Diamagnetism and paramagnetism

- Langevin diamagnetism
- paramagnetism
- Hund's rules
- Lande g-factor
- Brillouin function
- crystal field splitting
- quench of orbital angular momentum
- nuclear demagnetization

- Pauli paramagnetism and Landau diamagnetism
free electron
gas

Basics

- System energy

$$
E(H) \quad(E \rightarrow F=E-T S \text { if } T \neq 0)
$$

- magnetization density

$$
M(H)=-\frac{1}{V} \frac{\partial E}{\partial H}
$$

- susceptibility

Atomic susceptibility

$$
\begin{aligned}
H & =\sum_{i}\left(\frac{p_{i}^{2}}{2 m}+V_{i}\right)+\mu_{B}(\vec{L}+g \vec{S}) \cdot \vec{H}+\frac{e^{2}}{2 m c} \sum_{i} A_{i}^{2}, \quad \mu_{B}=\frac{e \hbar}{2 m c} \\
& =H_{0}+\Delta H
\end{aligned}
$$

Order of magnitude

- $\mu_{B}(\vec{L}+g \vec{S}) \cdot \vec{H} \approx \mu_{B} H \approx \hbar \omega_{c}$

$$
\approx 10^{-4} \mathrm{eV} \quad \text { when } H=1 \mathrm{~T}
$$

- $\vec{A}_{i}=\frac{H}{2}\left(-y_{i}, x_{i}, 0\right)$

$$
\begin{aligned}
\frac{e^{2}}{2 m c} \sum_{i} A_{i}^{2} & \approx\left(\frac{e H}{m c}\right)^{2} m a_{0}^{2}, \quad a_{0} \equiv \frac{\hbar^{2}}{m e^{2}} \\
& \approx \frac{\left(\hbar \omega_{c}\right)^{2}}{e^{2} / a_{0}} \approx 10^{-5} \text { of the linear term at } H=1 \mathrm{~T}
\end{aligned}
$$

Perturbation energy (to 2nd order)

$$
\begin{aligned}
\Delta E_{n} & =\langle n| \Delta H|n\rangle+\sum_{n^{\prime} \neq n} \frac{\left.|\langle n| \Delta H| n^{\prime}\right\rangle\left.\right|^{2}}{E_{n}-E_{n^{\prime}}} \\
& =\mu_{B}\langle n| \vec{L}+g \vec{S}|n\rangle \cdot \vec{H}+\frac{e^{2}}{2 m c^{2}}\langle n| \sum_{i} A_{i}^{2}|n\rangle+\sum_{n^{\prime}}, \frac{\left.\left|\langle n| \mu_{B}(\vec{L}+g \vec{S}) \cdot \vec{H}\right| n^{\prime}\right\rangle\left.\right|^{2}}{E_{n}-E_{n^{\prime}}}
\end{aligned}
$$

Filled atomic shell

(applies to noble gas, NaCl -like ions...etc)
Ground state $|0\rangle$:

$$
\begin{aligned}
& \vec{L}|0\rangle=\vec{S}|0\rangle=0 \\
& \therefore \quad \Delta E=\frac{e^{2}}{8 m c^{2}} H^{2}\langle 0| \frac{2}{3} \sum_{i} r_{i}^{2}|0\rangle \quad \text { (for spherical charge dist) }
\end{aligned}
$$

For a collection of N ions,

$$
\chi=-\frac{N}{V} \frac{\partial^{2} \Delta E}{\partial H^{2}}=-\frac{e^{2}}{6 m c^{2}} \frac{N}{V}\langle 0| \sum_{i} r_{i}^{2}|0\rangle<0
$$

Larmor (or Langevin) diamagnetism

Ground state of an atom with unfilled shell (no H field yet!):

- Atomic quantum numbers $\quad \alpha, l, m_{l}, m_{s}$
- Energy of an electron depends on $\alpha, l\left(\right.$ no $\left.m_{l}, m_{s}\right)$
- Degeneracy of electron level $\mathcal{E}_{\alpha, l}: 2(2 /+1)$
- If an atom has N (non-interacting) valence electrons, then the degeneracy of the "atomic" ground state (with unfilled $\varepsilon_{\alpha, l}$ shell) is $C_{N}^{2(2 l+1)}$
e-e interaction will lift this degeneracy partially, and then
- the atom energy is labeled by the conserved quantities L and S, each is $(2 L+1)(2 S+1)$-fold degenerate
- SO coupling would split these states further, which are labeled by J

What's the values of S, L, and J for the atomic ground state?

