Chap 7

Non-interacting electrons in a periodic potential

- Bloch theorem
- The central equation
- Brillouin zone
- Rotational symmetry

Bloch recalled,
The main problem was to explain how the electrons could sneak by
all the ions in a metal so as to avoid a mean free path of the order of atomic distances. Such a distance was much too short to explain the observed resistances, which even demanded that the mean free path become longer and longer with decreasing temperature.

By straight Fourier analysis I found to my delight that the wave differed from the plane wave of free electrons only by a periodic modulation.

This was so simple that I didn't think it could be much of a discovery, but when I showed it to Heisenberg he said right away: "That's it!"

Lattice Hamiltonian

$$
\begin{aligned}
& {\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+U(\vec{r})\right] \psi=\varepsilon \psi} \\
& U(\vec{r}+\vec{R})=U(\vec{r})
\end{aligned}
$$

- Translation operator

$$
T_{\vec{R}}=\exp \left(\frac{i}{\hbar} \vec{p} \cdot \vec{R}\right), \quad\left(T_{\vec{a}_{1}}, T_{\vec{a}_{2}}, T_{\vec{a}_{3}} \text { mutually commute }\right)
$$

- Translation symmetry of the lattice $\rightarrow\left[H, T_{\vec{R}}\right]=0$
- Simultaneous eigen-states

$$
\left\{\begin{array}{l}
H \psi_{\alpha \beta}=\varepsilon_{\alpha} \psi_{\alpha \beta} \\
T_{\vec{R}} \psi_{\alpha \beta}=C_{\vec{R}, \beta} \psi_{\alpha \beta}
\end{array}\right.
$$

$\begin{aligned} & |\Psi(x)|^{2} \text { is the same } \\ & \text { in each unit cell }\end{aligned}\left|C_{\vec{R}}\right|=1 ; \quad C_{\vec{R}} C_{\vec{R}^{\prime}}=C_{\vec{R}+\vec{R}^{\prime}}$

$$
\begin{aligned}
& \Rightarrow C_{\vec{R}, \vec{\beta}}=e^{i \vec{\beta} \cdot \vec{R}} \\
& \therefore \psi_{\alpha \beta}(\vec{r}+\vec{R})=e^{i \vec{\beta} \cdot \vec{R}} \psi_{\alpha \beta}(\vec{r})
\end{aligned}
$$

Re-label

$$
\begin{array}{ll}
H \psi_{n \vec{k}}=\varepsilon_{n \vec{k}} \psi_{n \vec{k}} & \begin{array}{l}
\text { Bloch energy, } \\
T_{\vec{R}} \psi_{n \vec{k}}=e^{i \vec{k} \cdot \vec{R}} \psi_{n \vec{k}}
\end{array}
\end{array}
$$

orthogonality

$$
\left\langle\psi_{n \vec{k}} \mid \psi_{n^{\prime} \overrightarrow{k^{\prime}}}\right\rangle=\delta_{n n^{\prime}} \delta_{\vec{k} \vec{k}^{\prime}} \quad[\times V]
$$

Bloch theorem (1928)

The electron states in a periodic potential can be written as

$$
\psi_{n \vec{k}}(\vec{r})=e^{i \vec{k} \cdot \vec{r}} u_{n \vec{k}}(\vec{r}) \quad \longleftarrow \begin{aligned}
& \text { Marder's has } \\
& \text { a factor } \frac{1}{\sqrt{N}}
\end{aligned}
$$

where $u_{k}(\mathbf{r})=u_{k}(\mathbf{r}+\mathbf{R})$ is a cell-periodic function
Pf: define $\quad u_{n \vec{k}}(\vec{r})=e^{-i \vec{k} \cdot \vec{r}} \psi_{n \vec{k}}(\vec{r})$

$$
\text { then from } \quad \psi_{n \vec{k}}(\vec{r}+\vec{R})=e^{i \vec{k} \cdot \vec{R}} \psi_{n \vec{k}}(\vec{r})
$$

$$
\Rightarrow \quad u_{n \vec{k}}(\vec{r}+\vec{R})=u_{n \vec{k}}(\vec{r}) .
$$

The cell-periodic part $\mathrm{u}_{\mathrm{nk}}(\mathrm{x})$ depends on the form of the potential.

