Chap 3 Scattering and structures

M.C. Chang

Von Laue was struck in 1912 by the intuition that X-ray might scatter off crystals in the way that ordinary light scatters off a diffraction grating.
He discussed
his idea with colleagues Sommerfeld, Wien and others with the result of encountering a strong disbelief in a significant outcome of any diffraction experiment based upon the regularity of the internal structure of crystals. It was argued that the inevitable temperature motion of the atoms would impair the regularity of the grating to such an extent that no pronounced diffraction maxima could be expected. -Ewald (1962), p. 42

- For example, For NaCl , the thermal fluctuation is expected to be $2 \cdot 10^{-9} \mathrm{~cm}$ ~ the wavelength of X-ray $10^{-9} \mathrm{~cm}$ (Marder, p.43)
- Now we know that thermal fluctuation would only broaden the diffraction peaks, but not distroy them.
- Laue did not actually do the experiment himself. Rather, he persuaded a couple of graduate students to do the experiment for him. Laue then set an example that has inspired Pls ever since - he was given all the credit! https://wasatch.biochem.utah.edu/chris/teaching/2011/SM_3.pdf

Scattering from an array of atoms (Von Laue, 1912)

- The same analysis applies to EM wave, electron wave, neutron wave... etc.

Scattering off an atom at the origin:

- atomic form factor: Fourier transform of charge distribution $n(\rho)$

$$
f_{a}(\Delta \vec{k})=\int d V e^{-i \Delta \vec{k} \cdot \vec{p}} n(\vec{\rho}), \quad \Delta \vec{k} \equiv \vec{k}^{\prime}-\vec{k}
$$

The atom form factor

$$
f_{a}(\vec{q})=\int d V e^{-i q \cdot \vec{p}} n(\vec{\rho})
$$

http://capsicum.me.utexas.edu/ChE386K/docs/29_electron_atomic_scattering.ppt

Scattering off an atom not at the origin
scattered wave $\psi(\vec{r}) \propto f_{a}(\Delta \vec{k}) \frac{e^{i k|\vec{r}-\vec{R}|}}{|\vec{r}-\vec{R}|} e^{i \vec{k} \cdot \vec{R}}$
$|\vec{r}-\vec{R}| \approx r-\hat{r} \cdot \vec{R}$
$\frac{1}{|\vec{r}-\vec{R}|} \approx \frac{1}{r}+O\left(r^{-2}\right)$
$\therefore \psi(\vec{r}) \propto f_{a}(\Delta \vec{k}) \frac{e^{i k r}}{r} e^{-i \Delta \vec{k} \cdot \vec{R}}$

Two-atom scattering

$$
\psi(\vec{r}) \propto f_{a} \frac{e^{i k r}}{r}\left(e^{-i \Delta \vec{k} \cdot \vec{R}_{1}}+e^{-i \Delta \vec{k} \cdot \vec{R}_{2}}\right)
$$

N -atom scattering: one dimensional case

$$
\psi \approx e^{-i \Delta k \cdot 0}+e^{-i \Delta k \cdot a}+e^{-i \Delta k \cdot 2 a}+e^{-i \Delta k \cdot 3 a}+e^{-i \Delta k \cdot 4 a}
$$

Five Slit Interference
Thla yill waniniol uy the single olit diffrection
: : : :
Incldent
plane
plene
uimelupe.

$|\psi|^{2}$
$\psi \approx f_{a} \sum_{n=1}^{N} e^{-i \Delta \vec{k} \cdot n \bar{a}}=\frac{1-\exp (-i N \Delta \vec{k} \cdot \vec{a})}{1-\exp (-i \Delta \vec{k} \cdot \vec{a})}$
For large N, ψ is nonzero only when
$\Delta \vec{k} \cdot \vec{a}=2 \pi h \quad(h$ is an integer)

N -atom scattering (3D case, neglect multiple scatterings)

For a Bravais lattice

$$
\psi(\vec{r}) \propto f_{a} \sum_{\vec{R}} e^{-i \Delta \vec{k} \cdot \vec{R}}, \quad \vec{R}=n_{1} \vec{a}_{1}+n_{2} \vec{a}_{2}+n_{3} \vec{a}_{3} .
$$

