(10 points for each item)

1. (a) Find and draw the reciprocal lattice of the 2-dim triangular lattice in Fig.1(a).
(b) Following (a), draw the first Brillouin zone.
(c) Find out the structure factor $S(G)$ of the honeycomb lattice in Fig.1(b), then draw its reciprocal structure. Different points in the reciprocal structure may have different structure factors. Draw a larger dots if the associated $|S(G)|^{2}$ is larger. (the atomic form factor is f_{a})

2. (a) Briefly explain the Ewald construction. Draw a figure if necessary.
(b) Prove that, if the incident and the diffracted wave vectors \boldsymbol{k} and \boldsymbol{k} ' satisfy the Laue condition, then this would lead to the Bragg diffraction condition.
3. (a) Consider a free electron gas in 2 dimension. How does the Fermi wave vector k_{F} depend on the electron density n.
(b) Find out the density of states $D(\varepsilon)$ for 2-dim electron gas. (electron mass is m, sample area is A)
(c) In 3-dim, we know that the electron specific heat C_{e} is proportional to temperature T. In 2-dim, is C_{e} still proportional to T ? If it is, explain why. If not, give the correct T-dependence. Use a heuristic argument (instead of Sommerfeld expansion).
4. (a) A monatomic crystal with FCC structure has a volume $1 \mathrm{~mm}^{3}$. The volume of a primitive unit cell is $5 \mathrm{~A}^{3}$. How many k-points are there in the first Brillouin zone? How many electrons are required to fill an energy band? (consider spin)
(b) Show that an electron in the Bloch state $\psi_{n \vec{k}}(\vec{r})$ with energy $\varepsilon_{n}(\vec{k})$ has velocity $\vec{v}_{n}(\vec{k})=\frac{\partial \varepsilon_{n}(\vec{k})}{\hbar \partial \vec{k}}$.