- Effective Hamiltonian for $u(r)$
$\tilde{H}(\vec{k}) u_{n \vec{k}}=\varepsilon_{n k} u_{n \vec{k}} \quad$ within one unit cell
where $\tilde{H}(\vec{k}) \equiv e^{-i \vec{k} \cdot \vec{r}} H e^{i \vec{k} \cdot \vec{r}}=\frac{\hbar^{2}}{2 m}\left(\frac{\nabla}{i}+\vec{k}\right)^{2}+U(\vec{r})$
(1023 times less effort than the original Schrodinger eq.)

Allowed values of k are determined by the B.C.
Periodic B.C
(3-dim case)

$$
\begin{aligned}
& \Psi_{n \vec{k}}\left(\vec{r}+N_{i} \vec{a}_{i}\right)=\Psi_{n \vec{k}}(\vec{r}), \quad i=1,2,3 \\
& \rightarrow e^{i N_{i} \vec{k} \cdot \vec{a}_{i}}=1, \forall i \\
& \rightarrow N_{i} \vec{k} \cdot \vec{a}_{i}=2 \pi m_{i}, m_{i} \in Z, \forall i
\end{aligned}
$$

$$
\rightarrow \vec{k}=\frac{m_{1}}{N_{1}} \vec{b}_{1}+\frac{m_{2}}{N_{2}} \vec{b}_{2}+\frac{m_{3}}{N_{3}} \vec{b}_{3}
$$

$$
\begin{aligned}
& \Delta^{3} \vec{k}=\frac{\vec{b}_{1}}{N_{1}} \cdot\left(\frac{\vec{b}_{2}}{N_{2}} \times \frac{\vec{b}_{3}}{N_{3}}\right)=\frac{1}{N} \vec{b}_{1} \cdot\left(\vec{b}_{2} \times \vec{b}_{3}\right) \\
& =\frac{1}{N} \frac{(2 \pi)^{3}}{v}, \vec{a}_{1} \cdot\left(\vec{a}_{2} \times \vec{a}_{3}\right)=v=\frac{V}{N} \\
& =\frac{(2 \pi)^{3}}{V}, \text { as in the free-electron case. } \longrightarrow \frac{\vec{b}_{1} \cdot\left(\vec{b}_{2} \times \vec{b}_{3}\right)}{\Delta^{3} \vec{k}}=N
\end{aligned}
$$

Therefore, there are N k-points in a unit cell (of reciprocal lattice), where $N=$ total number of primitive cells in the crystal.

Fourier decomposition and reciprocal lattice vectors
If $f(r)$ has lattice translation symmetry, $f(r)=f(r+R)$, for any lattice vector R [eg. $f(r)$ can be the lattice potential], then it can be expanded as,

$$
f(\vec{r})=\sum_{\mathrm{all} \vec{G}} e^{i \vec{G} \cdot \vec{r}} f_{\vec{G}}
$$

where \mathbf{G} is the reciprocal lattice vector.
Pf: Fourier expanson,

$$
\begin{aligned}
& f(\vec{r})=\sum_{\vec{k}} e^{i \vec{k} \cdot \vec{r}} f(\vec{k}) \\
& f(\vec{r}+\vec{R})=\sum_{\vec{k}} e^{i \vec{k} \cdot \vec{R} \cdot} e^{i \vec{k} \cdot \vec{r}} f(\vec{k})=f(\vec{r}) . \\
& \text { Therefore, } e^{i \vec{k} \cdot \vec{R}}=1 \text { for } \forall \vec{R}
\end{aligned} \quad \begin{aligned}
\\
\end{aligned} \quad \begin{aligned}
\vec{k} & =h \vec{b}_{1}+k \vec{b}_{2}+l \vec{b}_{3} \\
& =\vec{G}_{h k l} \quad \forall h, k, l
\end{aligned}
$$