Use the Hund's rules (1925),

1. Choose the max value of S that is consistent with the exclusion principle
2. Choose the max value of L that is consistent with the exclusion principle and the 1st rule

To reduce Coulomb repulsion, electron spins like to be parallel, electron orbital motion likes to be in high ml state. Both helps disperse the charge distribution.

Example: 2 e's in the p-shell $\left(I_{1}=I_{2}=1, s_{1}=s_{2}=1 / 2\right)$
(a) $(1,1 / 2)$
(b) $(0,1 / 2)$
(c) $(-1,1 / 2)$
(a') $(1,-1 / 2)$
(b') $(0,-1 / 2)$
(c') $(-1,-1 / 2)$
$\mathrm{C}_{2}{ }_{2}$ ways to put these 2 electrons in 6 slots

Spectroscopic notation:
${ }^{2 S+1} X_{J}(X=S, P, D \ldots)$
${ }^{1} S_{0},{ }^{3} P_{0,1,2},{ }^{1} D_{2}$ are o.k.; ${ }^{3} S,{ }^{1} P,{ }^{3} D$ are not.
(It's complicated. See Eisberg and Resnick
App. K for more details)

Ground state is ${ }^{3} P_{0,1,2}$,

Energy levels of Carbon atom			
Configuration	Term	\boldsymbol{J}	Level $\left(\mathrm{cm}^{\mathbf{- 1}}\right)$
$2 s^{2} 2 p^{2}$	${ }^{3} \mathrm{P}$	0	0.00000
		1	16.41671
$2 s^{2} 2 p^{2}$	${ }^{1} \mathrm{D}$	2	43.41350
$2 s^{2} 2 p^{2}$	${ }^{1} \mathrm{~S}$	0	21648.02

physics.nist.gov/PhysRefData/Handbook/Tables/carbontable5.htm
$(2 L+1) \times(2 S+1)=9$-fold degenerate
There is also the 3rd Hund's rule related to SO coupling (details below)

TABLE K-I. Possible Quantum Numbers for an $n p^{2}$ Configuration

Entry	$m_{l_{1}}$	$m_{s_{1}}$	$m_{l_{3}}$	$m_{s_{2}}$	m_{l}^{\prime}	m_{s}^{\prime}	m_{j}^{\prime}
1	+1	$+1 / 2$	+1	$-1 / 2$	+2	0	+2
2	+1	$+1 / 2$	0	$+1 / 2$	+1	+1	+2
3	+1	$+1 / 2$	0	$-1 / 2$	+1	0	+1
4	+1	$+1 / 2$	-1	$+1 / 2$	0	+1	+1
5	+1	$+1 / 2$	-1	$-1 / 2$	0	0	0
6	+1	$-1 / 2$	0	$-1 / 2$	+1	-1	0
7	+1	$-1 / 2$	-1	$+1 / 2$	0	0	0
8	+1	$-1 / 2$	-1	$-1 / 2$	0	-1	-1
9	0	$+1 / 2$	+1	$-1 / 2$	+1	0	+1
10	0	$+1 / 2$	0	$-1 / 2$	0	0	0
11	0	$+1 / 2$	-1	$+1 / 2$	-1	+1	0
12	0	$+1 / 2$	-1	$-1 / 2$	-1	0	-1
13	-1	$+1 / 2$	0	$-1 / 2$	-1	0	-1
14	-1	$+1 / 2$	-1	$-1 / 2$	-2	0	-2
15	-1	$-1 / 2$	0	$-1 / 2$	-1	-1	-2