The lattice-sum can be separated

$$
\begin{gathered}
\sum_{\vec{R}} e^{-i \Delta \vec{k} \cdot \vec{R}}=\left(\sum_{n_{1}} e^{-i \Delta \vec{k} \cdot n_{1} \vec{a}_{1}}\right)\left(\sum_{n_{2}} e^{-i \Delta \vec{k} \cdot n_{2} \vec{a}_{2}}\right)\left(\sum_{n_{3}} e^{-i \Delta \vec{k} \cdot n_{3} \vec{a}_{3}}\right) \\
\neq 0 \text { only when } \\
\begin{array}{l}
\Delta \vec{k} \cdot \vec{a}_{1}=2 \pi h, \\
\Delta \vec{k} \cdot \vec{a}_{2}=2 \pi k, \\
\Delta \vec{k} \cdot \vec{a}_{3}=2 \pi l .
\end{array} \quad \begin{array}{l}
\text { Laue‘s diffraction } \\
\text { condition }
\end{array} \\
\Rightarrow \sum_{\vec{R}} e^{-i \Delta \vec{k} \cdot \vec{R}}=N \delta_{\Delta \vec{k} \cdot \vec{a}_{1}, 2 \pi h} \delta_{\Delta \vec{k} \cdot \vec{a}_{2}, 2 \pi k} \delta_{\Delta \vec{k} \cdot \vec{a}_{3}, 2 \pi l}=N \delta_{\Delta \vec{k}, \vec{G}_{h k l}}^{\uparrow} \\
\quad \begin{array}{l}
\text { Number of atoms } \\
\text { in the crystal }
\end{array} \quad \text { See } 2 \text { pages later }
\end{gathered}
$$

Scattering from a crystal with basis
\boldsymbol{d}_{j} : location of the j-th atom in a unit cell
Eg.,

$$
\left.\begin{array}{rlr}
\psi(\vec{r}) & \propto \sum_{\vec{R}}\left(\sum_{j=1}^{p} f_{a j} e^{-i \Delta \vec{k} \cdot\left(\vec{R}+\vec{d}_{j}\right)}\right) \\
\text { for the } j \text {-th atom }
\end{array}\right)
$$

Laue's diffraction condition

$$
\begin{aligned}
& \Delta \vec{k} \cdot \vec{a}_{1}=2 \pi h, \\
& \Delta \vec{k} \cdot \vec{a}_{2}=2 \pi k, \\
& \Delta \vec{k} \cdot \vec{a}_{3}=2 \pi l .
\end{aligned}
$$

- Simplest case: $\mathrm{h}=1, \mathrm{k}, \mathrm{l}=0$

$$
\Delta \vec{k} \equiv \vec{b}_{1}=2 \pi \frac{\vec{a}_{2} \times \vec{a}_{3}}{\vec{a}_{1} \cdot\left(\vec{a}_{2} \times \vec{a}_{3}\right)}
$$

- Similarly, for $\mathrm{k}=1$ (the others 0), we have

$$
\Delta \vec{k} \equiv \vec{b}_{2}=2 \pi \frac{\vec{a}_{3} \times \vec{a}_{1}}{\vec{a}_{1} \cdot\left(\vec{a}_{2} \times \vec{a}_{3}\right)}
$$

- for l=1 (the others 0), we have

$$
\Delta \vec{k} \equiv \vec{b}_{3}=2 \pi \frac{\vec{a}_{1} \times \vec{a}_{2}}{\vec{a}_{1} \cdot\left(\vec{a}_{2} \times \vec{a}_{3}\right)}
$$

- In general, when h, k, l are nonzero,
$\left\{\begin{array}{l}\Delta \vec{k} \cdot \vec{a}_{1}=2 \pi h, \\ \Delta \vec{k} \cdot \vec{a}_{2}=2 \pi k, \\ \Delta \vec{k} \cdot \vec{a}_{3}=2 \pi l .\end{array}\right.$
The soultion is just

$$
\Delta \vec{k}=h \vec{b}_{1}+k \vec{b}_{2}+l \vec{b}_{3} \equiv \vec{G}_{h k l}
$$

- That is, the set of solutions form a lattice with primitive vectors $\mathrm{b}_{1}, \mathrm{~b}_{2}$, and b_{3} (reciprocal lattice)

Reciprocal lattice（倒晶格）

（direct）lattice primitive vectors $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}$
reciprocal lattice primitive vectors $\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}$

Def． 1

$$
\begin{aligned}
& \vec{b}_{1} \cdot \vec{a}_{1}=2 \pi, \vec{b}_{1} \cdot \vec{a}_{2}=\vec{b}_{1} \cdot \vec{a}_{3}=0 \\
& \vec{b}_{2} \cdot \vec{a}_{2}=2 \pi, \vec{b}_{2} \cdot \vec{a}_{3}=\vec{b}_{2} \cdot \vec{a}_{1}=0 \\
& \vec{b}_{3} \cdot \vec{a}_{3}=2 \pi, \vec{b}_{3} \cdot \vec{a}_{1}=\vec{b}_{3} \cdot \vec{a}_{2}=0
\end{aligned}
$$

$$
\vec{b}_{1} \propto \vec{a}_{2} \times \vec{a}_{3} \text { because of orthogonality, }
$$ then use $\vec{b}_{1} \cdot \vec{a}_{1}=2 \pi$ to determine the constant．