The expansion above is very general, it applies to

- all types of Bravais lattice (e.g. bcc, fcc, tetragonal, orthorombic...)
- in every dimension (1, 2, and 3)

All you need to do is find out the reciprocal lattice vectors \mathbf{G}

A simple example:
electron density (or potential, or cell-periodic function) of a 1-dim lattice

$$
\xrightarrow[\begin{array}{l}
\vec{a}_{1}=a \hat{x}, \\
\rightarrow \vec{b}_{1}=(2 \pi / a) \hat{x} \\
\vec{G}_{n}=n \vec{b}_{1}, \\
\\
\vec{G}_{n} \cdot \vec{r}=\left(n \vec{b}_{1}\right) \cdot(x \hat{x})=(2 \pi n / a) x \\
\therefore \rho(x)=\sum_{n} e^{(2 \pi n / a) x} \rho_{n}
\end{array}]{\mathrm{x}}
$$

Some useful formulas (for electrons in a lattice box)

1D

$$
\begin{aligned}
& \delta(k)=\frac{L}{2 \pi} \delta\left(\frac{k}{2 \pi / L}\right) \\
& \rightarrow \frac{L}{2 \pi} \delta_{k, 0} \\
& \therefore \quad L \delta_{k, 0} \leftrightarrow 2 \pi \delta(k)
\end{aligned}
$$

$$
\sum_{k \in 1 \text { st BZ }} e^{i k \cdot n a}=N \delta_{n, 0}
$$

$$
\sum_{n} e^{i k \cdot n a}=N \delta_{k, 0}
$$

$$
\int_{\text {cell }} d x e^{i G x}=a \delta_{G, 0}
$$

3D

$$
\begin{aligned}
& \delta(\vec{k})=\frac{L_{x} L_{y} L_{z}}{(2 \pi)^{3}} \delta\left(\frac{k_{x}}{2 \pi / L_{x}}\right) \delta\left(\frac{k_{x}}{2 \pi / L_{y}}\right) \delta\left(\frac{k_{x}}{2 \pi / L_{z}}\right) \\
& \quad \rightarrow \frac{V}{(2 \pi)^{3}} \delta_{\vec{k}, 0} \\
& \therefore V \delta_{\vec{k}, 0} \leftrightarrow(2 \pi)^{3} \delta(\vec{k})
\end{aligned}
$$

$$
\sum_{\vec{k} \in 1 \mathrm{st} \mathrm{BZ}} e^{i \vec{k} \cdot \vec{R}}=N \delta_{\vec{R}, 0}
$$

$$
\sum_{\vec{R}} e^{i \vec{k} \cdot \vec{R}}=N \delta_{\vec{k}, 0}
$$

Restrict k to the $1^{\text {st }} \mathrm{BZ}$, Cf. Marder, App A. 4

$$
\int_{\text {cell }} d^{3} r e^{i \vec{G} \cdot \vec{r}}=v \delta_{\vec{G}, 0}
$$

A+M, App. D

$$
\text { note: } \int_{a l l} d^{3} r e^{i \vec{k} \cdot \vec{r}}=\left\{\begin{array}{cl}
V \delta_{\vec{k}, 0} & \text { for discrete } k \\
(2 \pi)^{3} \delta(\vec{k}) & \text { for continuous } k
\end{array}\right.
$$

How do we determine $u_{\mathrm{k}}(\boldsymbol{x})$ from the potential $U(\boldsymbol{x})$?
Schrodinger equation

$$
\left[\frac{(\vec{p}+\hbar \vec{k})^{2}}{2 m}+U(\vec{r})\right] u_{\vec{k}}(\vec{r})=\varepsilon_{\vec{k}} u_{\vec{k}}(\vec{r})
$$

Keypoint: go to k-space to simplify the calculation

Fourier transform

1. the lattice potential

$$
U(\vec{r})=\sum_{\vec{G}} U_{\vec{G}} e^{i \vec{G} \cdot \vec{r}} \quad \mathbf{G}=2 \pi \mathbf{n} / \mathbf{a}
$$