Setting $l_{1}=l_{2}=1$, we find that the possible combinations of $l^{\prime}, s^{\prime}, j^{\prime}$, expressed in spectroscopic notation, are as App. K follows: ${ }^{1} S_{0},{ }^{1} P_{1},{ }^{1} D_{2},{ }^{3} S_{1},{ }^{3} P_{0},{ }^{3} P_{1},{ }^{3} P_{2},{ }^{3} D_{1},{ }^{3} D_{2},{ }^{3} D_{3}$. The ${ }^{3} D_{3}$ states are immediately ruled out because for these states there would be m_{j}^{\prime} values of +3 and -3 , but we see that there are none listed in Table K-1. Since there are no ${ }^{-3} D_{3}$ states, there can be no ${ }^{3} D_{2}$ or ${ }^{3} D_{1}$ states; all these states correspond to S^{\prime} and L^{\prime} vectors of the same magnitude in the same multiplet and they stand or fall together. Now, entry number 1 in the table says there must be states with $s^{\prime} \geq 0$ and $l^{\prime} \geq 2$, since $m_{s}^{\prime}=-s^{\prime}, \ldots, s^{\prime}$ and $m_{l}^{\prime}=$ $-l^{\prime}, \ldots, l^{\prime}$. These requirements can be satisfied only by the states ${ }^{1} D_{2}$. There are five such states corresponding to the five values $m_{j}^{\prime}=-2,-1,0,1,2$. Entry number 2 says that there must be states with $s^{\prime} \geqq 1$ and $l^{\prime} \geq 1$. This requires the presence of the states ${ }^{3} P_{0},{ }^{3} P_{1}$, ${ }^{3} P_{2}$. For ${ }^{3} P_{0}$ there is one state corresponding to $m_{j}^{\prime} \supseteq 0$. For ${ }^{3} P_{1}$ there are three states corresponding to $m_{j}^{\prime}=-1,0,1$. For ${ }^{3} P_{2}$ there are five corresponding to $m_{j}^{\prime}=-2,-1$, $0,1,2$. The number of states we have identified so far is $5+1+3+5=14$. Only a single state is left, and this must be a state with $m_{j}^{\prime}=0$ because all the other m_{j}^{\prime} values of the table have been used. It is clear then that this must be the single quantum state ${ }^{1} S_{0}$.

Review of SO coupling
An electron moving in a static E field feels an effective B field

$$
\vec{B}_{e f f}=\vec{E} \times \frac{\vec{v}}{c}
$$

This B field couples with the electron spin

$$
\begin{aligned}
H_{S O} & =-\vec{\mu} \cdot \vec{B}_{\text {eff }} \\
& =-\left(\frac{q}{m c} \vec{S}\right) \cdot\left(\vec{E} \times \frac{\vec{v}}{c}\right), \quad \vec{E}=-\hat{r} \frac{d \phi}{d r} \text { for central force } \\
& =\left(\frac{q}{m^{2} c^{2}} \frac{d \phi}{r d r}\right) \vec{S} \cdot \vec{L} \\
& \equiv \lambda \vec{S} \cdot \vec{L} \\
& =\frac{\lambda}{2}\left(J^{2}-L^{2}-S^{2}\right) \\
& \quad \begin{array}{l}
\lambda>0 \text { for less than half-filled (electron-like) } \\
(2 L+1) \times(2 S+1) \text { degeneracy is further lifted to become } \\
\\
(2 J+1) \text {-fold degeneracy }
\end{array}
\end{aligned}
$$

Hund's 3rd rule:

- if less than half-filled, then J=|L-S| has the lowest energy
- if more than half-filled, then $\mathrm{J}=\mathrm{L}+\mathrm{S}$ has the lowest energy
${ }^{3} P_{0}$ is the ground state in previous example

$t=\operatorname{spin} \frac{1}{2} ; \downarrow=$ spin $-\frac{1}{2}$.