Def． 2

$$
\begin{aligned}
& \vec{b}_{1}=2 \pi \frac{\vec{a}_{2} \times \vec{a}_{3}}{\vec{a}_{1} \cdot\left(\vec{a}_{2} \times \vec{a}_{3}\right)}, \\
& \vec{b}_{2}=2 \pi \frac{\vec{a}_{3} \times \vec{a}_{1}}{\vec{a}_{1} \cdot\left(\vec{a}_{2} \times \vec{a}_{3}\right)}, \\
& \vec{b}_{3}=2 \pi \frac{\vec{a}_{1} \times \vec{a}_{2}}{\vec{a}_{1} \cdot\left(\vec{a}_{2} \times \vec{a}_{3}\right)}
\end{aligned}
$$

－The reciprocal of a reciprocal lattice is the direct lattice （obvious from Def．1）

Ex: Simple cubic lattice

$$
\begin{aligned}
& \vec{a}_{1}=a \hat{x}, \\
& \vec{a}_{2}=a \hat{y}, \\
& \vec{a}_{3}=a \hat{z} . \\
& \vec{a}_{1} \cdot\left(\vec{a}_{2} \times \vec{a}_{3}\right)=a^{3}
\end{aligned}
$$

$\vec{b}_{1}=2 \pi \frac{\vec{a}_{2} \times \vec{a}_{3}}{\vec{a}_{1} \cdot\left(\vec{a}_{2} \times \vec{a}_{3}\right)}=\frac{2 \pi}{a} \hat{x}$,
$\vec{b}_{2}=2 \pi \frac{\vec{a}_{3} \times \vec{a}_{1}}{\vec{a}_{1} \cdot\left(\vec{a}_{2} \times \vec{a}_{3}\right)}=\frac{2 \pi}{a} \hat{y}$,
$\vec{b}_{3}=2 \pi \frac{\vec{a}_{1} \times \vec{a}_{2}}{\vec{a}_{1} \cdot\left(\vec{a}_{2} \times \vec{a}_{3}\right)}=\frac{2 \pi}{a} \hat{z}$.
$\vec{b}_{1} \cdot\left(\vec{b}_{2} \times \vec{b}_{3}\right)=\left(\frac{2 \pi}{a}\right)^{3}$

- When the direct lattice rotates, its reciprocal lattice rotates the same amount as well.

FCC lattice

$$
\begin{aligned}
& \vec{a}_{1}=\frac{a}{2}(\hat{x}+\hat{y}), \\
& \vec{a}_{2}=\frac{a}{2}(\hat{y}+\hat{z}), \\
& \vec{a}_{3}=\frac{a}{2}(\hat{z}+\hat{x}) . \\
& \vec{a}_{1} \cdot\left(\vec{a}_{2} \times \vec{a}_{3}\right)=a^{3} / 4
\end{aligned}
$$

BCC lattice

$\vec{b}_{1}=2 \pi \frac{\vec{a}_{2} \times \vec{a}_{3}}{\vec{a}_{1} \cdot\left(\vec{a}_{2} \times \vec{a}_{3}\right)}=\frac{4 \pi}{a} \frac{1}{2}(\hat{x}+\hat{y}-\hat{z})$,
$\vec{b}_{2}=2 \pi \frac{\vec{a}_{3} \times \vec{a}_{1}}{\vec{a}_{1} \cdot\left(\vec{a}_{2} \times \vec{a}_{3}\right)}=\frac{4 \pi}{a} \frac{1}{2}(-\hat{x}+\hat{y}+\hat{z})$,
$\vec{b}_{3}=2 \pi \frac{\vec{a}_{1} \times \vec{a}_{2}}{\vec{a}_{1} \cdot\left(\vec{a}_{2} \times \vec{a}_{3}\right)}=\frac{4 \pi}{a} \frac{1}{2}(\hat{x}-\hat{y}+\hat{z})$.
$\vec{b}_{1} \cdot\left(\vec{b}_{2} \times \vec{b}_{3}\right)=\frac{1}{2}\left(\frac{4 \pi}{a}\right)^{3}$