2. the wave function

$$
u_{\vec{k}}(\vec{r})=\sum_{\vec{G}} C_{\vec{k}}(\vec{G}) e^{-i \vec{G} \cdot \vec{r}} \quad \mathbf{k}=2 \pi \mathbf{n} / \mathrm{L}
$$

Schrod. eq. in k-space aka. the central eq.

$$
\left(\varepsilon_{\vec{k}-\vec{G}}^{0}-\varepsilon_{k}\right) C_{\vec{k}}(\vec{G})+\sum_{\vec{G}^{\prime}} U_{\vec{G}^{\prime}-\vec{G}} C_{\vec{k}}\left(\vec{G}^{\prime}\right)=0, \varepsilon_{k}^{0} \equiv \frac{\hbar^{2} k^{2}}{2 m}
$$

Matrix form of the central eq. (in 1D) G=ng ($\mathrm{g}=2 \pi / \mathrm{a}$)

$$
\left(\begin{array}{ccccc}
\varepsilon_{k+2 g}^{0}-\varepsilon_{k} & U_{-g} & U_{-2 g} & U_{-3 g} & U_{-4 g} \\
U_{g} & \varepsilon_{k+g}^{0}-\varepsilon_{k} & U_{-g} & U_{-2 g} & U_{-3 g} \\
U_{2 g} & U_{g} & \varepsilon_{k}^{0}-\varepsilon_{k} & U_{-g} & U_{-2 g} \\
U_{3 g} & U_{2 g} & U_{g} & \varepsilon_{k-g}^{0}-\varepsilon_{k} & U_{-g} \\
U_{4 g} & U_{3 g} & U_{2 g} & U_{g} & \varepsilon_{k-2 g}^{0}-\varepsilon_{k}
\end{array}\right)\left(\begin{array}{c}
C_{k}(-2 g) \\
C_{k}(-g) \\
C_{k}(0) \\
C_{k}(g) \\
C_{k}(2 g)
\end{array}\right)=0 \quad \begin{aligned}
& \text { for a } \\
& \text { particular } k
\end{aligned}
$$

- For a given k , there are many eigen-energies $\varepsilon_{n k}$, with eigen-vectors $\boldsymbol{C}_{n k}$.

- when $U(x) \neq 0$, for a particular $k, u_{n k}$ is a linear combination of plane waves, with coefficients $\mathbf{C}_{n k}: \quad u_{n k}(x)=\sum_{G} C_{n k}(G) e^{-i G x}$

Also valid in higher dim

- From the central eq., one can see $\quad C_{k+G^{\prime}}\left(G+G^{\prime}\right)=C_{k}(G)$

$$
\begin{aligned}
& u_{n k}(x)=\sum_{G} C_{n k}(G) e^{-i G x} \\
& \Rightarrow \quad u_{n, k+G}(x)=e^{-i G x} u_{n k}(x) \\
& \psi_{n, k+G}(x)=\psi_{n k}(x)
\end{aligned}
$$

- Bloch energy $\varepsilon_{n, k+G}=\varepsilon_{n k}$

Example.

$$
\begin{aligned}
U(x) & =2 U \cos 2 \pi x / a \\
& =U \exp (2 \pi i x / a)+U \exp (-2 \pi i x / a) \quad\left(U_{g}=U_{-g}=U\right)
\end{aligned}
$$

Matrix form of the central eq.

$$
\left(\begin{array}{ccccc}
\varepsilon_{k+2 g}^{0}-\varepsilon_{k} & U & 0 & 0 & 0 \\
U & \varepsilon_{k+g}^{0}-\varepsilon_{k} & U & 0 & 0 \\
0 & U & \varepsilon_{k}^{0}-\varepsilon_{k} & U & 0 \\
0 & 0 & U & \varepsilon_{k-g}^{0}-\varepsilon_{k} & U \\
0 & 0 & 0 & U & \varepsilon_{k-2 g}^{0}-\varepsilon_{k}
\end{array}\right)\left(\begin{array}{c}
C_{k}(-2 g) \\
C_{k}(-g) \\
C_{k}(0) \\
C_{k}(g) \\
C_{k}(2 g)
\end{array}\right)=0
$$

