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Von Laue was struck in 1912 by the intuition that X-ray might scatter off 
crystals in the way that ordinary light scatters off a diffraction grating. 

He discussed  

• For example, For NaCl, the thermal fluctuation is expected to be 
2．10-9 cm ~  the wavelength of X-ray 10-9 cm (Marder, p.43)

• Now we know that thermal fluctuation would only broaden the 
diffraction peaks, but not distroy them.

• Laue did not actually do the experiment himself.  Rather, he 
persuaded a couple of graduate students to do the experiment for him.  
Laue then set an example that has inspired PIs ever since – he was 
given all the credit! https://wasatch.biochem.utah.edu/chris/teaching/2011/SM_3.pdf



Scattering from an array of atoms (Von Laue, 1912)

• The same analysis applies to EM wave, electron wave, 

neutron wave… etc.
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• atomic form factor: Fourier transform of charge distribution n(ρ) 
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http://capsicum.me.utexas.edu/ChE386K/docs/29_electron_atomic_scattering.ppt

The atom form factor

10 electrons

tighter

~ Kr 36

~ Ar 18
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Two-atom scattering

Scattering off an atom not at the origin
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ψ ≈ +− ⋅ − ⋅e ei k i k aΔ Δ0 + − ⋅e i k aΔ 2 + − ⋅e i k aΔ 3 + − ⋅e i k aΔ 4 http://hyperphysics.phy-astr.gsu.edu/hbase/hfram
e.htm
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N-atom scattering: one dimensional case
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For a Bravais lattice

The lattice-sum can be separated

Number of atoms 
in the crystal
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N-atom scattering (3D case, neglect multiple scatterings)

Laue‘s diffraction 
condition

See 2 pages later



dj: location of the j-th atom in a unit cell

Eg.,

Scattering from a crystal with basis
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Laue‘s diffraction condition

What are the △k’s that satisfy this condition?

• Simplest case: h=1, k, l=0 
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• That is, the set of solutions form 
a lattice with primitive vectors    
b1, b2, and b3 

(reciprocal lattice) 



(direct) lattice reciprocal lattice
primitive vectors a1,a2,a3                    primitive vectors b1,b2,b3
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Reciprocal lattice (倒晶格 )

Def. 1

• The reciprocal of a reciprocal lattice is the direct lattice 
(obvious from Def.1)



Ex: Simple cubic lattice
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• When the direct lattice rotates, its reciprocal lattice rotates
the same amount as well.
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An Indexed PbSO4 Crystal

The Miller indices (h,k,l) for a crystal plane

rules: 

1. 取截距 (以a1, a2, a3為單位) 得 (x, y, z)

no need to be primitive vectors

3. 通分成互質整數 (h,k,l)

2. 取倒數 (1/x,1/y,1/z)

Miller indices

a1

a2

a3

(h,k,l)=(3,2,6)
x=2

y=3

z=1



Cubic crystals (including bcc, fcc… etc)

• Square bracket [h,k,l] refers to the “direction” ha1+ka2+la3, 
instead of a crystal plane.

[1,1,1]

• For cubic crystals, [h,k,l] direction ⊥ (h,k,l) planes



Diamond structure (eg. C, Si or Ge)

Termination of 3 low-index surfaces:

• {h,k,l} =  (h,k,l)-plane + those equivalent to it by crystal symmetry

• <h,k,l>= [h,k,l]-direction + those equivalent to it by crystal symmetry



Miller Indices for hexagonal lattice (i, j, k, l)
• corresponding to the I, J, K, L axes below

I

J

K

L

(1,0, 1, 1)

• k = - (i+j)

advantage?
[Courtesy of M.F.Yang at Tunhai Univ.]

1. 
(1 0 0) plane  <-> (1 0 -1 0)
[2 1 0] vector <-> [1 0 -1 0]
[2 1 0] vector ⊥ (1 0 0) plane, 
or we can say
[1 0 -1 0] vector⊥ (1 0 -1 0)  plane.

2.
For two side faces, they can be       
(1 0 0)、(-1 1 0), or
(1 0 -1 0)、(-1 1 0 0),
which belong to the same {-1 1 0 0}



1 2 3( , , ) planes hklh k l G hb kb lb⊥ ≡ + +

Geometrical relation between Ghkl vector and (hkl) planes 
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Inter-plane distance
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• In general, planes with higher index have smaller inter-plane distance



Laue’s diffraction condition

k’ = k + Ghkl

More than one (or none) 
solutions may be found.

• One problem: there are infinitely many Ghkl’s.

• It’s convenient to solve it graphically using the Ewald construction

• Given an incident k, want to find a k’ that satisfies this condition

(under the constraint |k’|=|k|)

k

k’ G

(Ewald 構圖法)



Laue’s condition = Braggs’ condition
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• From the Laue condition, we have



Braggs’ view of the diffraction (1912, father and son)

Treat the lattice as a stack of lattice planes

• mirror-like reflection from crystal planes when
2dsinθ = nλ

• Measure λ, θ get distance between crystal planes d

• Difference from the usual mirror reflection:　
λ > 2d, no reflection

　 λ < 2d, reflection only at certain angles

You can view the same phenomena from 2 (or more) 
different angles, and each can get you a Nobel prize!

1915

25



2dsinθ = nλ

Rotating crystal method



Powder method



Eliminates all the points in the 
reciprocal cubic lattice with S=0.
The result is a bcc lattice, as it 
should be!

The structure factor for 
a crystal with basis: 1
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Example: 
fcc lattice = cubic lattice with a 4-point basis
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Homework: Find out the structure factor of the honeycomb structure, then draw 
its reciprocal structure. Different points in the reciprocal structure may have 
different structure factors. Draw a larger dots if the associated |S|2 is larger.



Watson and Crick, 1953

(See Double helix, highly recommended)

Franklin and Gosling, 1953 simulation



Shen et al, Phys Today Mar, 2006
Braggs, 1914

Kendrew

Hodgkin

Perutz

hemoglobin

a ribosome



Marder, p.65