Miller indices

An Indexed PbSO_{4} Crystal

The Miller indices（h，k，l）for a crystal plane
rules：
no need to be primitive vectors
1．取截距（以 a_{1}, a_{2}, a_{3} 爲單位）得（ x, y, z ）
2．取倒數（ $1 / x, 1 / y, 1 / z$ ）
3．通分成互質整數 (h, k, l)

Cubic crystals (including bcc, fcc... etc)

- Square bracket $[h, k, l]$ refers to the "direction" $h_{a_{1}}+\mathrm{ka}_{2}+\mathrm{la}_{3}$, instead of a crystal plane.
- For cubic crystals, $[\mathrm{h}, \mathrm{k}, \mathrm{l}]$ direction $\perp(\mathrm{h}, \mathrm{k}, \mathrm{l})$ planes

Diamond structure (eg. C, Si or Ge)
Termination of 3 low-index surfaces:

- $\{\mathrm{h}, \mathrm{k}, \mathrm{l}\}=(\mathrm{h}, \mathrm{k}, \mathrm{l})$-plane + those equivalent to it by crystal symmetry
- <h,k,l>=[h,k,l]-direction + those equivalent to it by crystal symmetry

Miller Indices for hexagonal lattice (i, j, k, I)

- corresponding to the I, J, K, L axes below

advantage?
[Courtesy of M.F.Yang at Tunhai Univ.]

1.

(1 0 0) plane <-> (10-1 0)
[2 10 0] vector <-> [10-1 0 - 0
$\left[\begin{array}{lll}2 & 1 & 0\end{array}\right]$ vector $\perp\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)$ plane,
or we can say
[10-1 0] vector $\perp\left(\begin{array}{lll}1 & 0-1 & 0\end{array}\right)$ plane.
2.

For two side faces, they can be
(100), (-1 10), or
(10-10), (-1 100),
which belong to the same $\left\{\begin{array}{lll}-1 & 1 & 0\end{array}\right\}$

- $\mathrm{k}=-(\mathrm{i}+\mathrm{j})$

Geometrical relation between $G_{h k l}$ vector and (hkl) planes

$$
(h, k, l) \text { planes } \perp \vec{G}_{h k l} \equiv h \vec{b}_{1}+k \vec{b}_{2}+l \vec{b}_{3}
$$

Pf:

$$
\begin{aligned}
& \left\{\begin{array}{l}
\vec{v}_{1}=\frac{m}{h} \vec{a}_{1}-\frac{m}{l} \vec{a}_{3} \\
\vec{v}_{2}=\frac{m}{k} \vec{a}_{2}-\frac{m}{l} \vec{a}_{3}
\end{array}\right. \\
& \Rightarrow \begin{array}{l}
\vec{G}_{h k l} \cdot \vec{v}_{1}=0 \\
\vec{G}_{h k l} \cdot \vec{v}_{2}=0
\end{array}
\end{aligned}
$$

$\therefore \vec{G}_{h k l} \perp(h, k, l)$-plane

Inter-plane distance

$$
\begin{aligned}
& \vec{G}_{h k l} \cdot \vec{R}=2 \pi n \quad(n \in Z) \\
\Rightarrow \quad & \hat{G}_{h k l} \cdot \vec{R}=2 \pi n /\left|\vec{G}_{h k l}\right|
\end{aligned}
$$

\therefore inter-plane distance $d_{h k l}=2 \pi /\left|\vec{G}_{h k l}\right|$
For a cubic lattice

$$
\begin{aligned}
& \vec{G}_{h k l}=h \vec{b}_{1}+k \vec{b}_{2}+l \vec{b}_{3} \\
& \quad=\frac{2 \pi}{\mathrm{a}}(h \hat{x}+k \hat{y}+l \hat{z}) \\
& \therefore \quad d_{h k l}=\frac{a}{\sqrt{h^{2}+k^{2}+l^{2}}}
\end{aligned}
$$

- In general, planes with higher index have smaller inter-plane distance

Laue＇s diffraction condition

$$
\mathbf{k}^{\prime}=\mathbf{k}+\mathbf{G}_{\mathrm{hk} 1}
$$

－Given an incident \mathbf{k} ，want to find a \mathbf{k}^{\prime} that satisfies this condition
（under the constraint $|\mathbf{k}|=|\mathbf{k}|$ ）
－One problem：there are infinitely many \mathbf{G}_{hk}＇s．
－It＇s convenient to solve it graphically using the Ewald construction
（Ewald 構圖法）

More than one（or none） solutions may be found．

Laue's condition = Braggs' condition

- From the Laue condition, we have

$$
\vec{k} \cdot \hat{G}_{h k l}=-\frac{G_{h k l}}{2}
$$

- Given k and \mathbf{G}_{hk}, we can find the diffracted wave vector \mathbf{k}^{\prime}

