Chap 2 Three-dimensional lattices




Monoatomic lattices

Table 3 Crystal structures of the elements

H 4k He* 2¢
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S there.
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1) bcc lattice (Li, Na, K, Rb, Cs... etc)

One possible
choice of primitive

lattice vectors
constant aj
— a A A A
=—( X+9y-12),
2
- A SN
_ a,=—(-X+y+12),
conventional L 2
unit cell e ;:_:«..._i 5 _a( " A+ZA)
(nonprimitive) e a8 ) 375 y

A bcc lattice is a Bravais lattice.
But we can also treat it as a cubic lattice with a 2-point basis
(to take advantage of the cubic symmetry)



2) fcc lattice (Ne, Ar, Kr, Xe, Al, Cu, Ag, Au... etc)

One possible
choice of primitive

(TS vectors
lattice A ..
=—(X+Y),
constant { | ! 2( J)
|
N A
aZ:E(y+z),
\J ALy

primitive unit cell
conventional unit cell

» A fcc lattice is also a Bravais lattice, but we can
treat it as a cubic lattice with a 4 point basis.



3) hcp lattice (Be, Mg... etc)
= a hexagonal lattice + a 2-point basis

= 2 overlapping “hexagonal lattices”

tl

Figure 22 The hexagonal close-packed struc-
ture. The atom positions in this structure do
not constitute a space lattice. The space lattice
is simple hexagonal with a basis of two identi-
cal atoms associated with each lattice point.
The lattice parameters a and ¢ are indicated,
where a is in the basal plane and ¢ is the mag-
nitude of the axis a; of Fig. 14.

Figure 23 The primitive cell has a; = a,,
with an included angle of 120°. The ¢ axis (or
as) is normal to the plane of a, and a;. The
ideal hep structure has ¢ = 1.633 a. The two
atoms of one basis are shown as solid circles.
One atom of the basis is at the origin; the
other atom is at 252, which means at the posi-
tion r = 3a; + fa; + $as.

« Primitive vectors: a,, a,, ¢ [ ¢c=2a, (2/3) for hcp]
* The 2 atoms of the basis are located at d,=0 and
atd, =(2/3) a,+ (1/3) a,+(1/2)c



The tightest way to pack spheres:

A C stacking
sequence
(FCC)

A" A stacking

sequence
(HCP)

« ABCABC...=fcc, ABAB...= hcp
» Other close packed structures: ABABCAB... etc.



Viewing from different angles
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e coordination number (fidl i gl¢) = 12, packing fraction = 74%

(Cf: bec, coordination number = 8, packing fraction ~ 68%)



Kepler's conjecture (1611): The packing fraction of spheres in 3-dim < n/V/18

Does the proof StaCk up’) (the value of fcc and hcp)

... the editors of the Annals of Mathematics agreed to publish it, provided
it was accepted by a panel of 12 referees. In 2003, after 4 years of work,
the head of the referee's panel reported that the panel were "99% certain"
of the correctness of the proof... (from wiki)
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Grocers the world over know the most efficient way to stack spheres — but a mathematical proof for the method has brought reviewers to their knees.



4) Diamond structure (C, Si, Ge... etc)

= 2 overlapping fcc lattices (one is displaced along
the main diagonal by 1/4)

= fcc lattice + a 2-point basis, d,=0, d,=(a/4)(x+y+z)

diamond-type (Si, Ge) ZnS-type (GaAs)

» Very low packing fraction (~ 36%)

 |f the two atoms on the basis are different, then it is called
a Zincblend ([{/##) structure (GaAs, ZnS... etc).

It is a familiar structure with an unfamiliar name.



Crystal structure of compound

Here we mention 3 examples

1. Zincblend (or Zinc Sulfide) structure 2. Wurtzite (or Zinc oxide, 7<) structure
(see previous page) = 2 overlapping hcp lattices
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3. Perovskite (%f%bﬁ% or &FikEE) structure, ABO, (1839)

cubic lattice

body centered
O - anion:
face centered

oxidation state examples
/v A%/ BaTiO,
Pb(Zr,Ti)O,
1/V  A*/ KTaO,
/1 A3/ LaMnO,

application: nonlinear resistors (PTC), SMD-capacitors, piezoelectric
sensors and actuators, pyro-detectors, ferroelectric memory

Positive Temperature Coefficient

Surface Mount Device



Symmetries of 3D crystals

POINT AND SPACE GROUPS OF BRAVYAIS LATTICES AND CRYSTAL STRUCTURES

BRAVAIS LATTICE CRYSTAL STRUCTURE
(BASIS OF SPHERICAL SYMMETRY) (BASIS OF ARBITRARY SYMMETRY)
Number of 7 32
point groups: (“the 7 crystal systems") (““the 32 crystallographic point groups™)
Number of 14 230
space groups: (““the 14 Bravais lattices™) (““the 230 space groups”)

Ashcroft and Mermin, p.120

Note:

1.  The Bravais lattices were studied by M.L. Frankenheim in 1842,
who found that there were 15 Bravais lattices. This was corrected
to 14 by A. Bravais in 1848.