Paramagnetism of an atom with unfilled shell

1) Ground state is nondegenerate ($J=0$)

$$
\Delta E=\underset{\substack{\text { (A+M, Prob 31.4) }}}{\mu_{B}\langle 0| \vec{L}+g \vec{S}|0\rangle \cdot \vec{H}+\frac{e^{2}}{2 m c^{2}}\langle 0| \sum_{i} A_{i}^{2}|0\rangle+\sum_{n} \frac{,\left.\left\langle\langle 0| \mu_{B}(\vec{L}+g \vec{S}) \cdot \vec{H} \mid n\right\rangle\right|^{2}}{E_{0}-E_{n}}}
$$

2) Ground state is degenerate $(J \neq 0)$

Van Vleck PM
Then the $1^{\text {st }}$ order term almost always >> the 2 nd order terms.

$$
\vec{M}=-\mu_{B}(\vec{L}+2 \vec{S})=-\mu_{B}(\vec{J}+\vec{S})
$$

Heuristic argument: J is fixed, L and S rotate around J, maintaining the triangle. So the magnetic moment is given by the component of $L+2 S$ parallel to J

$$
\begin{aligned}
& \vec{S}_{/ /}=\frac{\vec{J} \cdot \vec{S}}{J^{2}} \vec{J}=\frac{\vec{J}}{2 J^{2}}\left(J^{2}-L^{2}+S^{2}\right) \\
&=\frac{\vec{J}}{2 J(J+1)}[J(J+1)-L(L+1)+S(S+1)] \\
& \therefore \vec{M}=-g_{J} \mu_{B} \vec{J} \\
& g_{J}=1+\frac{J(J+1)-L(L+1)+S(S+1)}{2 J(J+1)}
\end{aligned}
$$

$$
\Delta E\left(m_{j}\right) \sim H, \text { so } \chi=0 ?
$$

Lande g-factor (1921)

No! these $2 J+1$ levels are closely packed (<kT), so $F(H)$ is nonlinear

Brillouin function

$$
\begin{aligned}
Z & =\sum_{m_{J}=-J}^{J} e^{-E\left(m_{J}\right) / k T}, \Delta E\left(m_{J}\right)=g_{J} \mu_{B} m_{J} I \\
F & =E-T S=-k T \ln Z \\
M & =-\frac{N}{V} \frac{\partial F}{\partial H}=\frac{N}{V} g_{J} \mu_{B} J B_{J}\left(\frac{g_{J} \mu_{B} J H}{k T}\right)
\end{aligned}
$$

where $B_{J}(x) \equiv \frac{2 J+1}{2 J} \operatorname{coth}\left(\frac{2 J+1}{2 J} x\right)-\frac{1}{2 J} \operatorname{coth}\left(\frac{x}{2 J}\right)$

$$
\begin{aligned}
\bullet k T & \ll g_{J} \mu_{B} J H \quad(x \gg 1) \\
M & =\frac{N}{V} g_{J} \mu_{B} J, \quad \chi=0 \\
\bullet k T & >g_{J} \mu_{B} J H \quad(x \ll 1) \quad B_{J}(x) \sim \frac{J+1}{3 J} x \\
M & =\frac{N}{V}\left(g_{J} \mu_{B}\right)^{2} \frac{J(J+1)}{3 k T} H
\end{aligned}
$$

- at room T, χ (para) $\sim 500 \chi$ (dia) calculated earlier

- Curie's law $\chi=C / T$ (note: not good for $\mathrm{J}=0$)

$$
C=\frac{N}{V} \frac{\left(\mu_{B} p\right)^{2}}{3 k}, \text { where } p=g_{J} \sqrt{J(J+1)} \quad \text { (effective Bohr magneton number) }
$$

```
f-shell (rare earth ions) In general (but not always)
```

