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Non-interacting electrons in a periodic potential
• Bloch theorem

• The central equation

• Brillouin zone

• Rotational symmetry 



Bloch recalled,

The main problem was to explain how the electrons could sneak by 

all the ions in a metal so as to avoid a mean free path of the order of 

atomic distances. Such a distance was much too short to explain the 

observed resistances, which even demanded that the mean free path 

become longer and longer with decreasing temperature.

By straight Fourier analysis I found to my delight that the wave differed 

from the plane wave of free electrons only by a periodic modulation. 

This was so simple that I didn't think it could be much of a discovery, 

but when I showed it to Heisenberg he said right away: "That's it!"

Hoddeson L – Out of the Crystal Maze, p.107
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The electron states in a periodic potential can be written as

where uk(r)= uk(r+R) is a cell-periodic function

Bloch theorem (1928)

The cell-periodic part unk(x) depends on the form of the potential.
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• Effective Hamiltonian for u(r)
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Allowed values of k are determined by the B.C.
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Therefore, there are N k-points in a unit cell (of reciprocal lattice), 

where N = total number of primitive cells in the crystal.
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If f(r) has lattice translation symmetry, f(r)=f(r+R), for any lattice vector R  

[eg. f(r) can be the lattice potential], then it can be expanded as,
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The expansion above is very general, it applies to

• all types of Bravais lattice (e.g. bcc, fcc, tetragonal, orthorombic...)

• in every dimension (1, 2, and 3)

Fourier decomposition and reciprocal lattice vectors

All you need to do is find out the reciprocal lattice vectors G

important



A simple example: 

electron density (or potential, or cell-periodic function) 
of a 1-dim lattice
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Some useful formulas (for electrons in a lattice box)
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How do we determine uk(x) from the potential U(x)? 

Schrodinger equation

Schrod. eq. in k-space 
aka. the central eq.

Fourier transform 

1. the lattice potential

2. the wave function
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Matrix form of the central eq. (in 1D)

• For a given k, there are many eigen-energies εnk, with eigen-vectors Cnk.
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U(x) = 2U cos2πx/a 

= U exp(2πix/a)+U exp(-2πix/a) (Ug=U-g=U)

Matrix form of the central eq.
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a

A solvable model in 1-dim: The Kronig-Penny model (1930)
(not a bad model for superlattice)
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Sometimes it is convenient to 
extend the domain of k with the 
following requirement
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BZ

First Brillouin zone for 2D reciprocal lattice

reciprocal lattice

Ex: Hexagonal lattice

direct lattice

Wigner-Seitz cell of 
the reciprocal lattice

, ,

, ,( ) ( )
n k G n k

n k G n kr r

ε ε

ψ ψ
+

+

=

=



The first BZ of FCC lattice (its reciprocal lattice is BCC lattice)

4π/a

The first BZ of BCC lattice (its reciprocal lattice is FCC lattice)
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Momentum and velocity of an electron in a Bloch state
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• In a perfect lattice, the 
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A. Wilson (1932) 

… Bloch, in showing that tightly bound electrons could in fact move 

through the lattice, had "proved too much"—that all solids should be 

metals. Were insulators simply very poor conductors? However,

implicit in Peierls's papers on the Hall effect lay the clue, not carried 

further by Peierls, that a filled band would carry no current. 

Hoddeson L – Out of the Crystal Maze, p.120

A filled band does not carry current (Peierls, 1929)

Electric current density

Inversion symmetry,εn(k)= εn(-k)

electrons with momenta ħk and -ħk have opposite velocities

no net current in equilibrium

a filled band carries no current even in an external field
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• If even number of electrons per primitive cell, then there are 2 

possibilities: (a) no energy overlap or (b) energy overlap.

E.g., alkali earth elements can be conductor or insulator. 

• If a solid has odd number of valence electron per primitive 

cell, then the energy band is half-filled (conductor).             

For example, all alkali metals are conductors

Difference between conductor and insulator (Wilson, 1931)

• There are N k-points in an energy band, each k-point can be 

occupied by two electrons (spin up and down). 

∴ each energy band has 2N “seats” for electrons.

• If a solid has even number of valence electron per primitive 

cell, then the energy band is filled (insulator). 

Wilson recalls Bloch's reply after hearing his arguments:       

"No, it's quite wrong, quite wrong, quite wrong, not possible at all."
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A nearly-filled band

filled 

1st BZ unfilled 

unfilled 

k

k k

k

ej v
V

e v v
V
e v
V

∈

= −

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠

= +

∑

∑ ∑

∑
∴ unoccupied states 
behave as +e charge 
carriers

If an electron of wavevector k0 is missing, then the sum over filled k, Σk= -k0.

Alternatively speaking, a hole with wavevector kh (= -k0). is produced.

• “momentum” of a hole:

• “charge” of a hole:



DOS for a Bloch band εnk
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"van Hove singularity" (1953)
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For example, DOS of 1D energy bands

Van Hove 
singularity