2. The 230 space groups were enumerated by Fydorov, Schonflies,
and Barlow in the 1890’s.



7 point groups (aka 7 “crystal systems”)

e primitive cell ;  Heirarchy of symmetries
A — Cubic
Hexagonal Tetragonal

- Tr L i_p i '
. fnglnn:al '[_‘.'l‘llmvl'i hombic

¥

[ AT > > Monoclinic
N !/"./_-/________.-—"':{ ./"/ // *
a Triclinic
Crystal System Lattice Parameters Lattice Angles
Cubic a=b=c ao=p=y=90°
Tetragonal a=b#c a=p=y=90°
Orthorhombic azb#c o=p=y=90°
trigonal Rhombohedral a=b=c o =p=y#90°
Hexagonal a=b#c o =p=90°vy=120°
Monoclinic azb#c a =y =90° B #90°
Triclinic azb#c o p=y#90°

http://matsci.uah.edu/courseware/mts721/



14 space groups (14 Bravais lattices)

Bravais Parameters Simple (P) Volume Base Face
lattice centered (I) | centered (C) | centered (F)
ay ¥ az ¥ as
Triclinic g # Qg3 F am
iy ?E Iz -",E iz
ag3 = a3 = 90°
Monoclinic ayp 7 90°
ay # az # as
Orthorhombic f¥12 = Gz = ag = 90° o
L] [ ] [ ]
@) = a3 ¥ as
Tetragonal fijp = figg = agyy = H)°
Same as Sjland VC
tetragonal
) =dadz = 4dgz v
Trigonal a1z = o3 = an < 120°
/.ﬁ
: z o
i) = a3 = dg
Cubic k12 = oz — k3] — 900 ./f—./
ay =a; # as
k1o — 1200
Hexagonal a3 = asy = 90°
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32 point groups for crystal structure

5 cubic point groups

« 27 non-cubic point groups

Ashcroft and Mermin, p.121,122
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27 non-cubic point groups:

/
=
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These groups contain only an n-fold rotation-reflection axis.

In addition to an n-fold rotation axis, these groups contain a 2-fold axis
perpendicular to the n-fold axis, plus as many additional 2-fold axes as are
required by the existence of the n-fold axis.

These (the most symmetric of the groups) contain all the elements of D, plus
a mirror plane perpendicular to the n-fold axis.

These contain the elements of D, plus mirror planes containing the n-fold
axis, which bisect the angles between the 2-fold axes.
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Microscopic symmetry <> macroscopic properties

* appearance

Prob.2.9: Haly’s law regarding the Al melt on Si {111}
angles between crystal faces

surface reveals the
symmetry of the
diamond lattice

Rhomb-dodecahedron Pentagon-dodecahedron

* birefringence (eg. Calcite) e optical activity Bk %
T Light
e Unpolarized
S, light
¥
Polarizer

Analyzer

Viewer



* piezoelectricity B (eg. Quartz)

* piezoelectricity are only possible in crystals
that have no center of inversion symmetry

 Of the 32 crystallographic point groups,

21 have no inversion symmetry (thus can

support piezoelectricity). However, Cubic-432

(i.e. O) is impossible, so only 20.

for details, see
capsicum.me.utexas.edu/ChE386K/docs/20a_Physical_Properties.ppt

* pyroelectricity E\F (eg. LiTaO3, Lithium Tantalate /%5 )

» The 20 piezoelectric crystal classes can be divided into 2 classes:
polar and nonploar.

* Polar point groups have a “unique” axis that is not repeated in any
direction (They are: 1, 2, m, 2mm, 3, 3m, 4, 4mm, 6, 6mm ).
They can support spontaneous polarization without any mechanical

stress, such as pyroelectricity. A pyroelectric can be repeatedly

heated and cooled to generate
electrical power. (~ a heat engine)