ELEMENT (TRIPLY IONIZED)	BASIC ELECTRON CONFIGURATION	GROUND-STATE TERM	CALCULATED ${ }^{\text {b }} p$	MEASURED ${ }^{\boldsymbol{c}} \boldsymbol{p}$
La	$4 f^{0}$	${ }^{1} \mathrm{~S}$	0.00	diamagnetic
Ce	. $4 f^{1}$	${ }^{2} F_{5 / 2}$	2.54	2.4
Pr	$4 f^{2}$	${ }^{3} \mathrm{H}_{4}$	3.58 ,	3.5
Nd	$4 f^{3}$	${ }^{4} I_{9 / 2}$	$3: 62$	3.5
Pm	$4 f^{4}$	${ }^{5} \mathrm{I}_{4}$	2.68	-
Sm	$4 f^{5}$	${ }^{6} \mathrm{H}_{5 / 2}$	0.84	1.5
Eu	$4 f^{6}$	${ }^{7} F_{0}$	0.00	$3.4 \mathrm{~J}=$
Gd	$4 f^{7}$	${ }^{8} S_{7 / 2}$	7.94 Jue to	W-lying 8.0
Tb	$4 f^{8}$	${ }^{7} F_{6}$	9.72 (see	p.657) 9.5
Dy	$4 f^{9}$	${ }^{6} \mathrm{H}_{15 / 2}$	10.63	-10.6
Ho	$4 f^{10}$	${ }^{5}{ }_{5}{ }_{8}$	10.60	10.4
Er	$4 f^{11}$	${ }^{4} I_{15 / 2}$	9.59	9.5
Tm	$4 f^{12}$	${ }^{3} \mathrm{H}_{6}$	7.57	7.3
Yb	$4 f^{13}$	${ }^{2} F_{7 / 2}$	4.54	4.5
Lu	$4 f^{14}$	${ }^{1} S$	0.00	diamagnetic

Before ionization, La: $5 p^{6} 6 s^{2} 5 d^{1}$; Ce: $5 p^{6} 6 s^{2} 4 f^{2} \ldots$
d-shell (iron group ions)

ELEMENT (AND	BASIC ELECTRON	GROUNDSTATE	C	CULATED ${ }^{b} p$	
IONIZATION)	CONFIGURATION	TERM	$(J=S)$	$(J=\|L \pm S\|)$	MEASURED ${ }^{\boldsymbol{c}} \boldsymbol{p}$
Ti^{3+}	$3 d^{1} 45^{2}$	${ }^{2} D_{3 / 2}$	1.73	1.55	-
V^{4+}	$3 d^{1}$	${ }^{2} D_{3 / 2}$	1.73	1.55	1.8
$\mathbf{V}^{\mathbf{3 +}}$	$3 d^{2}$	${ }^{3} \mathrm{~F}_{2}$	2.83	1.63	2.8
$\mathrm{V}^{\mathbf{2 +}}$	$3 d^{3}$	${ }^{4} F_{3 / 2}$	3.87	0.77	3.8
Cr^{3+}	$3 d^{3}$	${ }^{4} F_{3 / 2}$	3.87	0.77	3.7
Mn^{4+}	$3 d^{3}$	${ }^{4} F_{3 / 2}$	3.87	0.77	4.0
Cr^{2+}	$3 d^{4}$	${ }^{5} D_{0}$	4.90	0	4.8
Mn^{3+}	$3 d^{4}$	${ }^{5} D_{0}$	4.90	0	5.0
Mn^{2+}	$3 d^{5}$	${ }^{6} S_{5 / 2}$	5.92	5.92	5.9
Fe^{3+}	$3 d^{5}$	${ }^{6} S_{5 / 2}$	5.92	5.92	5.9
Fe^{2+}	$3 d^{6}$	${ }^{5} \mathrm{D}_{4}$	4.90	6.70	5.4
Co^{2+}	$3 d^{7}$	${ }^{4} \mathrm{~F}_{9 / 2}$	3.87	6.54	4.8
Ni^{2+}	$3 d^{8}$	${ }^{3} \mathrm{~F}_{4}$	2.83	5.59	3.2
Cu^{2+}	$3 d^{9}$	${ }^{2} D_{5 / 2}$	1.73	3.55	1.9

