B
dt C
__2% 5
Ch ok >
N - /// E
where £(k)=¢&(k)—nk -w,w=c—ExB
B w
The 2nd term is usually very small compared to ¢ (k)
So the effect is to tilt the band structure slightly
(max along w, min L w), and earlier analysis about the
cyclotron orbit still applies (not restricted to closed orbits).
Real space orbit Current density ~ j, =—en <rj>
hi(ﬁ £ Etj — _efx B If “all” orbits on the FS are closed, then
dt h C c
. - iy - nec -~ hy
: ~ _ - ry=e—ExB—>jJ), =——ExB
—>r=z§i(k+3Etij () =egExB ] =-TEx
dt h
_ _ - . - E/~ - This result is valid for
—>F()-r(0) =1, (k(t) - k(o))>< B+ CE< E x B)t different band structures!

ExB drift

(independent of the sign of charge)



supplementary

Derivation of the semiclassical dynamics
(generalized version, only an outline. See Marder Sec. 16.4 for more)

1. Construct a wavepacket from one Bloch band
that is localized in both the r and the k spaces.

4 2. Using the time-dependent variational principle
¢ <F‘W> to get the effective Lagrangian

AN g L. (%, k;F k) <W\|h——H\vv>

. :hEC.§+hﬁc.ﬁ_gA.ﬁ_g(ﬁiﬁc)
<IZ‘W> Berry connection
S0\ 0
AN RO =i{u, | =,
A/J ,f K Wavepacket energy
F ok " a e -, =
] £(0.K) = (k) —ef(r)+——L(k)-B

Self-rotating angular momentum

L(k)=m{W |(F-T,)xV|W)



supplementary

3. Using the L to get the Three basic quantities of a
equations of motion Bloch electron:
(o, gk dk E i « Bloch energy &, (k)
dt C
dif 16 - - - » Berry curvature,
{ m = Yl k xQ(k) (~an effective B field in k-space)
ou| |ou
e Q(k)—<k k>
L 8(k)=8o(k)—e¢(r)+2—mL(k)-B ok 1o

e Angular momentum
(in Rammal-Wilkinson form)

@
ok

Berry curvature

Qk) =V xR(K) E(E):ﬂ<a—“

Two “kinetic” momenta

mv and %K

Chang and Niu, PRB 1996
Sundaram and Niu, PRB 1999