A solvable model in 1-dim: The Kronig-Penny model (1930) (not a bad model for superlattice)

$$
\begin{array}{ll}
U(x)=A a \sum_{s} \delta(x-s a)=\sum_{n} U_{n} e^{i G_{n} x}=X_{Q}+2 \sum_{n>0} U_{n} \cos G_{n} x \\
U_{n}=\frac{1}{a} \int_{-a / 2}^{a / 2} d x U(x) e^{-i G_{n} x}=A & \frac{\hbar^{2}}{2 m A}=\sum_{n} \frac{1}{K^{2}-\left(k-\frac{2 \pi n}{a}\right)^{2}}, \quad K^{2} \equiv \frac{2 m \varepsilon_{k}}{\hbar^{2}} \\
\begin{aligned}
\left(\varepsilon_{k-n g}^{0}-\varepsilon_{k}\right) C_{n}+\sum_{m} U_{m-n} C_{m}=0 & \\
\Rightarrow C_{n}=\frac{A}{\varepsilon_{k}-\varepsilon_{k-n g}^{0}} \sum_{m} C_{m} & =\frac{1}{2 K} \sum_{n}\left(\frac{1}{K+k-\frac{2 \pi n}{a}}+\frac{1}{K-k+\frac{2 \pi n}{a}}\right) \\
\Rightarrow 1=\sum_{n} \frac{A}{\varepsilon_{k}-\varepsilon_{k-n g}^{0}} & \left.\quad \cot (K+k) \frac{a}{2}+\cot (K-k) \frac{a}{2}\right]
\end{aligned} \\
& \sum_{n} \frac{1}{x+n \pi}=\cot x
\end{array}
$$

$$
\begin{aligned}
& \Rightarrow \frac{\hbar^{2}}{2 m A}=\frac{a}{2 K} \frac{\sin K a}{\cos k a-\cos K a} \\
& \Rightarrow \frac{P}{K a} \sin K a+\cos K a=\cos k a \quad\left(P=\frac{m A a^{2}}{\hbar^{2}}\right)
\end{aligned}
$$

K has a real solution when

$$
\begin{aligned}
\varepsilon_{k} & =\varepsilon_{n, k^{\prime}+G} \quad\left(k^{\prime} \in 1 \text { st BZ }\right) \\
& =\varepsilon_{n, k^{\prime}}
\end{aligned}
$$

Sometimes it is convenient to extend the domain of k with the following requirement

Fig from Dr. Suzukis' note (SUNY@Albany)

First Brillouin zone for 2D reciprocal lattice

$$
\begin{aligned}
\varepsilon_{n, \vec{k}+\vec{G}} & =\varepsilon_{n, \vec{k}} \\
\psi_{n, \vec{k}+\vec{G}}(\vec{r}) & =\psi_{n, \vec{k}}(\vec{r})
\end{aligned}
$$

Ex: Hexagonal lattice
direct lattice

reciprocal lattice

The first BZ of FCC lattice (its reciprocal lattice is BCC lattice)

The first BZ of BCC lattice (its reciprocal lattice is FCC lattice)

Momentum and velocity of an electron in a Bloch state

- momentum

$$
\begin{aligned}
& \text { Not a momentum eigen-state } \\
& \downarrow \\
& \frac{\hbar}{i} \nabla \psi_{n k}=\hbar \vec{k} \psi_{n k}+e^{i \vec{k} \cdot \vec{\cdot}} \frac{\hbar}{i} \nabla u_{n k} \\
& \text { Crystal (quasi)-momentum }
\end{aligned}
$$

$$
\psi_{n k}(x)=\sum_{G} C_{n, k-G} e^{i(k-G) x}
$$

\therefore for a Bloch state with crystal momentum hk , the actual momentum can have, with various probabilities, an infinity of values.