- Curie's law is still good, but p is mostly wrong
- Much better improvement if we let $J=S$

p_{x}

p_{y}
p_{y}

$\mathrm{d}_{x y}$

p_{z}

$\mathrm{d}_{x z}$

$$
\mathrm{d}_{x^{2}-y^{2}}
$$

In a crystal, crystal field may be more important than the LS coupling

Higher Energy
Levels

Different symmetries would have different splitting patterns

Quench of orbital angular momentum

- Due to crystal field, energy levels are now labeled by L (not J)
- Orbital degeneracy not lifted by crystal field may be lifted by 1) LS coupling or 2) Jahn-Teller effect or both.
- The stationary state ψ of a non-degenerate level can be chosen to be real
when $t \rightarrow-t$, $\psi \rightarrow \psi^{*}(=c \psi$ if nondegenerate $)$
- $\quad\langle\psi| \vec{L}|\psi\rangle=\langle\psi| \vec{r} \times \frac{\hbar}{i} \nabla|\psi\rangle$ is purely imaginary but $\langle\psi| \vec{L}|\psi\rangle$ has to be real also
$\therefore\langle\psi| \vec{L}|\psi\rangle=0$ $\left(\langle\psi| L^{2}|\psi\rangle\right.$ can still be non-zero $)$
- for 3d ions, crystal field > LS interaction
- for 4 f ions, $L S$ interaction > crystal field (because 4 f is hidden inside $5 p$ and $6 s$ shells)
- for 4d and 5d ions that have stronger SO interaction, the 2 energies maybe comparable and it's more complicated.
- Langevin diamagnetism
- paramagnetism
- Hund's rules
- Lande g-factor
- Brillouin function
- crystal field splitting
- quench of orbital angular momentum
- nuclear demagnetization
- Pauli paramagnetism and

Landau diamagnetism

Adiabatic demagnetization (proposed by Debye, 1926)

- The first way to reach below 1K

$$
\begin{aligned}
& Z=\sum_{m_{J}=-J}^{J} e^{-E / k T}, \quad \text { assume } E \propto H \\
& F=-k T \ln Z\left(\frac{H}{k T}\right) \\
& S=-\frac{\partial F}{\partial T}=S\left(\frac{H}{k T}\right)
\end{aligned}
$$

If $S=$ constant, then $k T \sim H \quad T_{f}=T_{i} \frac{H_{f}}{H_{i}}$
\therefore We can reduce H to reduce T

Without residual field

Freezing is effective only if spin specific heat is dominant (usually need $T \ll T_{D}$)

Can reach $10^{-6} \mathrm{~K}$ (dilution refrig only $10^{-3} \mathrm{~K}$)

Pauli paramagnetism for free electron gas (1925)

- Orbital response to H neglected, consider only spin response
- One of the earliest application of the exclusion principle

$$
\begin{aligned}
& N=N_{\uparrow}+N_{\downarrow} \\
& M=\frac{1}{V}\left(N_{\uparrow}-N_{\downarrow}\right) \mu_{B}
\end{aligned}
$$

For $T \ll T_{F}$,
$n_{\uparrow}-n_{0} \cong \frac{g\left(\varepsilon_{F}\right)}{2} \mu_{B} H ;$
$n_{\downarrow}-n_{0} \cong-\frac{g\left(\varepsilon_{F}\right)}{2} \mu_{B} H$.
$\therefore M=g\left(\varepsilon_{F}\right) \mu_{B}^{2} H$
$\Rightarrow \quad \chi_{\text {Pauli }}=g\left(\varepsilon_{F}\right) \mu_{B}^{2} \sim 10^{-6}$

Landau diamagnetism (1930)

- The orbital response neglected earlier gives slight DM
- The calculation is not trivial

$$
\begin{aligned}
\chi_{\text {Landau }} & =-\frac{e^{2} k_{F}}{12 \pi^{2} m c^{2}} \\
& =-\frac{1}{3} \chi_{\text {Pauli }}
\end{aligned}
$$