(\mathbf{k} vector points to the plane bi-secting the \mathbf{G}_{nk} vector)
$\leftarrow a(h k l)$-lattice plane
- It's easy to see that $\theta=\theta^{\prime}$ because $|\mathbf{k}|=\left|\mathbf{k}^{\prime}\right|$.

$$
\text { By using } 2 k \sin \theta=G_{h k l}=\frac{2 \pi n}{d_{h k l}}
$$

$$
\text { and } \quad k=\frac{2 \pi}{\lambda} \text {, }
$$

$$
\Rightarrow 2 d_{h k l} \sin \theta=n \lambda . \quad \text { Bragg's diffraction condition }
$$

Braggs' view of the diffraction (1912, father and son)
You can view the same phenomena from 2 (or more) different angles, and each can get you a Nobel prize!

Treat the lattice as a stack of lattice planes

- mirror-like reflection from crystal planes when

$$
2 d \sin \theta=n \lambda
$$

- Difference from the usual mirror reflection:
$\lambda>2 \mathrm{~d}$, no reflection
$\lambda<2 \mathrm{~d}$, reflection only at certain angles
- Measure $\lambda, \theta \rightarrow$ get distance between crystal planes d

Powder method

圖八］粉末式攝影（POWDER

PHOTOGRAPHS）

作粉末式照像時，X 光照射在一塊許多向任 意方向排列的小晶體上，每一階次（ $h k l$ ）的繞光束組成一圓椎體，如以垂直於入射光之平面感光板記錄，每一階次以園繞中心的圓環狀出現；（上）

本圖的這些環的位置是面心正方晶格的典型式。爲了比較方便，經常使用圓柱形底片，其軸垂直於入射光（下）。圓椎體與圓柱相交照出的弧線，差不多可以包括所有的角度直至 180° ；底片可打開成條形。

The structure factor for a crystal with basis:

$$
S(h, k, l) \equiv \sum_{j=1}^{p} f_{a j} e^{-i \bar{G}_{h k} \cdot \bar{d}_{j}}
$$

f_{a} is the atomic form factor

Example:

fcc lattice = cubic lattice with a 4-point basis

$$
\begin{aligned}
& \vec{d}_{1}=\overrightarrow{0}, \\
& \vec{d}_{2}=\frac{\vec{a}_{1}}{2}+\frac{\vec{a}_{2}}{2}, \vec{d}_{3}=\frac{\vec{a}_{2}}{2}+\frac{\vec{a}_{3}}{2}, \vec{d}_{4}=\frac{\vec{a}_{3}}{2}+\frac{\vec{a}_{1}}{2} \\
& \vec{G}_{h k l}=h \vec{b}_{1}+k \vec{b}_{2}+l \vec{b}_{3} \\
& S(h, k, l)=f_{a}\left[1+e^{-i \pi(h+k)}+e^{-i \pi(k+l)}+e^{-i \pi(l+h)}\right] \\
& \qquad\left\{\begin{array}{l}
=4 f_{a} \text { when } h, k, l \text { are all odd or all even } \\
=0 \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Eliminates all the points in the reciprocal cubic lattice with $\mathrm{S}=0$. The result is a bcc lattice, as it should be!

Fig. 3.4 Permitted diffracted beams in cubic systems are characterized by the values of $h^{2}+k^{2}+l^{2}$. The figure shows how the addition of a basis to the simple cubic primitive cell reduces the number of allowed beams, increasingly the more atoms in the basis. Note the regular sequence of each pattern. The correct angular separations are not reproduced in this diagram.

Homework: Find out the structure factor of the honeycomb structure, then draw its reciprocal structure. Different points in the reciprocal structure may have different structure factors. Draw a larger dots if the associated $|\mathrm{S}|^{2}$ is larger.

Franklin and Gosling, 1953

Watson and Crick, 1953
(See Double helix, highly recommended)

3.4.6 Accuracy of Structure Determinations

Catalogs of crystal structures must always be employed with the possibility in mind that published results are inaccurate or incorrect. Abrahams et al. (1967) describe an effort to determine how big these errors might be, by taking a carefully prepared crystal to multiple research groups and asking them to measure Bragg peak intensities independently. Although each group claimed accuracy in determining structures of around 1%, discrepancies between different groups were typically on the order of $5 \%-6 \%$, and measurements of the intensity of the (111) reflection varied by 50%. In revisiting the results of this experiment, Mackenzie and Maslen (1968) call the results "grossly discordant." An example of an incorrect structure determination is provided by the high-cristobalite structure of SiO_{2}, on page 318 of