- velocity

$$
\begin{aligned}
\vec{v}_{n}(\vec{k}) & =\frac{\hbar}{m}\left\langle\psi_{n k}\right| \frac{1}{i} \nabla\left|\psi_{n k}\right\rangle \\
& =\frac{\hbar}{m}\left\langle u_{n k}\right| \frac{1}{i} \nabla+\vec{k}\left|u_{n k}\right\rangle \\
& =\left\langle u_{n k}\right| \frac{\partial \tilde{H}(\vec{k})}{\hbar \partial \vec{k}}\left|u_{n k}\right\rangle \\
& =\frac{\partial \varepsilon_{n}(\vec{k})}{\hbar \partial \vec{k}}
\end{aligned}
$$

~ group velocity

- In a perfect lattice, the motion is unhindered
- velocity is zero at Brillouin zone boundary

A. Wilson (1932)
... Bloch, in showing that tightly bound electrons could in fact move through the lattice, had "proved too much"-that all solids should be metals. Were insulators simply very poor conductors? However, implicit in Peierls's papers on the Hall effect lay the clue, not carried further by Peierls, that a filled band would carry no current.

A filled band does not carry current (Peierls, 1929)

- Electric current density

$$
\vec{j}=\frac{1}{V} \sum_{\text {filled } \vec{k}}(-e \vec{v})=-e \int \frac{d^{3} k}{(2 \pi)^{3}} \frac{1}{\hbar} \frac{\partial \varepsilon_{n}(\vec{k})}{\partial \vec{k}}
$$

- Inversion symmetry, $\varepsilon_{n}(k)=\varepsilon_{n}(-k)$
\rightarrow electrons with momenta $\hbar k$ and $-\hbar k$ have opposite velocities
\rightarrow no net current in equilibrium
\rightarrow a filled band carries no current even in an external field

Difference between conductor and insulator (Wilson, 1931)

- There are N k-points in an energy band, each k-point can be occupied by two electrons (spin up and down).
\therefore each energy band has 2 N "seats" for electrons.
- If a solid has odd number of valence electron per primitive cell, then the energy band is half-filled (conductor).

For example, all alkali metals are conductors

- If a solid has even number of valence electron per primitive cell, then the enerav band is filled (insulator).

Wilson recalls Bloch's reply after hearing his arguments:
"No, it's quite wrong, quite wrong, quite wrong, not possible at all."

A nearly-filled band

- "charge" of a hole: $\quad \vec{j}=-\frac{e}{V} \sum_{\text {filled } \vec{k}} \vec{v}$

$$
\begin{aligned}
& =-\frac{e}{V}\left(\sum_{\vec{k} \in \operatorname{lstsZ}} \vec{v}-\sum_{\text {unfilled } \bar{k}} \vec{v}\right) \\
& =+\frac{e}{V} \sum_{\text {unfilled } \vec{k}} \vec{v}
\end{aligned}
$$

\therefore unoccupied states behave as +e charge carriers

- "momentum" of a hole:

If an electron of wavevector k_{0} is missing, then the sum over filled $k, \sum k=-k_{0}$. Alternatively speaking, a hole with wavevector $k_{h}\left(=-k_{0}\right)$. is produced.

DOS for a Bloch band $\varepsilon_{\mathrm{nk}}$

$$
\begin{aligned}
& D(\varepsilon) d \varepsilon=\left(\frac{L}{2 \pi}\right)^{3} \int_{\text {Shell }} d^{3} k \\
& d^{3} k=d S_{\varepsilon} d k_{\perp} \\
& d \varepsilon=\left|\nabla_{\vec{k}} \varepsilon\right| d k_{\perp} \\
& \therefore d^{3} k=d S_{\varepsilon} \frac{d \varepsilon}{\left|\nabla_{\vec{k}} \varepsilon\right|} \\
& \Rightarrow D(\varepsilon)=\left(\frac{L}{2 \pi}\right)^{3} \int \frac{d S_{\varepsilon}}{\left|\nabla_{\vec{k}} \varepsilon\right|}
\end{aligned}
$$

If $v_{k}=\left|\nabla_{\vec{k}} \varepsilon\right|=0$, then there is "van Hove singularity" (1953)

For example, DOS of 1D energy bands

Van Hove singularity

